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ABSTRACT. We introduce and study a game-theoretic model to understand the spread of an epidemic
in a homogeneous population. A discrete-time stochastic process is considered where, in each epoch,
first a randomly chosen agent updates their action trying to maximize a proposed utility function, and
then agents who have viral exposures beyond their immunity get infected. Our main results discuss
asymptotic limiting distributions of both the cardinality of the subset of infected agents and the action
profile, considered under various values of two parameters (initial action and immunity profile). We
also show that the theoretical distributions are almost always achieved in the first few epochs.

1. INTRODUCTION

1.1 OVERVIEW OF THE PAPER

The primary motivation that fuels our work in this paper is the need to understand how an
infectious disease spreads through a homogeneous population comprising intelligent, pragmatically
thinking individuals who decide upon their actions (such as distancing oneself from possibly
infected acquaintances via voluntary confinement to one’s home) on a day-to-day basis, with the
aim to maximize their respective utility functions. The key novelty of our work lies in being able
to capture, via our model, the fact that the population we consider is made up of rational beings
referred to as agents or players. We emphasize here the need for investigation in understanding the
spread of a contagion through a population whose members are not just helpless entities exposed
to the infection at the whim of nature alone (see §1.2 for a brief discussion of the existing literature
on models devised for studying the spread and control of epidemics, based on game theory).

Our model is firmly based on the premise of game theory, constituting a population N =
{1,2, . . . ,n} of n agents, each of whom is allowed to choose from a set A = [0,1] of available actions.
Choosing action 0 is equivalent to the agent confining themselves to their home and coming in
contact with no other agent, whereas choosing action 1 is tantamount to the agent going about their
day as usual, with no restrictions imposed. An action profile aN = (a1, . . . , an) is an element of the set
An, with ai indicating the most recent action undertaken by agent i, for each i ∈ N. The agents are
represented by the vertices of an undirected weighted graph, and the interaction between agent i
and agent j, for distinct i, j ∈ N, is captured by the weight gi,j ∈ [0,1] of the edge connecting the
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vertices i and j. We further endow agent i, for each i ∈ N, with an immunity power τ(i) ∈ (0,1). We
consider a discrete-time stochastic process indexed by N0, the set of all non-negative integers. At
the beginning of the t-th epoch of time, for each t ∈ N0, an agent v˜t is chosen uniformly randomly
out of N and permitted to update their action. The chosen agent decides upon their action by taking
stock of the state the process is in at the beginning of that epoch, and their own utility function, both
of which are formally defined in §2. We mention here that the state St of the process, at the start
of epoch t ∈ N0, is made up of two crucial components: (i) the set I(St) comprising all the agents
who are infected at the beginning of epoch t, (ii) and the action profile aN(St) of the agents at the
beginning of epoch t.

The process mentioned above shall, henceforth, be referred to as the stochastic virus spread process
(SVSP). In addition, we shall consider, for some of our preliminary investigations of the SVSP, a
deterministic virus spread process (DVSP) (see §2 for a more formal definition) in which the sequence
v˜= (v˜t : t ∈ N0) of agents is specified fully (i.e. the agent v˜t chosen to update their action at the
start of epoch t, for each t ∈ N0, is predetermined, and not random).

The principal questions we aim to answer in this work are those concerning the limiting dis-
tribution of the infected set I(St) and the limiting distribution of the action profile aN(St) of all
agents concerned, as t → ∞, provided such limits exist. Such questions are pertinent not just
theoretically, but also from a very practical perspective in that, in any country, the departments
under the federal government that are tasked with overseeing the provision of healthcare for the
population must be able to reliably predict the approximate proportion of citizens to get infected
in the long run (i.e. when the epidemic has continued for a considerably long duration). This is
necessary because such knowledge can aid in the decision of how much resources (medicines and
medical equipment, hospital beds etc.) to set aside for the treatment of infected patients in the long
run. The investigation of the limiting behaviour of the action profile aN(St) as t → ∞ goes on to
reveal how, when such a limit exists, individuals in a population typically tend to behave once the
epidemic has prevailed for a sufficiently long time.

1.2 A BRIEF REVIEW OF PERTINENT LITERATURE

The classical compartmental models of epidemiology (see [5] for a comprehensive survey) date as
far back as the early 1900s (see [34]). Some of the most notable ones out of these are Susceptible-
Infectious-Removed (SIR) model (see [17]), the Susceptible-Infectious-Susceptible (SIS) model (see
[13]) and the Susceptible-Exposed-Infectious-Removed (SEIR) model (see [1]). In the recent years,
network models have become more popular, with the vertices or nodes of a network representing the
individuals of a population under consideration, and the edge between any two distinct nodes
denoting the relationship or interaction between the two individuals those nodes represent, in such
models (for instance, see [30], [33], [9], [16], [23], [26], [38], [36], [4], [10], [6] etc.).

We now begin a discussion of research articles that are closely aligned in flavour with our work
in this paper. We begin with [2], which investigates a game for a continuum of non-identical
players evolving on a finite state space, with their heterogeneous interactions with other players
represented via a graphon (viewed as the limit of a dense random graph). A player’s transition
rates between the states depend on their control and the strength of their interaction with other
players. Sufficient conditions for the existence of Nash equilibria are studied in [2], and the existence
of solutions to a continuum of fully coupled forward-backward ordinary differential equations
characterizing the Nash equilibria is proved. In [39], spectral properties of graphons are used
to study stability and sensitivity to noise of deterministic SIS epidemics over large networks. In
particular, the presence of additive noise in a linearized SIS model is considered and a noise index
is derived to quantify the deviation from the disease-free state due to noise.



GAME THEORETIC EPIDEMIC MODEL 3

In the next couple of paragraphs, we focus on citing a few of the articles out of the vast literature
that concerns itself with applying the theory of mean field games to the study of the spread of
an epidemic throughout a population. In [3], motivated by models of epidemic control in large
populations, a Stackelberg mean field game model between a principal and a mean field of agents
evolving on a finite state space is considered, with the agents playing a non-cooperative game
in which they can control their transition rates between states to minimize individual costs. An
application is then proposed to an epidemic model of the SIR type in which the agents control their
interaction rate and the principal is a regulator acting with non pharmaceutical interventions. In
[24], a mean-field game model in controlling the propagation of epidemics on a spatial domain is
introduced, with the control variable being the spatial velocity (introduced at first for the classical
disease models, such as SIR), and fast numerical algorithms based on proximal primal-dual
methods are provided. In [25], a mean-field variational problem in a spatial domain, controlling
the propagation of a pandemic by the optimal transportation strategy of vaccine distribution, is
investigated. In [32], an agent’s decision as to whether to be socially active in the midst of an
epidemic is modeled as a mean-field game with health-related costs and activity-related rewards.
By considering the fully and partially observed versions of this problem, the role of information
in guiding an agent’s rational decision is highlighted. In [31], how the evolution of an infectious
disease in a large heterogeneous population is governed by the self-interested decisions (to be
socially active) of individual agents is studied based on a mean-field type optimal control model.
The model is used to investigate the role of partial information on an agent’s decision-making, and
study the impact of such decisions by a large number of agents on the spread of the virus in the
population.

In [7], a mean-field game model is proposed in which each of the agents chooses a dynamic
strategy of making contacts, given the trade-off of gaining utility but also risking infection from
additional contacts. Both the mean-field equilibrium strategy, which assumes that each agent acts
selfishly to maximize their own utility, and the socially optimal strategy, which maximizes the total
utility of the population, are computed and compared with each other. An additional cost is also
included as an incentive to the agents to change their strategies, when computing the socially
optimal strategies. The price of anarchy of this system is computed to understand the conditions
under which large discrepancies between the mean-field equilibrium strategies and the socially
optimal strategies arise, which is when intervening public policy would be most effective. In [11], a
mean field game model of SIR dynamics is proposed in which players choose when to get vaccinated.
It is shown that this game admits a unique mean-field equilibrium that consists of vaccinating
aggressively at a maximal rate for a certain amount of time and then not vaccinating, and it is
shown that this equilibrium has the same structure as the vaccination strategy that minimizes the
total cost. A very similar problem is studied in [12] that focuses on a virus propagation dynamics
in a large population of agents, with each agent being in one of three possible states (namely,
susceptible, infected and recovered) and with each agent allowed to choose when to get vaccinated.
It is shown that this system admits a unique symmetric equilibrium when the number of agents
goes to infinity, and that the vaccination strategy that minimizes the social cost has the same
threshold structure as the mean field equilibrium, though the latter has a shorter threshold. In
[14], the newborn, non-compulsory vaccination in an SIR model with vital dynamics is studied,
with the evolution of each individual modeled as a Markov chain and their decision to vaccinate
aimed at optimizing a criterion depending on the time-dependent aggregate (societal) vaccination
rate and the future epidemic dynamics. The existence of a Nash mean field game equilibrium
among all individuals in the population is established. In [18], techniques from the mean field game
theory are used to examine whether, in an SIR model, egocentric individuals (i.e. whose actions
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are driven by self-interest when it comes to getting vaccinated) can reach an equilibrium with
the rest of the society, and it is shown that an equilibrium exists. The individual best vaccination
strategy (with as well as without discounting) is completely characterized, a comparison is made
with a strategy based only on overall societal optimization, and a situation with a non-negative
price of anarchy is exhibited. In [19], individual optimal vaccination strategies in an SIR model
are analyzed. It is assumed that the individuals vaccinate according to a criterion taking into
account the risk of infection, the possible side effects of the vaccine and the overall epidemic course,
that the vaccination capacity is limited, and that the individual discounts the future at a given
positive rate. Under these assumptions, an equilibrium between the individual decisions and the
epidemic evolution is shown to exist. In [37], a model of agent-based vaccination campaign against
influenza with imperfect vaccine efficacy and durability of protection is considered. The existence
of a Nash equilibrium is proved and a novel numerical method is proposed to find said equilibrium.
Various aspects of the model are also discussed, such as the dependence of the optimal policy on
the imperfections of the vaccine, the best vaccination timing etc.

In [15], a general mathematical formalism is introduced to study the optimal control of an
epidemic via incentives to lockdown and testing, and the interplay between the government and
the population, while an epidemic is spreading according to the dynamics given by a stochastic
SIS model or a stochastic SIR model, is modeled as a principal–agent problem with moral hazard.
Although, to limit the spread of the virus, individuals within a given population can choose to
reduce interactions among themselves, this cannot be perfectly monitored by the government and
it comes with certain social and monetary costs for the population. One way to mitigate such costs
and encourage social distancing, lockdown etc., is to put in place an incentive policy in the form
of a tax or subsidy. In addition, the government may also implement a testing policy in order
to know more precisely the spread of the epidemic within the country, and to isolate infected
individuals. It is verified via numerical results that if a tax policy is implemented, the individuals
in the population are encouraged to significantly reduce interactions among themselves, and if
the government also adjusts its testing policy, less effort is required on the part of the population
to enforce social distancing, lockdown upon itself, and the epidemic is largely contained by the
targeted isolation of positively-tested individuals. In [8], a model for the evolution of sociality
strategies in the presence of both a beneficial and costly contagion is investigated, and a social
dilemma is identified in that the evolutionarily-stable sociality strategy is distinct from the collective
optimum (i.e. the level of sociality that would be best for all individuals) – in particular, the level of
social interaction in the former is greater (respectively less) than the social optimum when the good
contagion spreads more (respectively less) readily than the bad contagion. Finally, we cite [35],
which provides a state-of-the-art update on recent advances in the mean field approach that can be
used very effectively in analyzing a dynamical modeling framework, known as a continuous time
Markov decision process, for epidemic modeling and control.

1.3 ORGANIZATION OF THE PAPER

The model that we investigate in this paper, along with all the pertinent definitions, has been de-
scribed formally in §2, although we did allude to it briefly in §1. §2 also includes some observations
and lemmas concerning the the deterministic virus spread process (also mentioned previously in
§1). The main results of this paper, namely Theorems 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 are stated in §3,
along with relevant discussions regarding the conclusions drawn from them. Simulations exploring
the cardinality of the infected set for the first several epochs of the process, thereby yielding good
approximations to the limit that it converges to, are given in §6. A summary of what we have been
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able to achieve in this paper, along with directions of research on this as well as related topics that
we wish to pursue in the future, is provided in §7.

We would like to emphasize to our readers that we have included the proofs of Theorem 1,
Theorem 2, and Theorem 7 in the main body of the paper, immediately following their respective
statements in §3. We have done so in order to illustrate some of the most fundamental ideas used
in our proof techniques. However, we have deferred the proofs of the remaining main results to §B
and §D in the Appendix, to keep the paper as uncluttered as possible for the reader. Our aim is
to ensure that our readers fully understand the key steps of the analysis carried out to prove our
results, without being burdened with technical details every step of the way.

2. FORMAL DESCRIPTION OF THE MODEL

Recall, from the second paragraph of §1.1, the brief introduction to the model we consider in this
paper. Here, we formalize the model by providing mathematical definitions to the crucial quantities
involved in it.

The process described in §1.1 is said to be in the state S = (I, aN) if I ⊆ N denotes the set of
infected agents and aN denotes the action profile at that time. Given a state S, we denote by
I(S) the corresponding set of infected agents, and by aN̂(S) = (ai(S) : i ∈ N̂) the tuple in which
ai(S) represents the action of the i-th agent for all i ∈ N̂, for any subset N̂ of N. In particular, if
N̂ = N \ {j}, we abbreviate the notation aN\{j}(S) by a−j(S), and for any a ∈ A, we denote by
(a ∨ a−j(S)) the tuple (a1(S), . . . , aj−1(S), a, aj+1(S), . . . , an(S)). We denote by S the set of all possible
states.

The viral exposure ri(S) that agent i is subjected to, when the process is in state S, is defined as

ri(S) =


(

∑j∈I\{i} gijaj(S)

∑j∈N\{i} gijaj(S)

)
if ∑

j∈N\{i}
gijaj(S) ̸= 0,

0 if ∑
j∈N\{i}

gijaj(S) = 0.

For an intuitive understanding of viral exposure, consider the interpretation that aj(S) determines
how much (say, how many units of time), the j-th individual goes out at state S, and gij represents
the amount of interaction i has with j when both are outside. Therefore, gijaj(S) is the amount of
interaction the i-th individual will have with the j-th individual when they both are outside. Now,
the denominator captures the fact that with more uninfected people roaming around, the amount
of interaction an individual does with an infected person proportionally reduces, and so does their
chance of being infected.1

We assume that an individual i gets infected if airi(S) > τ. For a justification of the same, note
that the viral exposure ri(S) of an individual i does not take care of the precaution (through staying
at home) taken by i. However, the amount of virus individual i receives will naturally depend on
the amount they go out (that is, ai), together with the effective amount of virus present outside
in i’s network (that is, ri(S)). Therefore, the product of ri(S) and ai measures the total amount of
virus that i’s body receives when i chooses ai. One could also potentially see this product being
interpreted as follows: with the maximum possible risk of exposure being ri(S), if the i th individual

1One can probabilistically interpret the model by assuming that for any individual j, aj is the probability that they go

out, and
gij

∑j∈N\{i} gij
is the probability that individual i interacts with individual j when they both are out. Then, ri(S) is

the probability that individual i interacts with an infected person, conditional on i goes out (that is, ai = 1).
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does not go out at all (Read a = 0) then they are not exposed at all, whereas if they choose to fully
go out (Read a = 1) then they get exposed to the max possible amount which is ri(S). Now, since
the immunity power τ measures the maximum amount of virus that an individual’s body can
withstand, this implies that an individual i would be infected if airi(S) > τ.

Next, we introduce the utility function of an agent. The utility of an agent i, when the process is
in state S, is defined as

ui(S) =

{
1 + f (ai(S)) if i /∈ I(S) and ai(S)ri(S)⩽ τ(i),
f (ai(S)) if either i ∈ I(S) or ai(S)ri(S) > τ(i)

(2.1)

where f : [0,1] → [0,1] is a strictly increasing function. Intuitively, if agent i is neither already
infected during the current epoch (which is indicated by the condition i /∈ I(S)) nor runs the risk
of being infected in the next epoch (which is indicated by the condition ai(S)ri(S)⩽ τ(i), i.e. their
action multiplied by the viral exposure they have been subjected to does not exceed their immunity
power), they enjoy a ‘reward’ of amount 1 in addition to the utility f (ai(S)) that they receive
because of their chosen action (note that the strictly increasing nature of f ensures that the more
they go out in society, the more utility they get). Else, they are deprived of such a reward and must
settle for the utility value f (ai(S)).2

We now formally describe how agent i responds if they are chosen to update their action at the
beginning of an epoch when the system is in state S. We call this the best response by agent i at state
S, denoted bi(S), and it is defined as

bi(S) = argmax
a∈[0,1]

ui (I(S), (a ∨ a−i(S))) . (2.2)

In words, this is the set of actions a by agent i that allow them to maximize their utility function
(note that the utility function, as defined in (2.1), is a function of the state, and the state here
constitutes I(S) as the infected set and (a ∨ a−i(S)) as the action profile).

The following lemma summarizes the best response of an agent at a state depending on whether
or not they are infected at that state. It, in particular, says that the best response always exists and
is unique.

Lemma 1. Let i ∈ N be an agent and S ∈ S be a state. Then,

bi(S) =


1 if i ∈ I(S),
1 if i /∈ I(S) and ri(S) = 0,

min
{

1,
τ(i)
ri(S)

}
if i /∈ I(S) and ri(S) ̸= 0.

Proof: We provide the proof by distinguishing three cases as considered in the statement of the
lemma.
Case 1. i ∈ I(S).
By (2.1), ui (I(S), (ai, a−i(S))) = f (ai). As f is an increasing function, their best response is

bi(S) = argmax
ai∈[0,1]

f (ai) = 1.

Case 2. i /∈ I(S) and ri(S) = 0.
Since ri(S) = 0, ari(S)⩽ τ(i) for all a ∈ [0,1], and hence by (2.1), ui (I(S), (a, a−i(S))) = 1 + f (a) for
all a ∈ [0,1]. As f is an increasing function, this implies bi(S) = 1.

2One can interpret the (negative) reward as the cost of the viral infection.
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Case 3. i /∈ I(S) and ri(S) > 0.

Consider the quantity
τ(i)
ri(S)

. It follows from (2.1) that ui (I(S), (a, a−i(S))) is increasing in a in both

the regions
[

0,min
{

1,
τ(i)
ri(S)

}]
and

(
min

{
1,

τ(i)
ri(S)

}
,1
]

. The maximum value of ui (I(S), (a, a−i(S)))

when a lies in the region
[

0,min
{

1,
τ(i)
ri(S)

}]
is 1 + f

(
min

{
1,

τ(i)
ri(S)

})
and that when a lies in the

region
[

min
{

1,
τ(i)
ri(S)

}
,1
]

is f (1). Because τ(i)> 0, we have
τ(i)
ri(S)

> 0. This, together with the fact

that f is strictly increasing, implies f
(

min
{

1,
τ(i)
ri(S)

})
> 0. Hence, 1 + f

(
min

{
1,

τ(i)
ri(S)

})
> 1.

Additionally, as f (1)⩽ 1, we have 1 + f
(

min
{

1,
τ(i)
ri(S)

})
> f (1). Therefore, ui (I(S), (ai, a−i(S)))

will be uniquely maximum at min
{

1,
τ(i)
ri(S)

}
implying bi(S) = min

{
1,

τ(i)
ri(S)

}
. Combining all

these, we have the following form of bi(S).

bi(S) =


1 if i ∈ I(S),
1 if i /∈ I(S) and ri(S) = 0,

min
{

1,
τ(i)
ri(S)

}
if i /∈ I(S) and ri(S) ̸= 0.

■
There are two key messages to take away from Lemma 1. The first of these is that the best response
of an agent i at any state S is unique, which is why we have, henceforth, presented bi(S) as an
element of A (which is more convenient than writing it as a singleton subset of A). The second is
that once an agent is infected or runs no risk of becoming infected (i.e. the viral exposure is 0), they
choose to go out with no restrictions imposed on their movements.

We now summarize the stochastic process we focus on in this paper. We denote by St =
(I(St), aN(St)) the state of the process at the start of epoch t, for t ∈ N0. At the beginning of
the epoch t, an agent ṽt is uniformly randomly chosen, then the chosen agent takes the best
response bṽt(St) as defined in (2.2) based on the number of agents I(St) and the action pro-
file a−ṽt(St) of all agents except ṽt at epoch t. Then the action profile is updated from aN(St)
to (bṽt(St) ∨ a−ṽt(St)). Let us define an intermediate state Ŝt = (I(St), (bṽt(St) ∨ a−ṽt(St))). As a
consequence, due to the change of the action profile, the viral exposure (ri(St))1≤i≤N changes
accordingly to (ri(Ŝt))1≤i≤N , and therefore, those uninfected agents satisfy aj(Ŝt)rj(Ŝt) > τ(j) will
also be infected and added to the set of infected agents. Thus, the updated infected set becomes
I(St+1) = I(St)∪ {j : aj(Ŝt)rj(Ŝt)> τ(j)}, and at the beginning of epoch t + 1, the process is in state
St+1 = (I(St+1), (bṽt(St) ∨ a−ṽt(St))) (which tells us that aN(St+1) = (bṽt(St) ∨ a−ṽt(St))).

Although we alluded to it in §1, we recall here the definition of the deterministic virus spread
process (DVSP). Given a (deterministic) agent sequence v˜, the DVSP S = (St : t ∈ N0) induced
by v˜= (v˜t : t ∈ N0), with St indicating the state of the process just before epoch t commences, is
defined in a manner identical to the stochastic virus spread process (SVSP) described above, with
the only difference being that, instead of choosing an agent randomly at the start of each epoch,
the agent v˜t is chosen at the start of epoch t to update their action, for each t ∈ N0. Whenever the
agent sequence v˜ is not clear from the context, we shall denote the DVSP S (induced by v˜) by S(v˜)



8 GAME THEORETIC EPIDEMIC MODEL

to emphasize its dependence on v˜. In this case, St(v˜) will denote the state of the process at the start
of epoch t.

In what follows, we make a few observations about the DVSP S(v˜) that we shall use frequently
throughout the paper. Recall that Ŝt indicates the intermediate state of the process at the midpoint
of epoch t, for each t ∈ N0.

Observation 1. Let S be the DVSP induced by v˜. Then, for all t ∈ N0,

(i) I(St) = I(Ŝt) and aN(Ŝt) = aN(St+1),
(ii) if bv˜t(St) = av˜t(St), then St = Ŝt = St+1,

(iii) if I(St) = I(St+1), then Ŝt = St+1.

Observation 2. For any fixed i ∈ N, if v˜t ̸= i for some t ∈ N0, then ai(St) = ai(Ŝt) = ai(St+1). By
repeated applications of this observation, we are able to conclude the following: if v˜t ̸= i for all t ∈ [t′, t′′]
with t′ < t′′, then this yields ai(St) = ai(St′) for all t ∈ [t′, t′′].

Observation 3. Since the best response of an infected agent is always 1 (see Lemma 1), i ∈ I(S(t)) and
v˜t = i together imply that ai(St′) = 1 for all t′ > t.

Observation 4. Since the best response of an uninfected agent i is

bi(S) =

1 if ri(S) = 0,

min
{

1,
τ(i)
ri(S)

}
if ri(S) ̸= 0,

by Lemma 1, hence v˜t = i and i /∈ I(St) together imply that i /∈ I(St+1) as well.

Recall that our main goal in this paper is to explore the limiting behaviours of both the cardinality
of the infected set of agents and the action profile of all the agents in our population. We now show
that such limits are well-defined, at the very least, for a deterministic sequence of agents:

Lemma 2. The DVSP S(v˜) converges for each agent sequence v˜ ∈ NN0 . In other words, both lim
t→∞

I(St(v˜))
and lim

t→∞
aN(St(v˜)) exist.

Proof: Let v˜ be a DVSP. It follows from the definition of S(v˜) that I(S1(v˜)) ⊆ I(S2(v˜)) ⊆ · · · ⊆
I(St(v˜)) for any t ∈ N0. As I(St) ⊆ N for all t, this means lim

t→∞
I(St(v˜)) exists. Also, as |N| is finite,

there exists t0 such that I(St0(v˜)) = I(St(v˜)) for all t ⩾ t0. Consider t̄ ⩾ t0 + 1. In the next claim, we
show that for all i ∈ N, ai(St̄+1)⩾ ai(St̄).

Claim 1. ai(St̄+1)⩾ ai(St̄) for all i ∈ N.

Proof of the claim: Let v˜t̄ = j. By the definition of the process, for any other agent i we have
ai(St̄+1) = ai(St̄), and hence the claim holds for them. We proceed show that the claim holds
for agent j. Recall that aj(Ŝt̄) = aj(St̄+1) (see Observation 1). If j ∈ I(St̄) then aj(Ŝt̄) = 1 (see
Observation 3), and hence aj(Ŝt̄) ⩾ aj(St̄). As aj(Ŝt̄) = aj(St̄+1), this means aj(St̄+1) ⩾ aj(St̄). If
j /∈ I(St̄), by the definition of the process, j will choose their action as aj(Ŝt̄) = bj(St̄). If bj(St̄) = 1

then there is nothing to show. Assume bj(St̄) < 1. This implies aj(Ŝt̄) =
τ(j)

rj(St̄)
. As j /∈ I(St̄), we

have aj(Ŝt̄−1)rj(Ŝt̄−1) ⩽ τ(j). Also, as t̄ ⩾ t0 + 1, it follows that I(St̄−1) = I(St̄), which implies
Ŝt̄−1 = St̄ (see (iii) of Observation 1) and hence rj(Ŝt̄−1) = rj(St̄). Combining this with the fact
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that aj(St̄) = aj(Ŝt̄−1), we obtain aj(St̄)⩽
τ(j)

rj(St̄)
. Since aj(Ŝt̄) =

τ(j)
rj(St̄)

and aj(St̄)⩽
τ(j)

rj(St̄)
, we have

aj(Ŝt̄)⩾ aj(St̄). This completes the proof of the claim. □
Since ai(St)⩽ 1 for all i ∈ N, by Claim 1, we have the convergence of aN(St(v˜)). ■

In view of Lemma 2, we set S∞(v˜) = lim
t→∞

St(v˜).
The set NN0 is the set of all agent-sequences indexed by N0. We consider the probability space

(NN0 ,F ,P) where F is the sigma-field generated by the cylindrical sets of NN0 and P is the uniform
probability distribution.

Remark 1. Let N∞ be the subset of NN0 consisting of the agent-sequences where each agent moves
an infinite number of times. In other words, N∞ = {v˜∈ NN0 : v˜t = i for infinitely many t, for all i ∈
N}. It is straightforward to see that the set N∞ has probability 1 under P, since the probability of
the set NN0 \ N∞ is 0.

In view of Remark 1, for the rest of the paper, we shall work with the probability space
(N∞,F ,P).3 Recall that in the stochastic virus spread process (SVSP), before each epoch com-
mences, an agent is chosen randomly, following the discrete uniform distribution on the set N, and
they are allowed to update their action by playing their best response (see (2.2)) to the current state.
Consequently, the SVSP is a random variable S supported on the probability space (N∞,F ,P).

For an agent i ∈ N, the random variable ti is defined as follows with respect to (N∞,F ,P): for
v˜∈ N∞, we set ti(v˜) = l if l ∈ N0 is such that v˜l = i and v˜k ̸= i for all k < l. Note that for any v˜∈ N∞,
i ∈ N, and t ∈ N0 with t ⩽ ti(v˜), we have ai(S0) = ai(St(v˜)). Let N1 be the measurable function
on (N∞,F ,P) that describes the (random) set of agents who had been chosen before agent 1 was
chosen for the first time, that is, N1(v˜) = {i ∈ N | ti(v˜) < t1(v˜)}.

We now establish that |N1| follows the uniform distribution on {0,1, . . . ,n − 1} where |S| denotes
the cardinality of the set S. Lemma 3 will be used in the proofs of the main results of this paper.

Lemma 3. P(|N1| = l) =
1
n

for all l ∈ {0,1, . . . ,n − 1}.

Proof: Since P is uniform and there are n! possible orderings of the random times t1, . . . , tn, each

ordering of t1, . . . , tn has an equal probability of
1
n!

to occur. We can choose m − 1 random variables

from the set {t2, . . . , tn} of n − 1 random times in n−1Cm−1 ways where nCr = (n)!/(r!(n − r)!)
denotes the number of ways to choose r objects out of n without replacement. Therefore, the number
of orderings that correspond to the event |{i ∈ N | ti < t1}|= m− 1 is n−1Cm−1 × (m− 1)!× (n−m)!,

and hence, the probability of the said event is
n−1Cm−1 × (m − 1)! × (n − m)!

n!
, which is

1
n

. This
completes the proof of the lemma. ■

3. MAIN RESULTS

Before stating our main results we formally state assumptions for all the main results of the
paper. As mentioned in §1, here we consider a homogeneous population to study the spread of
an epidemic. To be specific, the homogeneity of the population is spelt through the following
assumptions.

3With a slight abuse of notation, we keep using the notation F for the induced σ-field F ∩ N∞ on N∞.
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• All individuals have the same action at the beginning of the epidemic (that is before they
started deciding their actions strategically in response to the present state of the epidemic),

• All individuals have the same immunity power,
• Every pair of individuals have the same level of interaction.

We also intend to study the spread of an epidemic from the very beginning, and to capture that we
assume,

• Exactly one individual is infected at the beginning of the epidemic.

Below, we present the assumptions formally. Recall that S0 denotes the initial state at which the
process starts, and ai(S0) and I(S0) denote the action of individual i and the set of infected people,
respectively, at the state S0.

(i) ai(S0) = a, τ(i) = τ, and gij = c for all i, j ∈ N with i ̸= j for some a ∈ [0,1], c ∈ R+, τ ∈ (0,1].
(ii) I(S0) = {1}.

We will assume the above assumptions throughout the paper without specifically mentioning
everywhere.

A natural discussion is in order as to how realistic such assumptions are. Note that, from
a technical point of view, the assumption of every individual having their initial actions and
immunity profile potentially different is difficult to characterize. To bring some more realism,
assume if the action (and immunity) profiles were all random, it is very natural to assume that
distribution is identical throughout the population. Then our homogeneity assumption can be seen
as a special case when the distributions assume a degenerate value. Also, the assumption of only
one infected individual in the entire population is pretty realistic as that is exactly how contagious
diseases spread. Our intuition says that more than one infected individual at the beginning will
lead to more infected people with a higher probability and such cases can be analyzed using similar
techniques as used in the paper. Since, to the best of our knowledge, this is the first paper to look at
such a stochastic process, we wanted to stick to very concise yet important and insightful findings
with the means of the above assumptions.

We adopt the following notations to state our results. For a ∈ R, we let ⌈a⌉ = min{k ∈ Z : a ⩽ k}
and ⌊a⌋ = max{k ∈ Z : a ⩾ k}. For a,b ∈ N0, [a,b] denotes the set {a, a + 1, . . . ,b} if a ⩽ b, and
denotes the null set if a > b. For m ⩾ ⌊τ(n − 1)⌋+ 1, we define the set Am to be the set of all ordered
tuples

˜
x = (x1, . . . , xn) that satisfy the following properties:

(i) x1 = 1,
(ii) there are precisely m − 1 coordinates i ∈ {2, . . . ,n} such that xi = 1,

(iii) each of the remaining coordinates equals
τm

(1 + τ)m − τ(n − 1)
.4

A couple of facts follow immediately from the above definition. The first is that An is the singleton
set {

˜
1}, where

˜
1 is the n-dimensional tuple in which each coordinate equals 1. The second is that

|Am| = n−1Cm−1 for each m for which Am is well-defined, since we need only choose the m − 1
coordinates out of 2, . . . ,n that equal 1.

4As m > (n − 1)τ,
τm

(1 + τ)m − τ(n − 1)
is strictly less than 1.



GAME THEORETIC EPIDEMIC MODEL 11

3.1 RESULTS WHEN a = 0

Here, we consider the situation where the (common) initial action a equals 0. Theorem 1 provides
the limiting distribution of the infected set for arbitrary values of τ. Let

α = min
{⌈

1
τ

⌉
,n
}

. (3.1)

Theorem 1. Suppose a = 0. Then the limiting distribution of the infected set is given by

P(I(S∞) = J) =



1 − α − 1
n

if J = {1},

1
n × n−1Cm−1

if 1 ∈ J and |J| = m where m ∈ [2,α],

0 otherwise,
where α as defined in (3.1).

Proof: We complete the proof in two steps. In Step 1, we explore how the infection spreads when
agents update their actions according to a fixed agent sequence, and in Step 2 we use this to explore
how infection spreads when agents update their actions randomly.
Step 1. Fix an agent sequence v˜ ∈ N∞ and let S be the DVSP induced by v˜. To shorten notation, for
all i ∈ N, let us denote ti(v˜) by ki. The following claim demonstrates how an agent i with ki < k1
will update their action.

Claim 1: Suppose ki < k1 for some i ∈ N. Then, ai(St) = 1 for all t = ki + 1, . . . ,k1.
Proof of the claim. By Lemma 7, I(St) = {1} for all t ⩽ k1. Since k1 < ∞ and ki < k1, we have
ki < ∞. Consider any time point l such that ki ⩽ l < k1. By the definition of the process, we need
to show that the Claim holds for l such that v˜l = i (see Observation 2). Since l < k1, we have
a1(Sl) = a1(S0) = 0. This together with I(Sl) = {1} implies ri(Sl) = 0. Hence, by Lemma 1, agent i
will update their action to 1 at Ŝl . Since ai(Ŝl) = ai(Sl+1), this means, ai(Sl+1) = 1. This completes
the proof of the Claim. □
Case 1: |N1(v˜)|⩾ α.

As |N1(v˜)| ⩽ n − 1, the assumption of the case implies α =

⌈
1
τ

⌉
. Hence, ατ ⩾ 1. By Claim 1,

ai(Sk1) = 1 for all i ∈ N1(v˜). Also, by the definition of the process, ai(Sk1) = 0 for all i /∈ N1(v˜)∪ {1}
as they have not updated their actions till the time point k1. Recall that Ŝk1 denotes the intermediate
state where the only change from Sk1 is that agent v˜k1 has updated their action to bv˜k1

(Sk1). Since
v˜k1 = 1, we have ai(Sk1) = ai(Ŝk1) for all i ̸= 1. Thus, ai(Ŝk1) = 1 for all i ∈ N1(v˜) and ai(Ŝk1) = 0 for
all i /∈ N1(v˜) ∪ {1}.

By Remark 1 and the definition of the process, a1(Ŝk1) = 1. Consider the time point k1 + 1. By the
definition of the process, an agent i ̸= 1 will be in I(Sk1+1) if ai(Ŝk1)ri(Ŝk1) > τ. Since I(Sk1) = {1},
ai(Ŝk1) = 1 for all i ∈ N1(v˜) ∪ {1}, ai(Ŝk1) = 0 for all i /∈ N1(v˜) ∪ {1}, and gij = c for all i ̸= j, it

follows that ri(Ŝk1)⩽
1
α

for all i ∈ N1(v˜). Because ατ ⩾ 1, this implies that no agent in N1(v˜) gets

infected at the time point k1 + 1. Moreover, since ai(Ŝk1) = 0 for each agent i /∈ N1(v˜) ∪ {1}, we
have ai(Ŝk1)ri(Ŝk1) = 0 ⩽ τ. Thus, no new agent gets infected at the time point k1 + 1, and hence,
I(Sk1+1) = {1}.
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We show that no new agent would get infected after this. We first show that I(Sk1+2) = {1}.
Let v˜k1+1 = i. If i /∈ I(Sk1+1) then as I(Sk1) = I(Sk1+1) by Lemma 6, we have I(Sk1+1) = I(Sk1+2). If
i ∈ I(Sk1+1) then i = 1. Moreover, a1(Sk1+1) = a1(Ŝk1) = 1. Hence, by Lemma 6, I(Sk1+1) = I(Sk1+2).
Therefore, I(Sk1+2) = {1}. Using the same arguments repeatedly, it follows that I(St) = {1} for all
t ⩾ k1 + 2. Thus, I(S∞) = {1}.
Case 2: |N1(v˜)|⩽ α − 1.
Using similar arguments as in Case 1, we have ai(Ŝk1) = 1 for all i ∈ N1(v˜) and ai(Ŝk1) = 0 for all

i /∈ N1(v˜) ∪ {1}. This, together with gij = c for all i ̸= j, implies ri(Ŝk1) ⩾
1

α − 1
for all i ∈ N1(v˜).

As α = min
{⌈

1
τ

⌉
,n
}

, we have (α − 1)τ < 1. Hence, all agents in N1(v˜) will get infected at time

point k1 + 1. Moreover, as ai(Ŝk1) = 0 for all i /∈ N1(v˜) ∪ {1}, the agents outside N1(v˜) ∪ {1} will
not get infected at time point k1 + 1. Thus, we have I(Sk1+1) = N1(v˜) ∪ {1}. Because, ai(Sk1+1) =

ai(Ŝk1) = 1 for all i ∈ I(Sk1+1) and ai(Sk1+1) = 0 ⩽ τ for all i /∈ I(Sk1+1), by Lemma 8 it follows that
I(Sk1+1) = I(S∞). Hence, I(S∞) = N1(v˜) ∪ {1}.
Step 2. Consider the probability space (N∞,F ,P) and random variables S and t1, . . . , tn. Let
m ∈ {2, . . . ,n} be such that m ⩽ α. In view Case 1 and Case 2 of the current proof, we have (i)
|I(S∞)| ⩽ α, and (ii) |I(S∞)| = m with 1 ∈ I(S∞) if and only if |{i ∈ N | ti < t1}| = m − 1. Also,
I(S∞) = {1} if and only if |{i ∈ N | ti < t1}|⩾ α. Moreover, as P is uniform, any two subsets of N
with same cardinality have the same probability. These observations together yield

P(I(S∞) = J) =



1 − α − 1
n

if J = {1},

1
n × n−1Cm−1

if 1 ∈ J and |J| = m where m ∈ [2,α],

0 otherwise .

This completes the proof of the theorem. ■
Next, we proceed to explore the limiting distribution of the action profile, and this is found to be

dependent on the value of τ. Accordingly, the statement of Theorem 2 is split into two parts on the
basis of whether τ exceeds (n − 1)−1 or not. We introduce the quantity

β = min{⌊(n − 1)τ⌋+ 1,α + 1}. (3.2)

Theorem 2. Suppose a = 0. For τ ⩾
1

n − 1
, the limiting distribution of the action profile is given by

P(aN(S∞) =
˜
x) =



1 − α − β + 1
n

if
˜
x ∈ An, i.e.,

˜
x =

˜
1,

1
n × n−1Cm−1

if
˜
x ∈ Am for some m ∈ [β,α],

0 otherwise,
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whereas for τ <
1

n − 1
, the limiting distribution of the action profile is given by

P(aN(S∞) =
˜
x) =


1

n × n−1Cm−1
if

˜
x ∈ Am for some m ∈ [1,n],

0 otherwise,

with α and β as defined in (3.1) and (3.2) respectively.

A brief discussion is in order regarding some of the startling findings that may be deduced from
the two theorems of §3.1. Theorem 1 reveals that, if we consider any two different subsets J1 and
J2 of N, the probabilities P(I(S∞) = J1) and P(I(S∞) = J2) are the same as long as J1 and J2 have
the same cardinality and either both of them contain agent 1 or neither contains agent 1. We note
that the number of subsets J of N with 1 ∈ J and |J| = m is given by n−1Cm−1, so that summing
P(I(S∞) = J) over all such J yields P (|I(S∞)| = m) = n−1 for each m ∈ [2,α]. These observations
suggest a rather close resemblance that the limiting distribution of the infected set, as well as the
limiting distribution of its cardinality, bears with suitably defined discrete uniform distributions.
In fact, for τ ⩽ n−1, we have α = n, reducing the distribution of |I(S∞)| to precisely the discrete
uniform distribution on {1,2, . . . ,n}. This uniform structure is somewhat marred when τ > n−1.
For example, when n = 5, a = 0 and τ = 0.25, we have

P(|I(S∞)| = 1) =
2
5

, P(|I(S∞)| = 2) =
1
5

, P(|I(S∞)| = 3) =
1
5

,

P(|I(S∞)| = 4) =
1
5

, P(|I(S∞)| = 5) = 0, (3.3)

whereas if τ = 0.4, the probability distribution changes to

P(|I(S∞)| = 1) =
3
5

, P(|I(S∞)| = 2) =
1
5

, P(|I(S∞)| = 3) =
1
5

,

P(|I(S∞)| = 4) = 0, P(|I(S∞)| = 5) = 0. (3.4)

An intuitive explanation for this phenomenon is that with higher immunity, i.e. higher value of τ,
the disease is less likely to spread to the entire community, instead having a higher probability of
remaining confined to the initial infected set.

Conclusions of a similar flavour can be drawn as a consequence of Theorem 2. For any two
different ordered tuples

˜
x and

˜
y that belong to the same Am, the probabilities P(aN(S∞) =

˜
x) and

P(aN(S∞) =
˜
y) are equal, for both the cases τ ⩾ (n − 1)−1 and τ < (n − 1)−1. Moreover, since

|Am|= n−1Cm−1, we obtain P(aN(S∞) ∈ Am) = n−1 for every m ∈ [β,α] when τ ⩾ (n − 1)−1 and for
every m ∈ [1,n] when τ < (n − 1)−1. These are, once again, reminiscent of suitably defined discrete
uniform distributions.

A connection may be established between Theorem 1 and Theorem 2, for the case where τ ⩾
(n − 1)−1, via the following fact whose justification has been included in the proof of Theorem 2: for
any DVSP S(v˜), if the limiting infected set has cardinality m ∈ [β,α] (note that β ⩾ 2), the limiting
action profile will be a tuple in Am, with all infected agents choosing action 1 and all uninfected
agents choosing action τm[(1 + τ)m − τ(n − 1)]−1. On the other hand, if the limiting infected set
for the DVSP S(v˜) has cardinality strictly less than β, the final action profile becomes

˜
1, signifying

that all agents choose action 1 in the long run.
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Proof: First assume τ ⩾
1

n − 1
. We first explore the limiting actions for a fixed agent sequence, and

then we use this to find the limiting probability distribution. Let v˜ be an agent sequence and S
be the DVSP induced by v˜. Note that by Remark 1, it is enough to assume v˜ ∈ N∞. Therefore, by
Lemma 10, all the agents outside I(S∞) have the same action limit, and all the agents in I(S∞) have
the action limit 1. Let us denote the common limit for all agents outside I(S∞) by γ. We distinguish
two cases based on the value of N1(v˜) (as in the proof of Theorem 1) to find γ. Note that by the
assumption of the theorem α ⩽ n − 1.
Case 1: |N1(v˜)|⩾ α.
Recall that for this case the final infected set is {1}. Moreover, by the assumption of the theorem,
τ(n − 1)⩾ 1. Therefore, by Lemma 11, γ = 1. Hence, aN(S∞) = ˜

1.
Case 2: |N1(v˜)|⩽ α − 1.
Recall that for this case, the final infected set is N1(v˜) ∪ {1}. Therefore, by Lemma 11, if (n − 1)τ ⩾
|N1(v˜)|+ 1 then aN(S∞) = ˜

1, and if (n − 1)τ < |N1(v˜)|+ 1 then

ai(S∞) =


1 if i ∈ I(S∞),

τ(|N1(v˜)|+ 1)
(1 + τ)(|N1(v˜)|+ 1)− τ(n − 1)

if i /∈ I(S∞).

Recall that β = min{⌊(n − 1)τ⌋ + 1,α + 1}. Hence, combining Cases 1 and 2, we have the
following:

(i) |N1(v˜)|+ 1 ∈ [β,α] implies

ai(S∞) =


1 if i ∈ I(S∞),

τ(|N1(v˜)|+ 1)
(1 + τ)(|N1(v˜)|+ 1)− τ(n − 1)

if i /∈ I(S∞).

(ii) |N1(v˜)|+ 1 ∈ [1, β − 1] ∪ [α + 1,n] implies aN(S∞) = ˜
1.

Note that (i) implies aN(S∞) ∈ A(|N1(v˜)|+1) when |N1(v˜)| + 1 ∈ [β,α]. Also, as P is uniform,
any two vectors in Am, for m ∈ [β,α], have the same probability. Thus, we have the following
distribution

P(aN(S∞) =
˜
x) =



1 − α − β + 1
n

if
˜
x ∈ An, i.e.,

˜
x =

˜
1,

1
n × n−1Cm−1

if
˜
x ∈ Am for some m ∈ [β,α],

0 otherwise.

Now assume τ <
1

n − 1
. We follow the same structure as in the previous case, that is, we first

explore the limiting actions for a fixed agent sequence, and then we use this to find the limiting
probability distribution. Let v˜ be an agent sequence and S be the DVSP induced by v˜. Note that by
Remark 1, it is enough to assume v˜ ∈ N∞. Therefore, by Lemma 10, all the agents outside I(S∞)
have the same action limit, and all the agents in I(S∞) have the action limit 1. Let us denote the
common limit by γ. As by the assumption of the theorem, (n − 1)τ < 1, we have α = n, and hence,
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|N1(v˜)|⩽ α − 1. Moreover, for |N1(v˜)|⩽ α − 1 (shown in the proof of Theorem 1), the final infected
set is N1(v˜) ∪ {1}. Thus, |I(S∞)| > (n − 1)τ. Hence, by Lemma 11 if |N1(v˜)|+ 1 < n

ai(S∞) =


1 if i ∈ I(S∞),

τ(|N1(v˜)|+ 1)
(1 + τ)(|N1(v˜)|+ 1)− τ(n − 1)

if i /∈ I(S∞).

and if |N1(v˜)|+ 1 = n, aN(S∞) = ˜
1. Recall the notation Am. By the above arguments, we have

aN(S∞) ∈ A[|N1(v˜)|+1] when |N1(v˜)|+ 1 < n. Moreover, as P is uniform, any two vectors in Am, for
m ∈ [1, (n − 1)], have the same probability. Thus, by Theorem 1, we have the following distribution

P(aN(S∞) =
˜
x) =



1
n

if
˜
x ∈ An, i.e.,

˜
x =

˜
1,

1
n × n−1Cm−1

if
˜
x ∈ Am for some m ∈ [1,n − 1],

0 otherwise.

■

3.2 RESULTS WHEN a = 1

Here, we consider the situation where the (common) initial action a equals 1. The following
theorem provides the limiting distribution of the set of infected agents:

Theorem 3. Suppose a = 1. If τ ⩾
1

n − 1
, the limiting distribution of the infected set is given by

P(I(S∞) = {1}) = 1,

whereas if τ <
1

n − 1
, the limiting distribution is given by

P(I(S∞) = J) =



1
n2 if 1 ∈ J and |J| = n − 1,

1 − n − 1
n2 if |J| = n, i.e., J = N,

0 otherwise.

The proof of this theorem can be found in Appendix B (subsection B.1). Note that since there
are n − 1 many sets J such that 1 ∈ J and |J| = n − 1, the above display exhibits a valid probability
distribution.

Theorem 4. Suppose a = 1. If τ ⩾
1

n − 1
, the limiting distribution of the action profile is given by

P(aN(S∞) =
˜
1) = 1,
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whereas if τ <
1

n − 1
, the limiting distribution is given by

P(aN(S∞) =
˜
x) =



1 − n − 1
n2 if

˜
x ∈ An, i.e.,

˜
x =

˜
1,

1
n2 if

˜
x ∈ An−1,

0 otherwise.

The proof of this theorem can be found in Appendix D (subsection D.1). We draw the reader’s
attention to the fact that the results of §3.2 differ quite a bit in appearance from those in §3.1. While
the limiting distribution of the infected set, for a = 0, is supported on all subsets of N that contain 1
and that have sizes bounded above by α (Theorem 1), the infected set, for a = 1, converges to the
singleton {1} when τ ⩾ (n − 1)−1, and its limiting distribution is supported on only those subsets
of N that contain 1 and have cardinality at least n − 1 when τ < (n − 1)−1 (Theorem 3). In some
sense, for a = 0, the limiting distribution is “spread out” over a wider support, while for a = 1, it is
more “concentrated”.

Likewise, for a = 0, the limiting distribution of the action profile is supported on all Am with
m ∈ {n} ∪ [β,α] when τ ⩾ (n − 1)−1, and it is supported on all Am with m ∈ {1, . . . ,n} when τ <
(n − 1)−1 (Theorem 2). In contrast, for a = 1, the action profile converges to

˜
1 when τ ⩾ (n − 1)−1,

and the limiting distribution of the action profile is supported on just An ∪ An−1 when τ < (n− 1)−1

(Theorem 4).

3.3 RESULTS WHEN 0 < a ⩽ τ AND a ̸= 1

In this subsection, we consider the case where the (common) initial action a lies strictly between
0 and 1, and is bounded above by τ. Let

α̂ = max

{
1,

⌈
1
τ − (n − 1)a

1 − a

⌉}
. (3.5)

Theorem 5. Suppose 0 < a ⩽ τ and a ̸= 1. Further, suppose τ ⩾
1

n − 1
. Then the limiting distribution of

the infected set is given by

P(I(S∞) = J) =



1 − α̂ − 1
n

if J = {1},

1
n × n−1Cm−1

if 1 ∈ J and |J| = m where m ∈ [2, α̂],

0 otherwise.

The proof of this theorem can be found in Appendix B (subsection B.2). Next, we proceed to
describe the limiting distribution of the action profile. We introduce the following notation in order
to state our next result:

β̂ = min{⌊(n − 1)τ⌋+ 1, α̂ + 1}. (3.6)
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Theorem 6. Suppose 0 < a ⩽ τ and a ̸= 1. Further, suppose τ ⩾
1

n − 1
. Then the limiting distribution of

the action profile is given by

P(aN(S∞) =
˜
x) =



1 − α̂ − β̂ + 1
n

if
˜
x ∈ An, i.e.,

˜
x =

˜
1,

1
n × n−1Cm−1

if
˜
x ∈ Am for some m ∈ [β̂, α̂],

0 otherwise.

The proof of the theorem can be found in Appendix D (subsection D.2).

Remark 2. If one sets a = 0 in the conclusion of Theorem 5, one gets back the conclusion of Theorem
1 for τ ⩾ (n − 1)−1. However, Theorem 1 is more general in terms of its coverage of the values of τ.
In a similar manner, setting a = 0 in Theorem 6 yields Theorem 2 for the case of τ ⩾ (n − 1)−1.

Discussions of findings of a flavour similar to those in §3.1 can be included here as well. Even
if J1 and J2 are two different subsets of N, Theorem 5 shows that the probabilities P(I(S∞) = J1)
and P(I(S∞) = J2) are the same as long as J1 and J2 have the same cardinality and either both
contain 1 or neither does. Summing over all subsets of N that contain 1 and are of cardinality
m, we obtain P (|I(S∞)| = m) = n−1 for each 2 ⩽ m ⩽ α̂. Likewise, for any two different ordered
tuples

˜
x and

˜
y, Theorem 6 shows that the probabilities P(aN(S∞) =

˜
x) and P(aN(S∞) =

˜
y) are the

same as long as both
˜
x and

˜
y belong to the same Am. Summing over all members of an Am yields

P(aN(S∞) ∈ Am) = n−1 for every β̂ ⩽ m ⩽ α̂.

3.4 RESULTS WHEN τ < a < 1.

In this subsection, we consider the scenario where the (common) initial action a is strictly greater
than τ. We introduce the following notations to facilitate the presentation of the results that follow:
Let

α̃ = max
{

1,
⌈

1 − (n − 1)aτ

τ(1 − a)

⌉}
and ᾱ =

⌊
(n − 1)aτ

a − τ(1 − a)

⌋
+ 1. (3.7)

Note that, in this regime, τ < a < a/(1 − a) and thus a − τ(1 − a) > 0. Now since, (n − 1)aτ/(a −
τ(1 − a)) is increasing in τ, we have, for τ ≥ 1/(n − 1),

(n − 1)aτ

a − τ(1 − a)
≥

(n − 1)a
( 1

n−1

)
a − 1−a

n−1

=
a

a − 1−a
n−1

> 1.

This yields ᾱ ⩾ 2.
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Theorem 7. Suppose
1

n − 1
⩽ τ < a < 1. If α̃ + 1 ⩽ ᾱ, the limiting distribution of the infected set is given

by

P(I(S∞) = J) =



1 − α̃ − 1
n

if J = {1},

1
n × n−1Cm−1

if 1 ∈ J and |J| = m where m ∈ [2, α̃],

0 otherwise,
whereas if 2 ⩽ ᾱ < α̃ + 1, the limiting distribution is given by

P(I(S∞) = J) =



1 − α̃ − 1
n

if J = {1},

1
n × n−1Cm−1

if 1 ∈ J and |J| = m where m ∈ [2, ᾱ − 1],

η(α̃, ᾱ,n)
n − 1

if 1 ∈ J and |J| = n − 1,

α̃ − (ᾱ − 1)
n

− η(α̃, ᾱ,n) if |J| = n, i.e., J = N,

0 otherwise,

where η(α̃, ᾱ,n) =
(n − 1)!

n3

α̃−1

∑
w=ᾱ−1

1
(n − w − 2)!

∞

∑
t=w+1

(
{t−1

w }
nt−1

)
, and

{
p
q

}
is the Stirling number of the

second kind with parameters p and q.

Proof: We start with a lemma that shows for an agent sequence, the infected set remains the same
till agent 1 appears for the first time.

Lemma 4. Let v˜ ∈ N∞ and t̂ ∈ N0 be such that v˜t ̸= 1 for all t < t̂. Then, I(St) = {1} for all t ⩽ t̂.

Proof: Note that if t̂ = 0 then there is nothing to show. So, assume t̂ ⩾ 1. We use induction to prove
this. As the base case, we show that I(S1) = {1}. Let v˜0 = i. Since t̂ ⩾ 1, i ̸= 1. Moreover, as gij = c

for all i ̸= j, ri(S0) =
1

(n − 1)
. Hence,

bi(S0) = min

{
1,

τ
1

(n−1)

}
= min{1, (n − 1)τ} = 1

as by our assumption τ ⩾
1

(n − 1)
. This means agent i will not get infected. For any j /∈ {1, i},

aj(Ŝ0) = aj(S0) = a and rj(Ŝ0) =
a

(n − 2)a + 1
⩽

1
(n − 1)

. Thus,

aj(Ŝ0)rj(Ŝ0) = a
a

(n − 2)a + 1
⩽

a
(n − 1)

⩽
1

(n − 1)
⩽ τ.
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So, agent j will also not get infected at t = 1. Thus, I(S1) = {1}. Next we introduce an induction
hypothesis.
Induction Hypothesis: Given t̄ ∈ N0 with t̂ ⩾ t̄ > 1, we have I(S1) = · · · = I(St̄−1) = {1}.

We show that I(St̄) = {1}. Let v˜t̄−1 = i. Since t̂ ⩾ t̄, this means i ̸= 1. Hence, i /∈ I(St̄−1). As t̄ > 1,
we have I(St̄−2) = I(St̄−1). This together with Lemma 6, implies I(St̄) = I(St̄−1) = {1}. Thus, by
induction, we have I(St̂) = {1}. This completes the proof of the lemma. ■

We complete the proof in two steps. In Step 1, we explore how the infection spreads when agents
update their actions according to a fixed agent sequence, and in Step 2 we use this to explore how
infection spreads when agents update their actions randomly.
Step 1: Fix an agent sequence v˜ ∈ N∞ and let S be the DVSP induced by v˜. To shorten notation, for
all i ∈ N, let us denote ti(v˜) by ki.

Claim 1: For all 0 ⩽ t < k1, ai(St+1) = 1 where v˜t = i.
Proof of the claim. Let v˜0 = i. As k1 > 0, i ̸= 1. Since aj(S0) = a > 0 for all j ∈ N, I(S0) = {1}, and

gij = c for all i ̸= j, we have ri(S0) =
1

(n − 1)
. This means

bi(S0) = min

{
1,

τ
1

(n−1)

}
= min{1, (n − 1)τ} = 1,

as by our assumption τ ⩾
1

(n − 1)
. Thus, ai(S1) = ai(Ŝ0) = 1. Next we introduce an induction

hypothesis.
Induction Hypothesis: Given t̄ ∈ N0 with t̄ < k1, we have for all t < t̄, aj(St+1) = 1 where v˜t = j.

Let v˜t̄ = i′ and we show that ai′(St̄+1) = 1. Note that by Lemma 4, I(St̄) = {1}. Moreover, by the
induction hypothesis, aj(St̄)⩾ a for all j ∈ N \ {1}. Also, as t̄ < k1, we have a1(St̄) = a. Combining
all these observations we have,

1
(n − 1)

⩾ ri′(St̄)⩾
a

(n − 1)
. (3.8)

Since ri′(St̄) > 0, bi′(St̄) = min
{

1,
τ

ri′(St̄)

}
; see Lemma 1. Therefore, using (3.8) and the fact

τ ⩾
1

(n − 1)
, we have bi′(St̄) = 1. Thus, ai′(St̄+1) = ai′(Ŝt̄) = 1. □

We distinguish some cases based on |N1(v˜)|.
Case 1: |N1(v˜)|⩾ α̃.
We show that no new agent will get infected and I(S∞) = {1}. By Claim 1, ai(Sk1) = 1 for all
i ∈ N1(v˜). By the definition of the process, ai(Sk1) = a for all i /∈ N1(v˜) ∪ {1} as they have not
updated their actions till the time point k1. Recall that Ŝk1 denotes the intermediate state where
the only change from Sk1 is that agent v˜k1 has updated their action to bv˜k1

(Sk1). Since v˜k1 = 1,
we have ai(Sk1) = ai(Ŝk1) for all i ̸= 1. Thus, ai(Ŝk1) = a for all i ∈ |N1(v˜)| and ai(Ŝk1) = 1 for all
i /∈ N1(v˜) ∪ {1}.

By Lemma 1 and the definition of the process, a1(Ŝk1) = 1. Consider the time point k1 + 1. By the
definition of the process, an agent i ̸= 1 will be in I(Sk1+1) if ai(Ŝk1)ri(Ŝk1) > τ. Since I(Sk1) = {1},
ai(Ŝk1) = 1 for all i ∈ N1(v˜) ∪ {1}, ai(Ŝk1) = a for all i /∈ N1(v˜) ∪ {1}, and gij = c for all i ̸= j, it
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follows that for all i ∈ N1(v˜)
ri(Ŝk1) =

1
|N1(v˜)|+ (n − 1 − |N1(v˜)|)a

and

ai(Ŝk1)ri(Ŝk1) =
1

|N1(v˜)|+ (n − 1 − |N1(v˜)|)a

=
1

|N1(v˜)|(1 − a) + (n − 1)a
. (3.9)

Recall that by the assumption of the case, |N1(v˜)|⩾ α̃. This together with α̃=max
{

1,
⌈

1 − (n − 1)aτ

τ(1 − a)

⌉}
implies

|N1(v˜)|⩾ 1 − (n − 1)aτ

τ(1 − a)
=⇒ τ ⩾

1
|N1(v˜)|(1 − a) + (n − 1)a

. (3.10)

Combining (3.9) and (3.10), we may conclude that agent i will not be infected at the time point t + 1.
Similar arguments show that any agent j /∈ N1(v˜) ∪ {1} will not be infected at the time point t + 1.
Hence, I(Sk1+1) = {1}.

We show that no new agent would get infected after this. We first show that I(Sk1+2) = {1}.
Let v˜k1+1 = i. If i /∈ I(Sk1+1) then as I(Sk1) = I(Sk1+1) by Lemma 6, we have I(Sk1+1) = I(Sk1+2). If
i ∈ I(Sk1+1) then i = 1. Moreover, a1(Sk1+1) = a1(Ŝk1) = 1. Hence, by Lemma 6, I(Sk1+1) = I(Sk1+2).
Therefore, I(Sk1+2) = {1}. Using the same arguments repeatedly, it follows that I(St) = {1} for all
t ⩾ k1 + 2. Thus, I(S∞) = {1}.

Case 2: |N1(v˜)|⩽ α̃ − 1.
In the following claim, we show that at time point k1 + 1, the infected set is N1(v˜) ∪ {1}.

Claim 2. I(Sk1+1) = N1(v˜) ∪ {1}.

Proof of the claim: Recall that α̃ = max
{

1,
⌈

1 − (n − 1)aτ

τ(1 − a)

⌉}
. First assume α̃ ̸=

⌈
1 − (n − 1)aτ

τ(1 − a)

⌉
,

i.e., α̃ = 1 and 1− (n − 1)aτ ⩽ 0. This, together with the assumption of the case, implies |N1(v˜)|= 0.
Therefore, k1 = 1. Hence, to prove the claim, it is enough to show that I(S1) = {1}. Note that by
the definition of the process, a1(Ŝ0) = 1, ai(Ŝ0) = a for all i ̸= 1, and gij = c for all i ̸= j. Thus,

ri(Ŝ0) =
1

1 + (n − 2)a

⩽
1

(n − 1)a
⩽ τ. (since 1 − (n − 1)aτ ⩽ 0)

This implies I(S1) = {1}. Now assume α̃ =

⌈
1 − (n − 1)aτ

τ(1 − a)

⌉
. Consider an agent i ∈ N1(v˜). Using

similar arguments as in (3.9), we may show that

ai(Ŝk1)ri(Ŝk1) =
1

|N1(v˜)|(1 − a) + (n − 1)a
.
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This, together with α̃ =

⌈
1 − (n − 1)aτ

τ(1 − a)

⌉
and |N1(v˜)|⩽ α̃ − 1, implies ai(Ŝk1)ri(Ŝk1) > τ and hence,

agent i will get infected at the time point t + 1. For any j /∈ N1(v˜) ∪ {1},

rj(Ŝk1) =
1

|N1(v˜)|+ 1 + (n − 1 − |N1(v˜)| − 1)a

and

aj(Ŝk1)rj(Ŝk1) =
a

|N1(v˜)|+ 1 + (n − 1 − |N1(v˜)| − 1)a

=
a

|N1(v˜)|(1 − a) + (n − 2)a + 1
.

Hence, j gets infected at t + 1 if

a
|N1(v˜)|(1 − a) + (n − 2)a + 1

> τ =⇒ a − τ(n − 1)a
τ(1 − a)

> |N1(v˜)|.
But this does not hold as

a − τ(n − 1)a
τ(1 − a)

⩽ 0 and |N1(v˜)| ⩾ 0. So, agent j does not get infected at

t + 1. Thus, I(Sk1+1) = N1(v˜) ∪ 1. This completes the proof of the claim. □
We now determine the final infected set. To do so we consider two sub-cases based on the value

of |N1(v˜)|.
Case 2.1: |N1(v˜)|+ 1 < ᾱ.
We show that no new agent would get infected after k1 + 1. We first show that I(Sk1+2) = N1(v˜) ∪{1}. Let v˜k1+1 = i. If i ∈ I(Sk1+1) then i ∈ N1(v˜)∪ {1}. Moreover, ai(Sk1+1) = ai(Ŝk1) = 1. Hence, by

Lemma 6, I(Sk1+1) = I(Sk1+2). If i /∈ I(Sk1+1) then since ri(Sk1+1) =
|N1(v˜)|+ 1

|N1(v˜)|+ 1 + (n − 1 − |N1(v˜)| − 1)a
̸=

0, agent i will choose min
{

1,
τ

ri(Sk1+1)

}
as their action ai(Ŝk1+1) at Ŝk1+1. This means ai(Ŝk1+1)ri(Ŝk1+1)⩽

τ and agent i will not get infected at k1 + 2. To show that any agent j ∈ I(Sk1+1) \ {i} will not get
infected at k1 + 2, we first prove a claim.

Claim 3. ai(Ŝk1+1)⩾ a.

Proof of the claim: Note that if ai(Ŝk1+1) = 1 then the claim holds as a ⩽ 1. If ai(Ŝk1+1) =
τ

ri(Sk1+1)
then

ai(Ŝk1+1) =
τ

ri(Sk1+1)

= τ(1 − a) +
τa(n − 1)
|N1(v˜)|+ 1

. (3.11)

Moreover, by the assumption of the case |N1(v˜)|+ 1 < ᾱ. This together with ᾱ =

⌊
(n − 1)aτ

a − τ(1 − a)

⌋
+ 1

and (3.11) implies

ai(Ŝk1+1)⩾ τ(1 − a) +
[τa(n − 1)](a − τ(1 − a))

(n − 1)aτ
.

= a.
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This completes the proof of the claim. □
For any j /∈ I(Sk1+1) \ {i}, aj(Ŝk1+1) = a and

rj(Ŝk1+1) =
|N1(v˜)|+ 1

|N1(v˜)|+ 1 + (n − 1 − |N1(v˜)| − 2)a + ai(Ŝk1+1)
(as gij = c for all i ̸= j).

Thus,

aj(Ŝk1+1)rj(Ŝk1+1) =
a(|N1(v˜)|+ 1)

|N1(v˜)|+ 1 + (n − 1 − |N1(v˜)| − 2)a + ai(Ŝk1+1)

⩽
a(|N1(v˜)|+ 1)

|N1(v˜)|+ 1 + (n − 1 − |N1(v˜)| − 1)a
(as by Claim 3, ai(Ŝk1+1)⩾ a)

= ari(Ŝk1+1)

⩽ τ (as ai(Ŝk1+1)ri(Ŝk1+1)⩽ τ and ai(Ŝk1+1)⩾ a).

Hence, agent j will not get infected at k1 + 2. This concludes that I(Sk1+2) = N1(v˜) ∪ {1}. Now
using similar logic as in Case 1, we may show that no agent would get infected after this and
I(S∞) = N1(v˜) ∪ {1}.

Case 2.2: |N1(v˜)|+ 1 ⩾ ᾱ.
First assume that v˜k1+1 = i where i ∈ N1(v˜) ∪ {1}. We show that I(S∞) = N. Note that as i ∈
N1(v˜) ∪ {1}, ai(Ŝk1+1) = 1. Thus, for any j /∈ N1(v˜) ∪ {1},

rj(Ŝk1+1) =
|N1(v˜)|+ 1

|N1(v˜)|+ 1 + (n − 1 − |N1(v˜)| − 1)a
(as gij = c for all i ̸= j)

and hence,

aj(Ŝk1+1)rj(Ŝk1+1) =
a(|N1(v˜)|+ 1)

|N1(v˜)|+ 1 + (n − 1 − |N1(v˜)| − 1)a

=
a(|N1(v˜)|+ 1)

(|N1(v˜)|+ 1)(1 − a) + (n − 1)a

⩾
aᾱ

ᾱ(1 − a) + (n − 1)a
(as |N1(v˜)|+ 1 ⩾ ᾱ)

> τ. (as ᾱ >
(n − 1)aτ

a − τ(1 − a)
)

Therefore, I(Sk1+2) = N and I(S∞) = N.
Now assume that v˜k1+1 = i where i /∈ N1(v˜) ∪ {1}. We show that I(Sk1+2) = N \ i. Since i /∈

I(Sk1+1) and v˜k1+1 = i, agent i will not get infected at k1 + 2 (Observation 4). Consider j /∈ N1(v˜)∪ 1
with j ̸= i. We first prove a claim.

Claim 4. τ < ai(Ŝk1+1) < a.

Proof of the claim: We show that τ <
τ

ri(Sk1+1)
< a. This together with a < 1 proves the claim. As

ri(Sk1+1) =
|N1(v˜)|+ 1

|N1(v˜)|+ 1 + (n − 1 − |N1(v˜)| − 1)a
< 1, we have τ <

τ

ri(Sk1+1)
. To see

τ

ri(Sk1+1)
< a,
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recall that by (3.11)

ai(Ŝk1+1) = τ(1 − a) +
τa(n − 1)
|N1(v˜)|+ 1

.

Moreover, by the assumption of the case |N1(v˜)|+ 1 ⩾ ᾱ. This, together with ᾱ >
(n − 1)aτ

a − τ(1 − a)
,

implies

ai(Ŝk1+1) < τ(1 − a) +
[τa(n − 1)](a − τ(1 − a))

(n − 1)aτ
.

= a.

This completes the proof of the claim. □
For any j /∈ I(Sk1+1) \ {i}, aj(Ŝk1+1) = a and

rj(Ŝk1+1) =
|N1(v˜)|+ 1

|N1(v˜)|+ 1 + (n − 1 − |N1(v˜)| − 2)a + ai(Ŝk1+1)
(as gij = c for all i ̸= j).

Thus,

aj(Ŝk1+1)rj(Ŝk1+1) =
a(|N1(v˜)|+ 1)

|N1(v˜)|+ 1 + (n − 1 − |N1(v˜)| − 2)a + ai(Ŝk1+1)

>
a(|N1(v˜)|+ 1)

|N1(v˜)|+ 1 + (n − 1 − |N1(v˜)| − 1)a
(as by Claim 4, ai(Ŝk1+1) < a)

=
a(|N1(v˜)|+ 1)

(|N1(v˜)|+ 1)(1 − a) + (n − 1)a

⩾
aᾱ

ᾱ(1 − a) + (n − 1)a
(as |N1(v˜)|+ 1 ⩾ ᾱ)

> τ. (as ᾱ >
(n − 1)aτ

a − τ(1 − a)
)

Hence, agent j will get infected at k1 + 2. This concludes that I(Sk1+2) = N \ {i}.
To determine the final infected set, we now distinguish two cases based on whether v˜k1+2 = i or

not.

Case 2.2.1: v˜k1+2 = i
We show that the final infected set will be N \ i. Since by our assumption v˜k1+2 = i and i /∈ I(Sk1+2),
by Observation 4, i /∈ I(Sk1+3). Hence, I(Sk1+3) = N \ {i}. We now show that i will not get infected
after this. At time point k1 + 2,

ri(Ŝk1+2) =
(|N1(v˜)|+ 1) + a(n − 1 − |N1(v˜)| − 1)
(|N1(v˜)|+ 1) + (n − 1 − |N1(v˜)| − 1)a

= 1.

Therefore, ai(Ŝk1+2) = τ. At k1 + 3, if v˜k1+3 = i, then agent i would not get infected at k1 + 4
(Observation 4). On the other hand, if v˜k1+3 ̸= i then as ai(Ŝk1+3) = ai(Ŝk1+2) = τ, agent i would
remain uninfected at k1 + 4. Continuing in this manner, we may show that i will not get infected
after this. Thus, I(S∞) = N \ {i}.

Case 2.2.2: v˜k1+2 ̸= i
We show that the final infected set will be N. Since I(Sk1+2) = N \ {i}, ri(Ŝk1+2) = 1. Moreover as
ai(Sk1+2) = ai(Ŝk1+1) > τ (by Claim 4) and v˜k1+2 ̸= i, it follows that ai(Ŝk1+2) > τ. Combining this
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two we have ai(Ŝk1+2)ri(Ŝk1+2) > τ. Thus, agent i will get infected at k1 + 3. Hence, I(Sk1+3) = N
and I(S∞) = N.

Step 2: To begin with we claim α̃ ⩽ n− 1. To see this, observe that
⌈

1 − (n − 1)aτ

τ(1 − a)

⌉
⩽
⌈

1 − a
τ(1 − a)

⌉
⩽

n − 1 as (n − 1)τ ⩾ 1. Hence, α̃ ⩽ n − 1. Moreover, recall that ᾱ ⩾ 2. We now find the distribution
of I(S∞). First, assume that α̃ + 1 ⩽ ᾱ. Therefore, by the above cases we have

• I(S∞) = {1} if |N1(v˜)| ∈ {0, α̃, α̃ + 1, . . . ,n − 1},
• I(S∞) = N1(v˜) ∪ {1} if |N1(v˜)| ∈ {1,2, . . . , α̃ − 1}.

Moreover, as P is uniform, any two subsets of N with same cardinality have the same probability.
These observations together with Lemma 3 yield

P(I(S∞) = J) =



1 − α̃ − 1
n

if J = {1},

1
n × n−1Cm−1

if 1 ∈ J and |J| = m where m ∈ [2, α̃],

0 otherwise.

Now assume that α̃ + 1 > ᾱ ⩾ 2. By Case 1 and Case 2, we have

(i) I(S∞) = {1} if |N1(v˜)| ∈ {0, α̃, α̃ + 1, . . . ,n − 1},
(ii) |I(S∞)| = |N1(v˜)|+ 1 with 1 ∈ I(S∞) if |N1(v˜)| ∈ {1,2, . . . , ᾱ − 2},

(iii) |I(S∞)| = n if |N1(v˜)| ∈ {ᾱ − 1, . . . , α̃ − 1} and there is no i ∈ N such that ki = k1 + 1 and
v˜k1+2 = i, and

(iv) |I(S∞)| = n − 1 with 1 ∈ I(S∞) if |N1(v˜)| ∈ {ᾱ − 1, . . . , α̃ − 1} and there is i ∈ N such that
ki = k1 + 1 and v˜k1+2 = i.

Since |N1| follows uniform distribution on {0,1, . . . ,n − 1} and any two subsets of N with the
same cardinality have the same probability, by (i) and (ii) we have

P(I(S∞) = J) =


1 − α̃ − 1

n
if J = {1},

1
n × n−1Cm−1

if 1 ∈ J and |J| = m where m ∈ [2, ᾱ − 1].

We calculate the probability of |I(S∞)| = n − 1. By (iv) we have

P(v˜ | |N1(v˜)| ∈ {ᾱ − 1, . . . , α̃ − 1} and ∃i ̸= 1 such that ki = k1 + 1 and v˜k1+2 = i)

=
α̃−1

∑
w=ᾱ−1

P(v˜ | |N1(v˜)| = w and ∃i ̸= 1 such that ki = k1 + 1 and v˜k1+2 = i)

=
α̃−1

∑
w=ᾱ−1

∞

∑
t=w+1

P(v˜ | |N1(v˜)| = w and k1 = t and ∃i ̸= 1 such that ki = t + 1 and v˜t+2 = i)

=
α̃−1

∑
w=ᾱ−1

∞

∑
t=w+1

n−1Cw ×
(

w!{t−1
w }

nt−1

)
× 1

n
× (n−w−1)C1 ×

1
n2
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=
(n − 1)!

n3

α̃−1

∑
w=ᾱ−1

1
(n − w − 2)!

∞

∑
t=w+1

(
{t−1

w }
nt−1

)
=η(α̃, ᾱ,n).

Note that by (i)-(iv),
ᾱ−1

∑
m=1

P(|I(S∞)| = m) + P(|I(S∞)| = n − 1) + P(|I(S∞)| = n) = 1.

Therefore,

P(|I(S∞)| = n) = 1 −
ᾱ−1

∑
m=1

P(|I(S∞)| = m)− P(|I(S∞)| = n − 1)

=
α̃ − (ᾱ − 1)

n
− η(α̃, ᾱ,n).

Since any two subsets of N with the same cardinality have the same probability, combining all the
above observations, we have the following distribution of the infected set.

P(I(S∞) = J) =



1 − α̃ − 1
n

if J = {1},

1
n × n−1Cm−1

if 1 ∈ J and |J| = m where m ∈ [2, ᾱ − 1],

η(α̃, ᾱ,n)
n − 1

if 1 ∈ J and |J| = n − 1,

α̃ − (ᾱ − 1)
n

− η(α̃, ᾱ,n) if |J| = n, i.e., J = N,

0 otherwise.

This completes the proof of the theorem. ■
As in the previous subsections, we now proceed to explore the limiting distribution of the action
profile. The following notations will be helpful in presenting the results:

β̃ = min{⌊(n − 1)τ⌋+ 1, α̃ + 1} and β̄ = min{⌊(n − 1)τ⌋+ 1, ᾱ}. (3.12)

Theorem 8. Suppose
1

n − 1
⩽ τ < a < 1. If α̃ + 1 ⩽ ᾱ, the limiting distribution of the action profile is

given by

P(aN(S∞) =
˜
x) =



1 − α̃ − β̃ + 1
n

if
˜
x ∈ An, i.e.,

˜
x =

˜
1,

1
n × n−1Cm−1

if
˜
x ∈ Am for some m ∈ [β̃, α̃],

0 otherwise,
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whereas if 2 ⩽ ᾱ < α̃ + 1, the limiting distribution is given by

P(aN(S∞) =
˜
x) =



1 +
β̄ − ᾱ

n
− η(α̃, ᾱ,n) if

˜
x ∈ An, i.e.,

˜
x =

˜
1,

1
n × n−1Cm−1

if
˜
x ∈ Am for some m ∈ [β̄, ᾱ − 1],

η(α̃, ᾱ,n)
n − 1

if
˜
x ∈ An−1,

0 otherwise,

where η(α̃, ᾱ,n) =
(n − 1)!

n3

α̃−1

∑
w=ᾱ−1

1
(n − w − 2)!

∞

∑
t=w+1

(
{t−1

w }
nt−1

)
, and

{
p
q

}
is the Stirling number of the

second kind with parameters p and q.

The proof of this theorem can be found in Appendix D (subsection D.3). Once again, observations
similar to those made in §3.1 and §3.3 can be noted here for Theorem 7 and Theorem 8 as well, but
we do not elaborate upon them to avoid the possibility of sounding repetitive.

The next two theorems deal with situation when τ is less than or equal to
a

(n − 1)
. Theorem 9

characterizes the limiting distribution of the infected set and Theorem 10 characterizes the limiting
distribution of the action profile.

Theorem 9. Suppose τ < a < 1. If τ =
a

n − 1
, the limiting distribution of the infected set is given by

P(I(S∞) = N) = 1,

whereas if τ <
a

n − 1
, the limiting distribution is given by

P(I(S∞) = J) =



1
n2 if 1 ∈ J and |J| = n − 1,

1 − n − 1
n2 if |J| = n, i.e., J = N,

0 otherwise.

The proof of this theorem can be found in Appendix B (subsection B.3).

Theorem 10. Suppose τ < a < 1. If τ =
a

n − 1
, the limiting distribution of the action profile is given by

P(aN(S∞) =
˜
1) = 1,
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whereas if τ <
a

n − 1
, the limiting distribution is given by

P(aN(S∞) =
˜
x) =



1 − n − 1
n2 if

˜
x ∈ An, i.e.,

˜
x =

˜
1,

1
n2 if

˜
x ∈ An−1,

0 otherwise.

The proof of this theorem can be found in Appendix D (subsection D.4). The results in these final set
of theorems are also consistent with our intuition. It says that if τ is small enough, the eventually
infected set is either of size n − 1 or n with probability 1.

Remark 3. The connection between the initial action and the limiting distribution is an important
question that may come to a reader’s mind. In fact, it may intuitively seem at a quick thought that
for every k ≤ n, the probability that k or more people are infected in the long run will be weakly
increasing in the initial action a. In other words, a higher value of the initial action a makes it likely
to have more infected people in the limit. The intuition is (kind of) natural as a higher value of a at
the initial epoch means people are roaming more freely initially, and thus leads to a higher risk
of spreading the virus initially, which may then multiply over time. However, this intuition does
not go through the game theoretical nature of the model. The reason is people are strategic, and
they take more precautions (by lowering their a) at the next epoch when they realize the virus has
already spread (more) at the first epoch. For example, when n = 5, for τ = 0.05 and a = 0.2, the
disease spreads completely, i.e., all the agents are infected in the long run. However, keeping τ
at 0.05, for a = 0.35, the probability of all the agents being infected is 0.84. Similarly, for τ = 0.35,
three or more are infected in limit with probability 0.2 for a = 0, but for a = 0.8, the same event has
a probability of 0. Note that, the counter intuition, that is, fewer people are infected in the long run
as a increases, is not true either.

4. RESULTS UNDER RECOVERY

In this section, we consider situations where an infected agent recovers after κ, κ ∈ N, epochs of
time from the time of getting the infection, and analyze the corresponding stochastic process. Let
the set of agents who recover from the infection at time t be denoted by Rt. Thus, Rt is the set of
agents I(St−κ) who got the virus at time t − κ. If t − κ is negative, Rt is defined as the empty set.
Furthermore, the agents who are infected at the beginning (that is, at time t = 0) recover at time
t = κ.5 We additionally assume that an agent decides to stay (completely) at home (that is, goes for
the action 0) on the day they recover. This is a simplifying assumption but not unrealistic.

We now detail the changes in the stochastic process considered before under the current setup.
The infected set at time t + 1 is given by I(St+1) = I(St) ∪ {j : aj(Ŝt)rj(Ŝt) > τ(j)} \ Rt+1, and the
actions at time t + 1 is given by aj(St+1) = 0 for all j ∈ Rt+1, and aj(St+1) = aj(Ŝt) for all j /∈ Rt+1.

In what follows, we present our results under recovery. Except for the recovery component, we
stick to the assumptions we made in Section 3 for the case of non-recovery. Recall that a denotes the
(common) initial action of the agents. We provide results for the cases for every τ where a is 0 and

5In other words, we assume that the agents who are infected at t = 0, actually have got infected at t = 0 only (and were
not infected from the past).



28 GAME THEORETIC EPIDEMIC MODEL

1. For both these extreme cases, we show that the epidemic ends in the long run (and consequently,
people roam freely).

We first prove a general lemma that shows that irrespective of the initial action, if it happens
at some epoch of a(ny) DVSP that all the infected agents have actions 1 and no new agent gets
infected at the immediate next epoch, then all agents will eventually recover.

Lemma 5. Consider v˜ ∈ N∞ and let t̂ ∈ N0 be such that ai(Ŝt̂) = 1 for all i ∈ I(St̂) and I(St̂) ⊇ I(St̂+1).
Then, I(S∞) = ∅.

Proof: We prove the lemma by showing that for all r, s ∈ N0 with r < s, I(St̂+1+r) ⊇ I(St̂+1+s). As-
sume for contradiction there exists p ∈ N such that I(St̂+1)⊇ · · · ⊇ I(St̂+p) but I(St̂+p) ̸⊇ I(St̂+p+1),
i.e., after epoch t̂ there was no new infection till t̂ + p, and at t̂ + p + 1 some new agents are infected.
Let i ∈ N be such that i ∈ I(St̂+p+1) but i /∈ I(St̂+p). This means v˜t̂+p ̸= i and ai(Ŝt̂+p−1)ri(Ŝt̂+p−1)≤
τ < ai(Ŝt̂+p)ri(Ŝt̂+p). As v˜t̂+p ̸= i, we have ai(Ŝt̂+p−1) = ai(Ŝt̂+p). Thus,

ri(Ŝt̂+p−1) < ri(Ŝt̂+p). (4.1)

Let v˜t̂+p = j. As ak(Ŝt̂) = 1 for all k ∈ I(St̂) and I(St̂) ⊇ · · · ⊇ I(St̂+p), (4.1) and the Definition of the
process together imply that j /∈ I(St̂+p−1) and aj(Ŝt̂+p−1)> aj(Ŝt̂+p). Further, as I(St̂+p−1)⊇ I(St̂+p)

and v˜t̂+p = j, it must be that aj(Ŝt̂+p−1)rj(Ŝt̂+p−1) ≤ τ and aj(Ŝt̂+p)rj(Ŝt̂+p) = τ. Combining the
two observations, we have rj(Ŝt̂+p−1) < rj(Ŝt̂+p). But this is a contradiction. To see this first note
that I(St̂+p−1) ⊇ I(St̂+p) and ah(Ŝt̂+p−1) = 1 for all h ∈ I(St̂+p−1). Moreover, as v˜t̂+p = j, we have
ak(Ŝt̂+p−1) = ak(Ŝt̂+p) for all k ∈ N \ I(St̂+p−1) and al(Ŝt̂+p) = 0 for all l ∈ I(St̂+p−1) \ I(St̂+p). Thus,
it follows that rj(Ŝt̂+p−1) ≥ rj(Ŝt̂+p). ■

We are now ready to present and prove our results for the cases a = 0 and a = 1.

4.1 RESULTS WHEN a = 0

In this subsection, we consider the situation where the (common) initial action a equals 0. The next
theorem describes the limiting distribution of the infected set of agents and their action profiles.
As we have stated earlier, it shows that all the agents will recover in the long run, and the action
profile will have a degenerate distribution at

˜
1.

Theorem 11. Suppose a = 0. Then the limiting distribution of the infected set is given by

P(I(S∞) = ∅) = 1,

and the limiting distribution of the action profile is given by

P(aN(S∞) =
˜
1) = 1.

Proof: We first prove the distribution of the infected set. Fix an agent sequence v˜ ∈ N∞ and let S be
the DVSP induced by v˜. We show that I(S∞) = ∅. Observe that Claim 1 in the proof of Theorem 1
holds in the setup of this theorem as well. We distinguish two cases based on the values of k1.

Case 1: k1 ⩾ κ.
The assumption of the claim implies that agent 1 will get recovered before getting a chance to
update their action. As their initial action is 0 and they are the only agent infected at the beginning,
it means that for any other agent i, ri(Ŝt) = 0 for all t with 0 ≤ t ≤ κ. Therefore, no new agent will
be infected till κ. At κ, agent 1 will recover as per the process, and no one will get infected further.
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Case 2: k1 < κ.
Note that the assumption implies agent 1 gets a chance to update their action before they recover.
Thus, as in Theorem 1, we consider two sub-cases. Recall the definition of α as defined in (3.1).

Case 2.1: |N1(v˜)| ≥ α.
As in Case 1 of Theorem 1, we can show that I(S1) = · · · = I(Sk1+1) = {1} and a1(Ŝk1) = 1. Hence,
by Lemma 5, I(S∞) = ∅.

Case 2.2: |N1(v˜)| ≤ α − 1.
As k1 < κ, using similar arguments as in Case 2 of Theorem 1, we can show that N1(v˜)⊆ I(Sk1+1)⊆
N1(v˜) ∪ {1} with ai(Sk1+1) = 1 for all i ∈ I(Sk1+1) and ai(Sk1+1) = 0 for all i /∈ I(Sk1+1). At k1 + 1
epoch, if v˜k1+1 ∈ I(Sk1+1) then they will choose the the same action 1, and we will have I(Sk1+2) ⊆
I(Sk1+1). If v˜k1+1 /∈ I(Sk1+1), they will choose their action bv˜k1+1(Sk1+1) = τ as all the uninfected
agents have action 0 and all the infected agents have action 1. Therefore, no new agent will get
infected at k1 + 2, and we have I(Sk1+2) ⊆ I(Sk1+1). As ai(Ŝk1+1) = 1 for all i ∈ I(Sk1+1), by Lemma
5, it follows that I(S∞) = ∅.

As v˜ is an arbitrary agent sequence in N∞ and the cases are exhaustive, we have P(I(S∞) = ∅) =
1.

For the second part of the theorem, take any agent sequence v˜ ∈ N∞. Then we have I(S∞) = ∅.
This means there exists t̂ such that I(St̂) = I(St̂+1) = · · · = ∅. As there is no infected agent after
epoch t̂, any agent who updates their action after epoch t̂ will choose their best response as 1.
This together with the fact that at v˜, every agent appears infinitely many times, we conclude that
aN(S∞) = ˜

1. Therefore, P(aN(S∞) = ˜
1) = 1. ■

4.2 RESULTS WHEN a = 1

This subsection considers the situation where the (common) initial action a equals 1. As was the
case for a = 0, here too, we show that in the long run, the epidemic vanishes, and people roam
freely.

Theorem 12. Suppose a = 1. Then the limiting distribution of the infected set is given by

P(I(S∞) = ∅) = 1,

and the limiting distribution of the action profile is given by

P(aN(S∞) =
˜
1) = 1.

Proof: We prove the theorem by showing that for any agent sequence v˜ in N∞, I(S∞) = ∅ where
S is the DVSP induced by v˜. Consider an agent sequence v˜ and the DVSP S induced by v˜. First,
assume that κ ≥ 2. Because of this assumption, using similar arguments as in the proof of Theorem
3, we can show that

(i) if τ ≥ 1
n − 1

, then I(S1) = {1}, and

(ii) if τ <
1

n − 1
, then

(a) either I(S1) = N and aj(S1) = 1 for all j ∈ N
or

(b) there exists i ∈ N \ 1 with aj(S1) = aj(S2) = 1 for all j ∈ N \ i such that either I(S1) =
I(S2) = N \ i or I(S1) = N \ i and I(S2) = N.
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It’s easy to see that if either (i) or (ii)-(a) holds, by Lemma 5, we will have I(S∞) = ∅. Suppose
(ii)-(b) holds with I(S1) = I(S2) = N \ i, aj(S1) = aj(S2) = 1 for all j ∈ N \ i. This means I(S1) =

I(S2) = N \ i and aj(Ŝ1) = 1 for all j ∈ N \ i. Thus, by Lemma 5, I(S∞) = ∅. Now, suppose (ii )-(b)
holds with I(S1) = N \ i, I(S2) = N with aj(S1) = aj(S2) = 1 for all j ∈ N \ i. At epoch κ ≥ 2, agent
1 recovers, i.e., I(Sκ) = N \ 1. This means ri(Sκ) = 1. So, if agent 1 gets a chance to update their
action, they would choose a1(Ŝκ) = τ as their best response. Otherwise, it would be a1(Ŝκ) = 0.
Thus, agent 1 will not get infected at κ + 1. Hence, I(Sκ+1) = i as all the agents except i will recover
at κ + 1. At epoch κ + 1, all the uninfected agents have action less than or equal to τ, thus, whoever
agent updates their action at κ + 1, no one will get infected at κ + 2. Further, at epoch κ + 2 agent
i will get infected. Therefore, I(Sκ+2) = ∅. No one will get infected after this, hence, I(S∞) = ∅.
This shows that if κ ≥ 2, I(S∞) = ∅.

Now, assume that κ = 1. This means agent 1 will recover at epoch 1 and a1(S1) = 0. Suppose

τ ≥ 1
n − 1

. Using similar arguments as in the proof of Theorem 3, we can show that at epoch 1,

no new agent will get infected, implying I(S1) = ∅. Therefore, I(S∞) = ∅. Suppose τ <
1

n − 1
. If

v˜0 = 1 then using similar arguments as in the proof of Theorem 3, it can be shown that at epoch 1,
all the agents other than 1 will get infected. We claim that I(S2) = ∅ yielding I(S∞) = ∅. To see
this, observe that if agent 1 updates their action at epoch 2, they would change it to τ as all the
other agents are infected with non-zero actions. Otherwise, their action would remain the same,
i.e., a1(Ŝ1) = 0. Thus, agent 1 will not get further infected at epoch 2. Also, as κ = 1, all the other
agents will recover at epoch 2. Hence, I(S2) = ∅.

If v˜0 = i ( ̸= 1) then at epoch 1, all the agents other except agents i and 1 will get infected (using
similar arguments as in Case 2 of Theorem 3). Moreover, agent i will update their action to (n − 1)τ,
i.e., ai(S1) = (n − 1)τ. We consider different possibilities for v˜1. First, consider v˜1 = i. This means at
epoch 2, agent i will not get infected, and as a1(S1) = 0, agent 1 will not get infected either. Further,
all the other agents recover at epoch 2. Combining all these, we have I(S2) = ∅. Now, consider
v˜1 = j (/∈ {1, i}). As j ∈ I(S1) and aj(S1) = 1, it means aj(Ŝ1) = 1. Thus, at epoch 2, agent i will
get infected (see Case 2.2 in the proof of Theorem 3). Also, as κ = 1, all agents except 1 and i will
get recovered at this epoch. This means ak(S2) = 0 for all k ̸= i (recall that a(S1) = 0 and v˜1 ̸= 1).
Therefore, none of these agents will get infected at the next epoch, i.e., at epoch 3. In addition,
agent i will be recovered implying I(S3) = ∅.

Finally, consider v˜1 = 1. As I(S1) = N \ {1, i} with ak(S1) = 1 for all k ∈ I(S1) and ai(S1) =

(n − 1)τ, agent 1 will choose their action as a1(Ŝ1) = τ
(n − 2) + (n − 1)τ

(n − 2)
. Also, at epoch 2, agent

i will get infected (see Case 2.2 in the proof of Theorem 3), and all the agents in N \ {1, i} will be

recovered. Thus, a1(S2) = τ
(n − 2) + (n − 1)τ

(n − 2)
and ak(S2) = 0 for all k ∈ N \ {1, i}. If v˜2 = 1, then

as I(S2) = i, ai(S2)> 0, and ak(S2) = 0 for all k ∈ N \ {1, i}, agent 1 will update their action to τ, and
will not get infected in the next epoch. Further, as i will be recovered at the next epoch implying
that I(S3) = ∅. If v˜2 = i, as I(S2) = i, i will update their action to 1, and as a result agent 1 will get
infected again at epoch 3. However, as κ = 1, agent i will get recovered at epoch 3. This means all
the uninfected agents at epoch 3 have action as 0. Hence, at epoch 4, no new agent will get infected
and agent 1 will recover, implying I(S4) = ∅. If v˜2 = r (/∈ {1, i}), agent r will update their action to

τ

br(S2)
=

τ((n − 1)τ + a1(S2))

(n − 1)τ
. We claim I(S3) = ∅. To see this, note that agent i will be recovered
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at 3. Among other agents, only agents 1 and r have positive actions. So, it is enough to show agents

1 and r will not get infected. As agent r updates their action to ar(Ŝ2) =
τ

br(S2)
, they will not get

infected. For agent 1, we show that they will not get infected by showing that ar(Ŝ2)> a1(Ŝ2). Note

that a1(Ŝ2) = a1(Ŝ1) and ar(Ŝ2) =
τ((n − 1)τ + a1(S2))

(n − 1)τ
. Thus, ar(Ŝ2) > a1(Ŝ2) holds iff

τ

( (n − 1)τ + τ (n−2)+(n−1)τ
(n−2)

(n − 1)τ

)
> τ

(n − 2) + (n − 1)τ
(n − 2)

⇐⇒ 1 +
(n − 2) + (n − 1)τ
(n − 2)(n − 1)

>
(n − 2) + (n − 1)τ

(n − 2)

⇐⇒ (n − 2) + (n − 1)τ
(n − 2)(n − 1)

>
(n − 1)τ
(n − 2)

⇐⇒ 1
(n − 1)

> τ.

Therefore, I(S3) = ∅. This shows that I(S∞) = ∅ for κ = 1 and completes the first part of the
theorem. The second part of the theorem follows from the same arguments used in the proof of
Theorem 11. ■

4.3 EVIDENCE FROM SIMULATION

Although we furnish a thorough simulation study for the model without recovery in Section 6, here
we briefly mention that we also ran a simulation study for this general model with recovery and
the following are our findings

• For any 0 < τ < 1 and κ > 0, both a = 0 and a = 1, indeed the population becomes
completely uninfected.

• Consistent with our intuition, the time it takes to become disease-free is monotonic with κ,
i.e. with higher recovery time, it takes longer for the disease to vanish.

• Similar results of disease-free population seem to be true for 0 < a < 1 cases as well,
however, since we leave the proofs for these scenarios of general a for future, we do not
comment here on the time it takes depending on small or large value of a

5. A MODEL UNDER SIMULTANEOUS RESPONSE

In our model (as defined in Section 2), exactly one agent is chosen randomly at every epoch, who
then plays their best response to the current state. In this section, we discuss another model where
agents respond simultaneously at every epoch. Before we proceed to analyze this model, we point
out some aspects of the same.

While simultaneous response by all players is considered in static games and evolutionary games,
such a model may violate the common belief in rationality for dynamic games like ours.6 This is
because, if all agents are (best) responding to the current state simultaneously, then each agent
knows that the state will change at the next epoch, and whatever is a/the best response for the
current state may not continue to be optimal at the next epoch where the action will be practically

6The common belief in rationality says that each player is rational (utility maximizer), each player believes that every
other player is rational, each player believes that every other player believes that every other player is rational, and so
on. See Chapter 4 in [27] for a formal definition of the common belief in rationality.
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executed.7 So, playing a/the best response to the current state is not consistent with the common
belief in rationality. One reasonable way to model such a situation is to assume that the players
play actions corresponding to a Nash equilibrium (NE), whenever that exists.8 If there is a unique
NE of the game at the initial state, then a plausible model would be to assume that the players
play the corresponding actions. However, if there are multiple equilibria, different agents may play
actions corresponding to different equilibria resulting in an action profile that is perhaps ‘far’ from
any equilibrium. Even if we assume that agents somehow coordinate to one particular NE, there
is no clear way to identify that equilibrium as a function of the current state. This is particularly
because an NE may not give equal utility (or even relatively higher utility) to every player, and
there is no clear way to decide whom to favor. This also raises the question as to whether the
players will stick to any particular NE forever for the dynamic situation we consider. Nevertheless,
it is known that playing an NE of a static game repeatedly constitutes an NE of the corresponding
repeated game, and therefore, we compute all the NE of the game at the initial state in this section.
Needless to say, we lose the dynamic nature of the problem in this approach.

Before we proceed to characterize the NE, we discuss the connection of this model with evolu-
tionary games. In evolutionary games, according to the best response dynamics (or, its subsequent
modification as logit dynamics), each population chooses a strategy that is a (or, the) best response
to the current state.9 However, in evolutionary games, the whole population is considered as
one player, and actions are considered as different species in that population. In particular, in
contrast to our model, actions cannot be treated as rational players in evolutionary games, and
consequently the common belief in rationality does not apply to the actions. Nevertheless, we feel
a (suitable) evolutionary approach to the virus spread model would be an interesting problem for
future research.

5.1 NASH EQUILIBRIA OF THE GAME AT THE INITIAL STATE

We now investigate the NE of the game induced at the initial state. Since we treat it as a static
game (in particular, the state is not allowed to change), we consider a general setup where an

7One can add one more level of rationality by assuming that each agent i responds to the state obtained by replacing the
actions of every other agent j with their best responses. However, that too will not be consistent as while i is responding
to the modified state (as stated above), they believe that j is responding to the current state. This inconsistency will
continue no matter how many levels of rationality we consider, and it is hard to determine if the common belief in
rationality will lead to some action profile in the limit.
8A collection of strategies, one for each player, is a Nash equilibrium of a game if for each player, the corresponding
strategy is a best response to the strategies of other players given in the Nash equilibrium. It is worth noting that players
do not play a best response to the ‘current state’ (in fact, there is no such state in a static game) in an NE, instead, they
play a best response to the perceived equilibrium state.
9An evolutionary game consists of a class of populations each of which has a set of actions. A strategy of a population is
to choose a distribution of its mass over its actions. In best response dynamics, each population plays a best response
strategy to the current state. Since there need not be a unique best response, utilities are perturbed to achieve the
unique best response at every state. When the utilities are perturbed using a Gumbel distribution, the corresponding
dynamic is called the logit best response dynamic. One important question in evolutionary games is whether every
time playing a/the best response to the previous state leads to converging to an NE. [20] establish this fact under logit
best response dynamic, and [21] do it for arbitrary lower semicontinuous, strongly convex perturbations (for example,
Tsallis and Burg entropy) of the utilities. A connection between the approach we have taken in this paper and the logit
dynamic in evolutionary games can be drawn from [22]. They show that the logit dynamic can be achieved by starting
with populations with finite size, allowing one randomly chosen action to respond at each time, and then letting the
population size go to infinity. Recently, [28] and [29] have considered Bayesian evolutionary games and established the
convergence to an NE for finite and continuum strategies, respectively, under the different perturbed Bayesian best
response dynamics.
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arbitrary set of agents S, S ⊆ N, is infected at the initial state. Following the formulation in Section
2 (and simplifying certain expressions for the present case), the game at the initial state of the
infection is defined as G = ⟨N, (Ai)i∈N , (vi)i∈N⟩, where

• N = {1,2, . . . ,n} is the set of payers,
• Ai = [0,1] is the set of actions of each player i ∈ N,
• for each action profile

˜
a := (a1, . . . , an) ∈ [0,1]n,

• for i ∈ S, vi(˜
a) = f (ai), and

• for i ∈ N \ S,

vi(˜
a) =

{
1 + f (ai) if airi(˜

a)⩽ τ,
f (ai) if airi(˜

a) > τ
(5.1)

where f : [0,1]→ [0,1] is a strictly increasing function, and

ri(˜
a) =


(

∑j∈S aj

∑j∈N\{i} aj

)
if ∑

j∈N\{i}
aj ̸= 0,

0 if ∑
j∈N\{i}

aj = 0.

We now define the notion of (pure) Nash equilibrium (NE) for static games.

Definition 1. An action profile aN = (a1, . . . , an) is a (pure) Nash equilibrium of a game G =
⟨N, (Ai)i∈N , (vi)i∈N⟩ for all i ∈ N and all a′i ∈ Ai

vi(aN) ≥ vi(a′i, a−i).

The following theorem characterizes all NE of the game G.

Theorem 13. For the game G, if τ <
|S|

n − 1
, then there is a unique NE where agents in S play the action 1

and every other agent plays the action
τ|S|

|S| − (n − |S| − 1)τ
, and if τ ≥ |S|

n − 1
, then there is a unique NE

where every agent plays the action 1.

Proof: We first show that in any NE of the game G, an uninfected agent will remain uninfected.
Assume for contradiction there is an NE

˜
a = (a1, . . . , an) where uninfected agent i becomes infected.

Since
˜
a is a NE, we have

ui(˜
a) ≥ ui(a′i, a−i) for all a′i ∈ [0,1]. (5.2)

As by our assumption, agent i is infected at
˜
a, we have ui(˜

a) = f (ai). Consider a′i = τ. This means
agent i will remain uninfected at (a′i, a−i) and hence, ui(a′i, a−i) = 1 + f (a′i). But this contradicts
(5.2) as f : [0,1]→ [0,1] is a strictly increasing function. Therefore, in any NE of the game G, all the
agents other than agents in S will remain uninfected. Also, as agents in S have the utility function
f , they will always choose the action 1 in an NE.

Next, we show that in any NE of the game G, two uninfected agents will have the same action.
Assume for contradiction there is a NE of the game

˜
a = (a1, . . . , an) where two uninfected agents

i and j have different actions, i.e., ai ̸= aj. WLG we may assume that ai > aj. We show that
uj(˜

a) < uj(a′j, a−j) where a′j = ai, a contradiction to the fact that
˜
a is a NE. Note that as

˜
a is a NE,

agent j will remain uninfected and hence, uj(˜
a) = 1 + f (aj). For the profile (a′j, a−j),

a′jrj((a′j, a−j)) =
a′j|S|

|S|+ ∑k/∈S∪j ak
=

a′j|S|
1 + ∑k/∈S∪{i,j} ak + ai
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<
a′j

1 + ∑k/∈S∪{i,j} ak + aj
( as ai > aj)

=
ai

1 + ∑k/∈S∪{i,j} ak + aj
( as a′j = ai)

≤ τ ( as agent i is uninfected at
˜
a)

This means agent j will get get infected at (a′j, a−j). Hence, uj(a′j, a−j) = 1+ f (a′j)> 1+ f (aj) = uj(˜
a).

This shows that in any NE of the game G, all the uninfected agents will have the same action.
We are now ready to complete the proof of the lemma. Let

˜
a be a NE of the game G. First, assume

that τ <
|S|

n − 1
. As discussed before all the agents in S will choose their action as 1. Therefore, ai = 1

for all i ∈ S. Consider i /∈ S. As agent i will remain uninfected at
˜
a and ai is their best action given

the actions of the others, it must be that

airi(˜
a) = ai

|S|
|S|+ ∑k/∈S∪i ak

= τ.

This together with the fact that aj = al for all j, l ∈ N \ S implies

ai
|S|

|S|+ ∑k/∈S∪i ak
= τ =⇒ x

|S|
|S|+ ∑k/∈S∪i x

= τ ( where aj = x for all j ̸= 1)

=⇒ x =
τ|S|

|S| − (n − |S| − 1)τ
.

Note that as τ <
|S|

n − 1
, the following holds.

x =
τ|S|

|S| − (n − |S| − 1)τ
≤ τ|S|

|S| − (n − |S| − 1) |S|
n−1

=
τ(n − 1)

|S| ≤ 1,

and |S| − (n − |S| − 1)τ ≥ |S| − (n − |S| − 1)
|S|

n − 1
=

|S|2
n − 1

≥ 0.

Thus, 0 ≤ x ≤ 1. Now assume that τ ≥ |S|
n − 1

. As for the action profile
˜
a =

˜
1, airi(˜

a) =
|S|

n − 1
≤ τ for

all i ∈ N \ S, no agent in N \ S will get infected if they choose the action as 1. As 1 is the maximum
possible action, the unique NE will be

˜
1. ■

6. SIMULATION STUDIES

In this section, we corroborate our theoretical results with some simulation evidences. Our focus
remains on the following three aspects.

• Completely enumerate the empirical distribution of number of infected agents for a small
n (total number of agents) upto a few epochs.

• For the same n, we obtain the reported theoretical action profile limits by increasing the
epochs. We achieve this by selecting a large number of sequences of the particular epoch
length.
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• For large n, using the same approach of random permutations, we explore some special
cases of a and τ and show we match the reported asymptotic distribution for the cardinality
of the infected set.

6.1 EMPIRICAL DISTRIBUTION OF NUMBER OF INFECTED AGENTS UPTO FEW EPOCHS

In our paper so far, we have provided the asymptotic distribution of the cardinality of the final
infected set but it remains to understand how fast such distributions or its close approximations are
reached. In this section, we provide a very thorough exploration for the cardinality of the infected
set up to a few epochs of time. Note that, for the distribution of the total number of infected people
in the population, we required an exact enumeration of all possible sequences and thus it becomes
difficult to compute this beyond 10 or 11 epochs. So the numbers we will report for this case is
exact probability enumeration based on 10 epochs. We set n = 5 and various values of a and τ in
Table 1.

In particular, we see that after only 10 epochs for n = 5, we are able to reach very good approxi-
mations to the final distributions. Moreover, the number of epochs to get a close approximation is
much smaller. One can see that except for the very first case of a = 0,τ = 0.12 , we have pretty good
convergence to the actual distribution in 10 steps. Generally speaking, for smaller a and τ it takes
longer to approximately reach close to the asymptotic distribution.

6.2 EMPIRICAL DISTRIBUTION OF ACTION PROFILE

A very pertinent question about some simulation evidence for the asymptotic distribution of
the final action set distribution was asked by one reviewer. First, we must say that, even for n = 5
exactly tabulating all possible empirical distribution of a 5-dimensional vector is a challenging
problem. Moreover, while we did the simulation, we saw for most cases, the empirical distribution
(with complete enumeration) after 10 or 11 epochs was slightly far from the theoretical ones.
For this reason, we decided to extend our empirical probability calculation to larger number of
epochs. As complete enumeration was computationally challenging , even for n = 5, we decided to
randomly sample 50000 sequences of epoch length 50, 200 and 400. After a lot of deliberation on
how to concisely report the average performance of the 5-dimensional vector after these epochs,
we decided to report the following

• The theoretical distributions in Table 2 and
• The empirical distribution of the sum of the action profiles after 50, 200 and 400 epochs.

We choose the following cases
• a = 0, with τ = 0.1,0.3,0.6 and 0.9,
• a = 0.4, with τ = 0.05,0.3,0.4 and 0.9,
• a = 0.7, with τ = 0.1,0.3,0.6 and 0.9,
• a = 1, with τ = 0.1,0.5,0.6 and 0.9.

For solely presentation purpose, we omitted a few cases from Table 2 and present them in Figure
1,2, 3 and 4. One could see in Figure 1, for very small τ the uniform distribution in the five possible
classes was reached after 200 epochs whereas for larger τ the theoretical distributions were reached
pretty fast. For large a however, say a = 1 in Figure 4, the convergence is faster. This is consistent
with our finding in Table 1 where a complete enumeration was performed.

Apart from matching the sum of actions in each case, we present visually, we want to draw the
attention of the reader to the following cases

• a = 0.4,τ = 0.3 and
• a = 0.7,τ = 0.3
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a Range of τ τ Theoretical distribution Empirical distribution
0 (0,0.25) 0.12 (0.2,0.2,0.2,0.2,0.2) (0.3340,0.2,0.199,0.181,0.085)

[0.25,0.334) 0.3 (0.4,0.2,0.2,0.2,0) (0.42,0.2,0.199,0.181,0)
[0.334,0.5) 0.4 (0.6,0.2,0.2,0,0) (0.601,0.2,0.199.0,0)
[0.5,1) 0.6 (0.8,0.2,0,0,0) (0.8,0.2,0,0,0)

0.2 (0,0.05) 0.02 (0,0,0,0.16,0.84) (0,0,0,0.16,0.84)
0.05 0.05 (0,0,0,0,1) (0,0,0,0,1)
(0.05,0.25) * * *
[0.25,0.3125] 0.3 (0.4,0.2,0.2,0.2,0) (0.42,0.2,0.199,0.181,0)
(0.3125,0.4166] 0.35 (0.6,0.2,0.2,0,0) (0.601,0.2,0.199,0,0)
(0.4166,0.6249] 0.5 (0.8,0.2,0,0,0) (0.8,0.2,0.0,0)
(0.6249,1) 0.7 (1,0,0,0,0) (1,0,0,0,0)

0.35 (0,0.0875) 0.05 (0,0,0,0.16,0.84) (0,0,0,0.16,0.84)
0.0875 0.0875 (0,0,0,0,1) (0,0,0,0,1)
(0.0875,0.25) * * *
[0.25-0.2592] 0.255 (0.4,0,0,0.048,0.552) (0.420,0,0.001, 0.086, 0.493)
(0.2592,0.2985] 0.27 (0.4, 0.2,0, 0.024,0.376) (0.420, 0.200, 0.001, 0.062, 0.317)
(0.2985,0.3134] 0.3 (0.6, 0.2,0, 0.016,0.184) (0.601, 0.200, 0.001, 0.017, 0.182)
(0.3134,0.3704) 0.36 (0.5,0.2,0.2,0,0) (0.601,0.2,0.199,0,0)
[0.3704.0.4878] 0.4 (0.8,0.2,0,0,0) (0.8,0.2,0,0,0)
(0.4878,1] 0.5 (1,0,0,0,0) (1,0,0,0,0)

0.45 (0,0.1125) 0.1 (0,0,0,0.16,0.84) (0,0,0,0.16,0.84)
0.1125 0.1125 (0,0,0,0,1) (0,0,0,0,1)
(0.1125,0.25) * * *
[0.25,0.2898] 0.27 (0.4,0,0,0.048,0.552) (0.420, 0.000, 0.001, 0.086, 0.493)
(0.2898,0.3103] 0.3 (0.6,0,0, 0.04,0.360) (0.601, 0.000, 0.001, 0.041, 0.358)
(0.3103,0.3448] 0.32 (0.6,0.2,0, 0.016,0.184) (0.601, 0.200, 0.001, 0.017, 0.182)
(0.3448,0.4225] 0.4 (0.8,0.2,0,0,0) (0.8,0.2,0,0,0)
(0.4255,1) 0.5 (1,0,0,0,0) (1,0,0,0,0)

0.6 (0,0.15) 0.1 (0,0,0,0.16,0.84) (0,0,0,0.16,0.84)
0.15 0.15 (0,0,0,0,1) (0,0,0,0,1)
(0.15,0.25) * * *
[0.25,0.2777] 0.26 (0.4,0,0, 0.048,0.552) (0.420, 0.000, 0.001, 0.086, 0.493)
(0.2777,0.3124] 0.3 (0.6,0,0, 0.04,0.360) (0.601, 0.000, 0.001, 0.041, 0.358)
(0.3124,0.3571] 0.34 (0.8,0,0,0.024,0.176) (0.800, 0.000, 0.000, 0.024, 0.176)
(0.3571,1) 0.4 (1,0,0,0,0) (1,0,0,0,0)

0.8 (0,0.2) 0.1 (0,0,0,0.16,0.84) (0,0,0,0.16,0.84)
0.2 0.2 (0,0,0,0,1) (0,0,0,0,1)
(0.2,0.25) * * *
[0.25,0.2631] 0.26 (0.4,0,0, 0.024,0.576) (0.420, 0.000, 0.001, 0.086, 0.493)
(0.2631,0.2777] 0.27 (0.6,0,0, 0.04,0.360) (0.601, 0.000, 0.001, 0.041, 0.358)
(0.2777,0.2941] 0.28 (0.8,0,0,0.024,0.176) (0.800, 0.000, 0.000, 0.024, 0.176)
[0.2941,1) 0.5 (1,0,0,0,0) (1,0,0,0,0)

1 (0,0.25) 0.12 (0,0,0,0.16,0.84) (0,0,0,0.16,0.84)
[0.25,1) 0.5 (1,0,0,0,0) (1,0,0,0,0)

TABLE 1. Exact enumeration of empirical distribution after 10 epochs. Here
(p1, . . . , p5) denotes (P(|I(S∞)| = 1), . . . ,P(|I(S∞)| = 5)) and ∗ denotes that those
regions are not covered by our theoretical results.
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a τ Distribution: Class (prob) Sum of actions (prob)
0 0.1 (1,0.14,0.14,0.14,0.14) (0.2) 1.56 (0.2)

(1,1,0.11,0.11,0.11) (0.2) 2.33 (0.2)
(1,1,1,0.103,0.103) (0.2) 3.203 (0.2)
(1,1,1,1,0.1) (0.2) 4.1 (0.2)
(1,1,1,1,1) (0.2) 5 (0.2)

0.3 (1,1,0.43,0.43,0.43) (0.2) 3.29 (0.2)
(1,1,1,0.33,0.33) (0.2) 3.66 (0.2)
(1,1,1,1,0.3) (0.2) 4.3 (0.2)
(1,1,1,1,1) (0.4) 5 (0.4)

0.6 (1,1,1,1,1) (1) 5 (1)
0.9 (1,1,1,1,1) (1) 5 (1)

0.4 0.05 (1,1,1,1,0.05) (0.16) 4.05 (0.16)
(1,1,1,1,1) (0.84) 5 (0.84)

0.3 (1,1,0.43,0.43,0.43) (0.2) 3.29 (0.2)
(1,1,1,1,0.3) (0.006) 4.3 (0.006)
(1,1,1,1,1) (0.794) 5 (0.794)

0.4 (1,1,0.67,0.67,0.67) (0.2) 4.01 (0.2)
(1,1,1,1,1) (0.8) 5 (0.8)

0.9 (1,1,1,1,1) (1) 5 (1)
0.7 0.1 (1,1,1,1,0.1) (0.16) 4.1 (0.16)

(1,1,1,1,1) (0.84) 5 (0.84)
0.3 (1,1,1,1,0.3) (0.01) 4.3 (0.01)

(1,1,1,1,1) (0.99) 5 (0.99)
0.6 (1,1,1,1,1) (1) 5 (1)
0.9 (1,1,1,1,1) (1) 5 (1)

1 0.1 (1,1,1,1,0.1) (0.16) 4.1 (0.16)
(1,1,1,1,1) (0.84) 4 (0.84)

0.5 (1,1,1,1,1) (1) 5 (1)
0.6 (1,1,1,1,1) (1) 5 (1)
0.9 (1,1,1,1,1) (1) 5 (1)

TABLE 2. Theoretical distribution of action profile and their sum. Here vec-
tors stand for the class where last 4 entries can be permuted. For exam-
ple, (1,1,1,0.33,0.33) stands for the class containing six vectors (1,1,1,0.33,0.33),
(1,1,0.33,0.33,1), (1,0.33,0.33,1,1), (1,1,0.33,1,0.33), (1,0.33,1,0.33,1), (1,0.33,1, 1, 0.33)

In both, the theoretical distribution from Table 2 reads a class with a negligible theoretical probability
of 0.006 and 0.01 respectively. One could see, that even though these small classes were not
prominent after 50 epochs, they became so after 200 epochs. Such strong empirical evidence
bolsters that our theoretical findings are accurate. Moreover, it says that based on values of a and τ,
it might take different time for the action profile to eventually reach the limiting distributions.

6.3 LARGE SAMPLE SIZE

Lastly, we want to understand, for a large population, how well does our result hold empirically
and more importantly how fast do we converge to the theoretical distribution. For this as well,
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(A) τ = 0.1 (B) τ = 0.3 (C) τ = 0.6

FIGURE 1. Sum of action profiles for a = 0 for n = 5

(A) τ = 0.05 (B) τ = 0.3 (C) τ = 0.4

FIGURE 2. Sum of action profiles for a = 0.4 for n = 5

(A) τ = 0.1 (B) τ = 0.3 (C) τ = 0.9

FIGURE 3. Sum of action profiles for a = 0.7 for n = 5
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(A) τ = 0.1 (B) τ = 0.5 (C) τ = 0.9

FIGURE 4. Sum of action profiles for a = 1 for n = 5

we have to rely on evaluating a random sample of sequences as complete enumeration for even n
moderately large as 20 or 50 is nearly impossible to achieve. That said, we were able to achieve the
said theoretical distributions through evaluating a large number (50000) of permutations of the
same length as the corresponding epoch. We choose the scenario a = 0,τ < 1/(n − 1) to exhibit
this dynamics. Our theory in Theorem 1 says that the number of infected agents asymptotically
converges to Uniform(1, · · · ,n). In Figure 5, we choose n = 5,20 and 50 and obtain the dynamics at
epoch lengths 20,50,100 and 200.

One could see for each n, initially, the infected set remains just 1 with a somewhat significant
probability whereas the probability of having all agents infected is negligible. However, as time
progresses, the distribution of the number of agents becomes more uniform. While for small n, the
distribution becomes almost uniform at smaller epochs like 20, but for larger n, it takes significantly
longer. This finding is consistent with our intuition and initial setting. Since we begin with one
infected individual, initially the number of infected agents remains 1 with nontrivial probability.
At the same time, the chance that it would spread to everyone is quite small. We also ran it for
different n, a and τ settings and obtained similar findings. However, for large n, it is very difficult
to summarize every possible exhaustive case as we did for n = 5 in Table 1 and thus we skip those
discussions here.

7. CONCLUSION

In this article, we propose a graph-theoretic model to describe the spread of a contagious disease
allowing for rational interventions from agents sitting at the nodes of the graph. The agents act
based on a reasonable utility function and they may (or may not) get affected if their exposure
increases. We obtain the asymptotic distribution of the cardinality of the infected set as well as
that of the action profile. The results reveal several interesting patterns that exhibit proximity to
uniformity, as well as results that are intuitively justifiable (such as if everyone’s immunity (τ value)
is low to begin with, then eventually the whole population gets affected). We have given an almost
complete picture of how the values of τ and a impact the final distribution of the infected set and
the action profile. We also observe several fascinating phase transition phenomena in our results.
Through exact enumeration of all possible sequences in which the agents are picked randomly, we
also show that the empirical distributions obtained mimic the corresponding empirical distributions
rather closely after only around 10 epochs from the start of the process.
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FIGURE 5. Empirical probability distributions of number of infected agents for
a = 0,τ = 0.01 for sample size n = 5,20,50 (Different rows) at Epochs 20,50,100,200
(Different columns). For each n, it eventually becomes uniform however for small n,
it is attained faster.

However, there are a number of questions that remain to be addressed that seem to be beyond
the scope of this paper. We give the readers a brief overview of the questions we intend to pursue
for similar or related models in the future. So far, we have been unable to obtain, theoretically
at least, the limiting distributions for the case where a/(n − 1) < τ < 1/(n − 1). The length of
this interval, for any given τ, is negligible for large n. However, our simulation studies show
that there are possibly only two different distributions that could lie in this space. Second, we
want to relax the restriction that all agents start with the same initial action a or the same initial
immunity τ. Again, some numerical explorations revealed that for fixed a and uniform τ or for
fixed τ and uniform a, the contagion tends to spread throughout the population, yielding a rather
interesting phenomenon. However, the current mathematical tools will fail to encompass such
levels of randomness and proving the occurrence of the phenomena mentioned above rigorously
may require completely different mathematical machinery. Finally, we would also like to explore
the situation where gij is allowed to change over time or have its own model of evolution. That
would also bring significant changes to our computations and thus left for future persuasion.



GAME THEORETIC EPIDEMIC MODEL 41

Finally, from the model perspective, one could potentially think of incorporating a cost function
for infected individual when they go out and thus this would put some restrictions on f (·) in the
utility function to be not always monotonic. This would constitute an interesting direction in terms
of how the dynamics is affected by such a cost.
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A. A FEW IMPORTANT LEMMAS

Lemma 6. Suppose v˜ ∈ N∞ and let t̄ ∈ N0 be such that either

v˜t̄ ∈ I(St̄) and av˜t̄(St̄) = 1,

or,
v˜t̄ /∈ I(St̄) and I(St̄−1) = I(St̄).

Then I(St̄) = I(St̄+1).

Proof: First assume that I(St̄−1) = I(St̄) and v˜t̄ = i with i /∈ I(St̄). Since i /∈ I(St̄), i will choose their
action as

bi(St̄) =

1 if ri(St̄) = 0,

min
{

1,
τ(i)

ri(St̄)

}
if ri(St̄) ̸= 0.

If ri(St̄) = 0 then ri(Ŝt̄) = ri(St̄) = 0, and agent i will not get infected as 1 × ri(Ŝt̄) = 0 ⩽ τ(i).
Suppose ri(St̄)> 0. Since ai(Ŝt̄) = bi(St̄) and ri(St̄) = ri(Ŝt̄), this means agent i will not get infected
at t̄ + 1. To show that any other agent j /∈ I(St̄) will not get infected at t̄ + 1, we first claim

that ai(Ŝt̄) ⩾ ai(St̄). If ai(Ŝt̄) = 1 then there is nothing to show, so, assume ai(Ŝt̄) =
τ(i)

ri(St̄)
. As

i /∈ I(St̄), we have ai(Ŝt̄−1)ri(Ŝt̄−1) ⩽ τ(i). Moreover, as I(St̄−1) = I(St̄), it follows that Ŝt̄−1 = St̄
(see (iii) of Observation 1) and hence, ri(Ŝt̄−1) = ri(St̄). Combining it with ai(St̄) = ai(Ŝt̄−1), we get
ai(St̄)ri(St̄)⩽ τ(i). So, ai(Ŝt̄)⩾ ai(St̄).

Take j /∈ I(St̄) with j ̸= i. Since j /∈ I(St̄), it means aj(Ŝt̄−1)rj(Ŝt̄−1) ⩽ τ(j). Additionally, j ̸= i
implies aj(Ŝt̄−1) = aj(St̄) = aj(Ŝt̄). Therefore, to show that aj(Ŝt̄)rj(Ŝt̄)⩽ τ(j), it is enough to show
rj(Ŝt̄−1)⩾ rj(Ŝt̄). Note that

rj(Ŝt̄−1) =
∑k∈I(Ŝt̄−1)\j ak(Ŝt̄−1)gjk

∑k∈N\j ak(Ŝt̄−1)gjk

=
∑k∈I(Ŝt̄−1)\j ak(Ŝt̄)gjk

ai(Ŝt̄−1)gji + ∑k∈N\{i,j} ak(Ŝt̄)gjk
(as i /∈ I(Ŝt̄−1) and ak(Ŝt̄−1) = ak(Ŝt̄)∀k ̸= i)

=
∑k∈I(Ŝt̄)\j ak(Ŝt̄)gjk

ai(Ŝt̄−1)gji + ∑k∈N\{i,j} ak(Ŝt̄)gjk
(as I(Ŝt̄−1) = I(St̄−1) = I(St̄) = I(Ŝt̄))

⩾
∑k∈I(Ŝt̄)\j ak(Ŝt̄)gjk

ai(Ŝt̄)gji + ∑k∈N\{i,j} ak(Ŝt̄)gjk
(as ai(Ŝt̄)⩾ ai(St̄) = ai(Ŝt̄−1))

= rj(Ŝt̄).

So, agent j will not get infected at t̄ + 1 and hence, I(St̄+1) = I(St̄).
Now assume i ∈ I(St̄) with ai(St̄) = 1. This means ai(Ŝt̄) = bi(St̄) = 1. As bi(St̄) = ai(St̄) and

v˜t̄ = i, we have St̄ = St̄+1 (see Observation 1). Hence, I(St̄) = I(St̄+1). This completes the proof of
the lemma. ■

Lemma 7. Suppose that I(S0) = {1} and ai(S0)⩽ τ(i) for all i ∈ N. Let v˜ ∈ N∞ and t̂ ∈ N0 be such that
v˜t ̸= 1 for all t < t̂. Then, I(St) = {1} for all t ⩽ t̂.
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Proof: Note that if t̂ = 0 then there is nothing to show. So, assume t̂ ⩾ 1. We use induction to prove
this. As the base case, we show that I(S1) = {1}. Let v˜0 = i. Since t̂ ⩾ 1, i ̸= 1. Agent i will choose
their action as

bi(S0) =

1 if ri(S0) = 0,

min
{

1,
τ(i)

ri(S0)

}
if ri(S0) ̸= 0.

If ri(S0) = 0 then ri(Ŝ0) = ri(S0) = 0, and agent i will not get infected as 1 × ri(Ŝ0) = 0 ⩽ τ(i).

Suppose ri(S0) > 0. Since ai(Ŝ0) = bi(S0), ri(Ŝ0) = ri(S0), and bi(S0) ⩽
τ(i)

ri(S0)
, this means agent i

will not get infected at t = 1. For any j /∈ {1, i}, aj(Ŝ0) = aj(S0)⩽ τ(j), so, agent j will also not get
infected at t = 1. Thus, I(S1) = {1}. Next we introduce an induction hypothesis.
Induction Hypothesis: Given t̄ ∈ N0 with t̂ ⩾ t̄ > 1, we have I(S1) = · · · = I(St̄−1) = {1}.

We show that I(St̄) = {1}. Let v˜t̄−1 = i. Since t̂ ⩾ t̄, this means i ̸= 1. Hence, i /∈ I(St̄−1). As t̄ > 1,
we have I(St̄−2) = I(St̄−1). This together with Lemma 6, implies I(St̄) = I(St̄−1) = {1}. Thus, by
induction, we have I(St̂) = {1}. This completes the proof of the lemma. ■

Remark 4. It follows from Lemma 7 that I(St1(v˜)) = {1} for all v˜ ∈ N∞.

Lemma 8. Consider v˜∈ N∞ and let t̂∈N0 be such that ai(St̂) = 1 for all i ∈ I(St̂) and ai(St̂)⩽ τ(i) for all i /∈
I(St̂). Then, I(St̂) = I(S∞).

Proof: We first show that I(St̂+1) = I(St̂). Let v˜t̂ = i. Suppose i ∈ I(St̂). Thus by Lemma 1.
ai(Ŝt̂) = bi(St̂) = 1. This implies St̂ = St̂+1 (see Observation 1) and hence, I(St̂+1) = I(St̂). Now
suppose i /∈ I(St̂). Agent i will choose their action as

bi(St̂) =

1 if ri(St̂) = 0,

min
{

1,
τ(i)

ri(St̂)

}
if ri(St̂) ̸= 0.

If ri(St̂) = 0 then ri(Ŝt̂) = ri(St̂) = 0, and agent i will not get infected as ai(Ŝt̂)× ri(Ŝt̂) = 0 ⩽ τ(i).
Suppose ri(St̂)> 0. Since ai(Ŝt̂) = bi(St̂) and ri(St̂) = ri(Ŝt̂), this means agent i will not get infected
at t̂ + 1. Take j /∈ I(St̂) and j ̸= i. Note that by the assumption of the lemma, aj(St̂)⩽ τ(j). Since
j ̸= i, we have aj(St̂) = aj(Ŝt̂). Combining these two, we have aj(Ŝt̂) ⩽ τ(j). As rj(Ŝt̂) ⩽ 1 this
implies aj(Ŝt̂)rj(Ŝt̂)⩽ τ(j). Thus, agent j will not get infected at t̂ + 1. Hence, I(St̂+1) = I(St̂)

We now show that for any t ∈ N0 with t > t̂ + 1, I(St̂) = I(St) holds. Assume for contradiction
there exists t̄ ∈ N0 with t̄ > t̂ + 1 such that I(St̂)⊊ I(St̄). Without loss of generality we can assume
that I(St̂) = I(St̂+1) = · · · = I(St̄−1). Let v˜t̄−1 = i. Suppose i ∈ I(St̄−1). We first show

ai(St̄−1) = 1. (A.1)

As i ∈ I(St̄−1) and I(St̄−1) = I(St̂), we have i ∈ I(St̂). Thus, by the assumption of the lemma,
ai(St̂) = 1. Since t̂ ⩽ t̄ − 1, this implies ai(St̄−1) = 1; see Observation 3.

By (A.1), we have ai(St̄−1) = 1. Since v˜t̄−1 = i and i ∈ I(St̄−1), this implies ai(Ŝt̄−1) = 1. Thus,
St̄−1 = Ŝt̄−1, and hence, I(St̄−1) = I(St̄) (see Observation 1), a contradiction to I(St̂)⊊ I(St̄). Hence,
I(St̄) = I(St̂).

Now suppose i /∈ I(St̄−1). As t̄ > t̂ + 1, we have I(St̄−1) = I(St̄−2). This together with Lemma 6
implies I(St̄−1) = I(St̄), a contradiction to I(St̂)⊊ I(St̄). Hence, I(St̄) = I(St̂). This completes the
proof of the lemma. ■
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B. PROOF OF THEOREM 3, THEOREM 5, AND THEOREM 9

B.1 PROOF OF THEOREM 3

Proof: We follow the same structure that we used in the proof of Theorem 1.
Step 1. Fix an agent sequence v˜ ∈ N∞ and let S be the DVSP induced by v˜. To shorten notation, for
all i ∈ N, let us denote ti(v˜) by ki. The following claim demonstrates how an agent i with ki < k1
will update their action. Recall the set N1(v˜). We distinguish two cases based on the value of |N1(v˜)|.
Case 1: |N1(v˜)| = 0.

First assume τ ⩾
1

n − 1
. We show that no agent will get infected under this assumption, i.e.,

I(S∞) = {1}. Note that by the assumption of the case, v˜0 = 1. Also, as a = 1, ai(S0) = 1 for all i ∈ N.
Recall that Ŝ0 denotes the intermediate state where the only change from S0 is that agent v˜0 has
updated their action to bv˜0(S0). Since v˜0 = 1, we have ai(S0) = ai(Ŝ0) for all i ̸= 1. Thus, ai(Ŝ0) = 1
for all i ∈ N \ {1}. Moreover, by Lemma 1 and the definition of the process, a1(Ŝ0) = 1. Consider
the time point 1. By the definition of the process, an agent i ̸= 1 will be in I(S1) if ai(Ŝ0)ri(Ŝ0) > τ.

Since I(S0) = {1}, ai(Ŝ0) = 1 for all i ∈ N, and gij = c for all i ̸= j, it follows that ri(Ŝ0) =
1

n − 1
for

all i ∈ N \ {1}. Because τ ⩾
1

n − 1
, this implies that no agent in N \ {1} gets infected at the time

point 1. Hence, I(S1) = {1}.
We now show that no new agent would get infected after this. We first show that I(S2) = {1}.

Let v˜1 = i. If i /∈ I(S1) then as I(S0) = I(S1) by Lemma 6, we have I(S1) = I(S2). If i ∈ I(S1) then
i = 1. Moreover, a1(S1) = a1(Ŝ0) = 1. Hence, by Lemma 6, I(S1) = I(S2). Therefore, I(S2) = {1}.
Using the same arguments repeatedly, it follows that I(St) = {1} for all t ⩾ 2. Thus, I(S∞) = {1}.

Now assume τ <
1

n − 1
. We show that all the agent gets infected under this assumption. Using

similar arguments as before, we get ri(Ŝ0) =
1

n − 1
for all i ∈ N \ {1}. As τ <

1
n − 1

, this means

each i ∈ N \ {1} will get infected at time point 1. Therefore, I(S∞) = N.

Case 2: |N1(v˜)|⩾ 1.
This means v˜0 ̸= 1. Let v˜0 = i /∈ {1}. Hence, by the definition of the process, agent i will choose
their action as bi(S0) at the intermediate state Ŝ0. As aj(S0) = 1 for all j ∈ N and I(S0) = {1}, it
follows that ri(S0) ̸= 0. Therefore,

bi(S0) = min
{

1,
τ

ri(S0)

}
= min{1, (n − 1)τ} . (B.1)

Since by our assumption v˜0 = i and i /∈ I(S0), by Observation 4, i /∈ I(S1). For any other uninfected
agent j,

rj(Ŝ0) =
1

(n − 2) + bi(S0)
.

This together with the fact that aj(Ŝ0) = 1 implies

(i) if τ ⩾
1

n − 1
then bi(S0) = 1 and hence, aj(Ŝ0)rj(Ŝ0) =

1
n − 1

⩽ τ, and
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(ii) if τ <
1

n − 1
then bi(S0) < 1 and hence, aj(Ŝ0)rj(Ŝ0) >

1
n − 1

> τ.

Combining the above observations, we may write if τ ⩾
1

n − 1
then agent j will not get infected at

time point 1 and if τ <
1

n − 1
then agent j will get infected at time point 1. Hence, we have

τ ⩾
1

n − 1
=⇒ I(S1) = {1} and τ <

1
n − 1

=⇒ I(S1) = N \ {i}.

If τ ⩾
1

n − 1
then using similar arguments as in Case 1, we can show that I(S∞) = {1}. If

τ <
1

n − 1
then to decide the final infected set we distinguish two subcases.

Case 2.1. v˜1 = i.
We show that the final infected set will be N \ i. Since by our assumption v˜1 = i and i /∈ I(S1), by
Observation 4, i /∈ I(S2). Hence, I(S2) = N \ {i}. We now show that i will not get infected after this.
At time point 2,

ri(Ŝ2) =
(n − 1)
(n − 1)

= 1.

Therefore, ai(Ŝ2) = τ (see Observation 4). At time point 3, if v˜3 = i, then agent i would not get
infected at time point 4 (Observation 4). On the other hand, if v˜3 ̸= i then as ai(Ŝ3) = ai(Ŝ2) = τ, it
follows that ai(Ŝ3)ri(Ŝ3)⩽ τ. Hence, agent i would remain uninfected at time point 4. Continuing
in this manner, we may show that i will not get infected after this. Thus, I(S∞) = N \ {i}.

Case 2.2.: v˜1 ̸= i
We show that the final infected set will be N. Since I(S1) = N \ {i}, ri(Ŝ1) = 1. Moreover, as
ai(S1) = ai(Ŝ0) = bi(S0) = (n − 1)τ > τ (see B.5) and v˜1 ̸= i, it follows that ai(Ŝ1) > τ. Combining
this two we have ai(Ŝ1)ri(Ŝ1) > τ. Thus, agent i will get infected at time point 2. Hence, I(S2) = N
and I(S∞) = N.

Step 2. First assume τ ⩾
1

n − 1
. Therefore, in view Case 1 and Case 2 of the current proof, we have

I(S∞) = {1}.

Now assume τ <
1

n − 1
. By Case 1 and Case 2 above, we have

(i) |I(S∞)| = n − 1 with 1 ∈ I(S∞) if |N1(v˜)|⩾ 1 and there is i ∈ N \ {1} such that ki = 0 and
v˜1 = i, and

(ii) I(S∞) = N if either |N1(v˜)| = 0 or |N1(v˜)|⩾ 1 and there is no i ∈ N \ {1} such that ki = 0
and v˜1 = i.

We calculate the probability of |I(S∞)| = n − 1. By (i) we have

P(v˜ | |N1(v˜)|⩾ 1 and ∃i ̸= 1 such that ki = 0 and v˜1 = i)

=P(v˜ | ∃i ̸= 1 such that ki = 0 and v˜1 = i)

= n−1C1 ×
1
n2

=
n − 1

n2 .
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Note that by (i) and (ii),
P(|I(S∞)| = n − 1) + P(I(S∞) = N) = 1.

Therefore,

P(I(S∞) = N) = 1 − P(|I(S∞)| = n − 1)

= 1 − n − 1
n2 .

Since any two subsets of N with the cardinality n − 1 have the same probability, combining all the
above observations, we have the following distribution of the infected set.

P(I(S∞) = J) =



1
n2 if 1 ∈ J and |J| = n − 1,

1 − n − 1
n2 if |J| = n, i.e., J = N,

0 otherwise.

This completes the proof of the theorem. ■

B.2 PROOF OF THEOREM 5

Proof: Note that [
α̂ ⩾

⌈
1
τ − (n − 1)a

1 − a

⌉]
⇐⇒

[
τ ⩾

1
α̂ + (n − 1 − α̂)a

]
, (B.2)

and [
α̂ =

⌈
1
τ − (n − 1)a

1 − a

⌉]
⇐⇒

[
1

α̂ − 1 + (n − α̂)a
> τ ⩾

1
α̂ + (n − 1 − α̂)a

]
. (B.3)

Also, as τ ⩾
1

n − 1
, we have α̂ ⩽ n − 1. We follow the same structure that we used in the proof of

Theorem 1.
Step 1 Fix an agent sequence v˜ ∈ N∞ and let S be the virus spread process induced by v˜. To shorten
notation, for all i ∈ N, let us denote ti(v˜) by ki. We first prove a claim similar to Claim 1 as in Step 1
of the proof of Theorem 1.

Claim 1: For all 0 ⩽ t < k1, ai(St+1) = 1 where v˜t = i.
Proof of the claim. Let v˜0 = i. As k1 > 0, i ̸= 1. Since aj(S0) = a > 0 for all j ∈ N, I(S0) = {1}, and

gij = c for all i ̸= j, we have ri(S0) =
1

(n − 1)
. This means

bi(S0) = min

{
1,

τ
1

(n−1)

}
= min{1, (n − 1)τ} = 1

as by the assumption of the lemma τ ⩾
1

(n − 1)
. Thus, ai(S1) = ai(Ŝ0) = 1. Next we introduce an

induction hypothesis.
Induction Hypothesis: Given t̄ ∈ N0 with t̄ < k1, we have for all t < t̄, aj(St+1) = 1 where v˜t = j.
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Let v˜t̄ = i′ and we show that ai′(St̄+1) = 1. Note that by Lemma 7, I(St̄) = {1}. Moreover, by the
induction hypothesis, aj(St̄)⩾ a for all j ∈ N \ {1}. Also, as t̄ < k1, we have a1(St̄) = a. Combining
all these observations we have,

1
(n − 1)

⩾ ri′(St̄)⩾
a

(n − 1)
. (B.4)

Since ri′(St̄) > 0, bi′(St̄) = min
{

1,
τ

ri′(St̄)

}
; see Lemma 1. Therefore, using (B.4) and the fact

τ ⩾
1

(n − 1)
, we have bi′(St̄) = 1. Thus, ai′(St̄+1) = ai′(Ŝt̄) = 1. This completes the proof of the claim.

□
We now determine the final infection set. Note that by Claim 1, ai(Sk1) = 1 for all i ∈ N1(v˜). Also,

by the definition of the process, ai(Sk1) = a for all i /∈ N1(v˜) ∪ {1} as they have not updated their
actions till the time point k1. Recall that Ŝk1 denotes the intermediate state where the only change
from Sk1 is that agent v˜k1 has updated their action to bv˜k1

(Sk1). Since v˜k1 = 1, we have ai(Sk1) = ai(Ŝk1)

for all i ̸= 1. Thus, ai(Ŝk1) = 1 for all i ∈ N1(v˜) and ai(Ŝk1) = a for all i /∈ N1(v˜) ∪ {1}.
Moreover, by Remark 1 and the definition of the process, a1(Ŝk1) = 1. Consider the time point

k1 + 1. By the definition of the process, an agent i ̸= 1 will be in I(Sk1+1) if ai(Ŝk1)ri(Ŝk1) > τ. For
any i /∈ N1(v˜) ∪ 1, ai(Ŝk1) = a ⩽ τ. Thus, ai(Ŝk1)ri(Ŝk1) ⩽ τ and any agent in N1(v˜) ∪ {1} will not
get infected at k1 + 1. For agents in N1(v˜), we distinguish two cases.
Case 1: |N1(v˜)|⩾ α̂.
Since I(Sk1) = {1}, ai(Ŝk1) = 1 for all i ∈ N1(v˜) ∪ {1}, ai(Ŝk1) = a for all i /∈ N1(v˜) ∪ {1}, and gij = c
for all i ̸= j, it follows that

ri(Ŝk1) =
1

|N1(v˜)|+ (n − 1 − |N1(v˜)|)a

=
1

|N1(v˜)|(1 − a) + (n − 1)a

⩽
1

α̂(1 − a) + (n − 1)a
(since |N1(v˜)|⩾ α̂)

⩽ τ (by (B.2))

for all i ∈ N1(v˜). This implies that no agent in N1(v˜) gets infected at the time point k1 + 1.
We show that no new agent would get infected after this. We first show that I(Sk1+2) = {1}.

Let v˜k1+1 = i. If i /∈ I(Sk1+1) then as I(Sk1) = I(Sk1+1) by Lemma 6, we have I(Sk1+1) = I(Sk1+2). If
i ∈ I(Sk1+1) then i = 1. Moreover, a1(Sk1+1) = a1(Ŝk1) = 1. Hence, by Lemma 6, I(Sk1+1) = I(Sk1+2).
Therefore, I(Sk1+2) = {1}. Using the same arguments repeatedly, it follows that I(St) = {1} for all
t ⩾ k1 + 2. Thus, I(S∞) = {1}.
Case 2: |N1(v˜)|⩽ α̂ − 1.
By the assumption of the case, α̂ ⩾ 1. First assume α̂ = 1. This, together with |N1(v˜)| ⩽ α̂ − 1,
implies |N1(v˜)|= 0. Therefore, k1 = 1. We show that I(S∞) = {1}. Note that by the definition of the
process, ai(Ŝ0) = a for all i ̸= 1. As a ⩽ τ, this means no agent in the set {2, . . . ,n} will get infected at
the time point 1. Hence, I(S1) = {1}. Moreover, as I(S1) = {1} with a1(S1) = 1 and ai(S1) = a ⩽ τ
for all i ̸= 1, by Lemma 8 it follows that I(S1) = I(S∞). Hence, I(S∞) = {1}.
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Now assume α̂ ⩾ 2. Thus by the definition of α̂, we have α̂ =

⌈
1
τ − (n − 1)a

1 − a

⌉
. As I(Sk1) = 1,

ai(Ŝk1) = 1 for all i ∈ N1(v˜) ∪ {1}, ai(Ŝk1) = a for all i /∈ N1(v˜) ∪ {1}, and gij = c for all i ̸= j, we
have for all i ∈ N1(v˜)

ri(Ŝk1) =
1

|N1(v˜)|+ (n − 1 − |N1(v˜)|)a

=
1

|N1(v˜)|(1 − a) + (n − 1)a

⩾
1

(α̂ − 1)(1 − a) + (n − 1)a
(since |N1(v˜)|⩽ (α̂ − 1))

=
1

(α̂ − 1) + (n − α̂)a
> τ. (by (B.3))

This implies all agents in N1(v˜) will get infected at time point k1 + 1. Thus, we have I(Sk1+1) =

N1(v˜) ∪ {1}. Further, as, ai(Sk1+1) = ai(Ŝk1) = 1 for all i ∈ I(Sk1+1) and ai(Sk1+1) = a ⩽ τ for all
i /∈ I(Sk1+1), by Lemma 8 it follows that I(Sk1+1) = I(S∞). Hence, I(S∞) = N1(v˜) ∪ {1}.
Step 2. Consider the probability space (N∞,F ,P) and random variables S and t1, . . . , tn. Let
m ∈ {2, . . . ,n} be such that m ⩽ α̂. In view of Case 1 and Case 2 of the current proof, we have (i)
|I(S∞)| ⩽ α̂, and (ii) |I(S∞)| = m with 1 ∈ I(S∞) if and only if |{i ∈ N | ti < t1}| = m − 1. Also,
|I(S∞)| = 1 if and only if either {i ∈ N | ti < t1} = ∅ or |{i ∈ N | ti < t1}| ⩾ α̂. Moreover, as P is
uniform, any two subsets of N with same cardinality have the same probability. These observations
together yield

P(I(S∞) = J) =



1 − α̂ − 1
n

if J = {1},

1
n × n−1Cm−1

if 1 ∈ J and |J| = m where m ∈ [2, α̂],

0 otherwise.

This completes the proof of the theorem. ■

B.3 PROOF OF THEOREM 9

Proof: We follow the same structure that we used in the proof of Theorem 1.
Step 1. Fix an agent sequence v˜ ∈ N∞ and let S be the DVSP induced by v˜. To shorten notation, for
all i ∈ N, let us denote ti(v˜) by ki. The following claim demonstrates how an agent i with ki < k1
will update their action. Recall the set N1(v˜). We distinguish two cases based on the value of |N1(v˜)|.
Case 1: |N1(v˜)| = 0.

We show that, for τ ⩽
a

n − 1
, all the agents will get infected under this assumption, i.e., I(S∞) = N.

Note that by the assumption of the case, v˜0 = 1. Recall that Ŝ0 denotes the intermediate state
where the only change from S0 is that agent v˜0 has updated their action to bv˜0(S0). Since v˜0 = 1,
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we have ai(S0) = ai(Ŝ0) = a for all i ̸= 1. Moreover, by Remark 1 and the definition of the process,
a1(Ŝ0) = 1. Consider the time point 1. By the definition of the process, an agent i ̸= 1 will be in I(S1)
if ai(Ŝ0)ri(Ŝ0) > τ. Since I(S0) = {1}, ai(Ŝ0) = a for all i ∈ N, and gij = c for all i ̸= j, it follows that
for all i ∈ N \ {1}

ari(Ŝ0) =
a

(n − 2)a + 1
>

a
(n − 1)

.

Because τ ⩽
a

n − 1
, this implies that all the agents in N \ {1} gets infected at the time point 1.

Hence, I(S1) = N. Therefore, by the definition of the process I(S∞) = N.

Case 2: |N1(v˜)|⩾ 1.
This means v˜0 ̸= 1. Let v˜0 = i ∈ N \ 1. Hence, by the definition of the process, agent i will choose
their action as bi(S0) at the intermediate state Ŝ0. As aj(S0) = a > 0 for all j ∈ N and I(S0) = {1}, it
follows that ri(S0) ̸= 0. Therefore,

bi(S0) = min
{

1,
τ

ri(S0)

}
= min{1, (n − 1)τ} = (n − 1)τ. (B.5)

Since by our assumption v˜0 = i and i /∈ I(S0), by Observation 4, i /∈ I(S1). For any other uninfected
agent j,

rj(Ŝ0) =
a

(n − 2)a + bi(S0)
=

a
(n − 2)a + (n − 1)τ

.

This together with the fact that aj(Ŝ0) = a implies

(i) if τ =
a

n − 1
then aj(Ŝ0)rj(Ŝ0) =

a
n − 1

= τ, and

(ii) if τ <
a

n − 1
then aj(Ŝ0)rj(Ŝ0) >

a
n − 1

> τ.

Combining the above observations, we may write if τ =
1

n − 1
then agent j will not get infected at

time point 1 and if τ <
a

n − 1
then agent j will get infected at time point 1. Hence, we have

τ =
a

n − 1
=⇒ I(S1) = {1} and τ <

a
n − 1

=⇒ I(S1) = N \ {i}.

To decide the final outcome, we first assume τ =
a

n − 1
. Note that by (B.5), bi(S0) = a. This means

ai(S1) = a. Moreover, as v˜0 = i, we have aj(S1) = a for all j ̸= i. Using similar arguments, we can
show that ak(Sk1) = a for all k ∈ N and I(Sk1) = {1}. By the definition of the process, a1(Ŝk1) = 1
and ak(Ŝk1) = a for all k ̸= 1. Therefore, for any k ̸= 1

ak(Ŝk1)rk(Ŝk1) =
a

(n − 2)a + 1
>

a
(n − 1)

= τ.

Thus, all the agents other than agent 1 will get infected at k1 + 1. Hence, I(S∞) = N.

Now assume τ <
a

n − 1
. We distinguish two subcases.

Case 2.1. v˜1 = i.
We show that the final infected set will be N \ i. Since by our assumption v˜1 = i and i /∈ I(S1), by
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Observation 4, i /∈ I(S2). Hence, I(S2) = N \ {i}. We now show that i will not get infected after this.
At time point 2,

ri(Ŝ2) =
(n − 1)
(n − 1)

= 1.

Therefore, ai(Ŝ2) = τ (see Observation 4). At time point 3, if v˜3 = i, then agent i would not get
infected at time point 4 (Observation 4). On the other hand, if v˜3 ̸= i then as ai(Ŝ3) = ai(Ŝ2) = τ, it
follows that ai(Ŝ3)ri(Ŝ3)⩽ τ. Hence, agent i would remain uninfected at time point 4. Continuing
in this manner, we may show that i will not get infected after this. Thus, I(S∞) = N \ {i}.

Case 2.2.: v˜1 ̸= i
We show that the final infected set will be N. Since I(S1) = N \ {i}, ri(Ŝ1) = 1. Moreover, as
ai(S1) = ai(Ŝ0) = bi(S0) = (n − 1)τ > τ (see B.5) and v˜1 ̸= i, it follows that ai(Ŝ1) > τ. Combining
this two we have ai(Ŝ1)ri(Ŝ1) > τ. Thus, agent i will get infected at time point 2. Hence, I(S2) = N
and I(S∞) = N.
Step 2. First assume τ =

a
n − 1

. Therefore, in view Case 1 and Case 2 of the current proof, we have

I(S∞) = N.
Now assume τ <

a
n − 1

. By Case 1 and Case 2 above, we have

(i) I(S∞) = N \ i with 1 ∈ I(S∞) if |N1(v˜)| ⩾ 1 and there is i ∈ N \ {1} such that ki = 0 and
v˜1 = i, and

(ii) I(S∞) = N if either |N1(v˜)| = 0 or |N1(v˜)|⩾ 1 and there is no i ∈ N \ {1} such that ki = 0
and v˜1 = i.

We calculate the probability of |I(S∞)| = n − 1. By (i) we have

P(v˜ | |N1(v˜)|⩾ 1 and ∃i ̸= 1 such that ki = 0 and v˜1 = i)

=P(v˜ | ∃i ̸= 1 such that ki = 0 and v˜1 = i)

= n−1C1 ×
1
n2

=
n − 1

n2 .

Note that by (i) and (ii),

P(|I(S∞)| = n − 1) + P(I(S∞) = N) = 1.

Therefore,

P(I(S∞) = N) = 1 − P(|I(S∞)| = n − 1)

= 1 − n − 1
n2 .

Since any two subsets of N with the cardinality n − 1 have the same probability, combining all the
above observations, we have the following distribution of the infected set.
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P(I(S∞) = J) =



1
n2 if 1 ∈ J and |J| = n − 1,

1 − n − 1
n2 if |J| = n, i.e., J = N,

0 otherwise.

This completes the proof of the theorem. ■

C. A FEW IMPORTANT LEMMAS

Lemma 9. Let v˜ ∈ N∞ and let S be the DVSP induced by v˜. Suppose t0 is such that I(St0) = I(St) for all
t ⩾ t0 and ak(St0) = 1 for all k ∈ I(St0). Then for i /∈ I(St0) and t̄ > t0 with v˜t̄ = i implies

ai(Ŝt̄)⩾ aj(Ŝt̄) for all j /∈ I(St0) with v˜t = j for some t ∈ (t0, t̄].

Proof: We use induction on t̄ to prove the lemma. Note that for the base case, that is, for t̄ = t0 + 1,
the lemma holds vacuously. Next we introduce an introduction hypothesis.
Induction Hypothesis: Given t̄ ∈ N0 with t̄ > t0 + 1, the lemma holds for all t with t0 + 1 ⩽ t < t̄.

We show that the lemma holds for t̄. Suppose v˜t̄ = i where i /∈ I(St0). If there is no t ∈ (t0, t̄) such
that v˜t /∈ I(St0), the lemma holds vacuously. So, assume that t̂ is the last time point before t̄ such that
v˜t̂ = j for some j /∈ I(St0). This, together with the induction hypothesis, implies aj(Ŝt̂)⩾ ak(Ŝt̂) for all
k /∈ I(S0) with v˜t = k for some t ∈ (t0, t̂). Also, by the definition of the process, al(Ŝt̂) = al(Ŝt̄) for all
l /∈ I(St0) \ i. Therefore, to prove the lemma it is enough to show that ai(Ŝt̄)⩾ aj(Ŝt̄). Additionally,

as aj(Ŝt̄)⩽ 1, we may assume that ai(Ŝt̄) =
τ

ri(Ŝt̄)
. Moreover, as j /∈ I(St0), aj(Ŝt̂)⩽

τ

rj(Ŝt̂)
. Now

τ

rj(Ŝt̂)
=

τ
|I(St0 )|

|I(St0 )|+∑k/∈I(St0
)\j ak(Ŝt̂)

(as gij = c for all i ̸= j)

=
τ[|I(St0)|+ ∑k/∈I(St0 )\j ak(Ŝt̂)]

|I(St0)|
(as I(St0) = I(St̂) and for k ∈ I(St0), ak(St̂) = 1)

=
τ[|I(St0)|+ ∑k/∈I(St0 )\{i,j} ak(Ŝt̂) + ai(Ŝt̂)]

|I(St0)|

⩽
τ[|I(St0)|+ ∑k/∈I(St0 )\{i,j} ak(Ŝt̂) + aj(Ŝt̂)]

|I(St0)|
(as aj(Ŝt̂)⩾ ai(Ŝt̂))

=
τ[|I(St0)|+ ∑k/∈I(St0 )\{i,j} ak(Ŝt̄) + aj(Ŝt̄)]

|I(St0)|
(as ak(Ŝt̂) = ak(Ŝt̄) for all k /∈ I(St0) \ i)

=
τ[|I(St0)|+ ∑k/∈I(St0 )\i ak(Ŝt̄)]

|I(St0)|

=
τ

|I(St0 )|
|I(St0 )|+∑k/∈I(St0

)\i ak(Ŝt̄)

(as I(St0) = I(St̄) and for k ∈ I(St0), ak(St̄) = 1)
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=
τ

ri(Ŝt̄)
(as gij = c for all i ̸= j). (C.1)

(C.1) together with ai(Ŝt̄) =
τ

ri(Ŝt̄)
and aj(Ŝt̂)⩽

τ

rj(Ŝt̂)
implies ai(Ŝt̄)⩾ aj(Ŝt̂). Hence, ai(Ŝt̄)⩾ aj(Ŝt̄).

This completes the proof of the lemma. ■
The following lemma provides an important property of the final action limit for both infected

and uninfected agents. It shows that an infected agent will have the action limit 1 whereas any two
uninfected agents will have the same action limit, that is, for i, j /∈ I(S∞), ai(S∞) = aj(S∞).

Lemma 10. Let v˜ ∈ N∞ and let S be the DVSP induced by v˜. Then, for

[k ∈ I(S∞)] =⇒ [ak(S∞) = 1]

and
[i, j /∈ I(S∞)] =⇒ [ai(S∞) = aj(S∞)].

Proof: Let v˜ ∈ N∞ and let S be the DVSP induced by v˜. Consider k ∈ I(S∞). As v˜ ∈ N∞, agent k
appears infinitely many times in v˜. And, after getting infected whenever they update their action,
they will choose it as 1. Thus, ak(S∞) = 1. Now consider i, j /∈ I(S∞). Let b = ai(S∞) and consider
ϵ > 0. This means there exists t0 such that ai(St)⩾ b − ϵ for all t ⩾ t0. Note that as N is a finite set
and I(S∞) exists, there exists t̃ ∈ N0 such that I(St̃) = I(S∞). In view of this, we may assume that
I(St0) = I(S∞). Consider a time point t̂ such that

(i) t̂ > t0 and v˜t̂ = j and
(ii) there exists t̄ ∈ [to, t̂] such that v˜t̄ = i.

Such a time point t̂ exists as v˜ ∈ N∞. Therefore, by Lemma 9, aj(St̂)⩾ ai(St̂). As t̂ > t0, this means
aj(St̂)⩾ b − ϵ. Further, as I(St0) = I(S∞) and t̂ > t0, by Claim 1 in Lemma 2, aj(St)⩾ aj(St̂) for all
t ⩾ t̂. Thus, aj(St)⩾ b − ϵ for all t ⩾ t̂. Since ϵ is arbitrary, this gives aj(S∞)⩾ b. Similarly, we can
show that ai(S∞)⩾ aj(S∞). Hence, ai(S∞) = aj(S∞). ■

The next lemma determines the common action limit of the uninfected agents.

Lemma 11. Let v˜ ∈ N∞ and let S be the DVSP induced by v˜. Further, let γ be the common action limit of
the uninfected agents. Then,

[(n − 1)τ < |I(S∞)|] =⇒
[

γ =
τ|I(S∞)|

(1 + τ)|I(S∞)| − τ(n − 1)
< 1
]

,

and
[(n − 1)τ ⩾ |I(S∞)|] =⇒ [γ = 1].

Proof: Let t0 ∈ N0 be such that I(St0) = I(S∞) and ak(St0) = 1 for all k ∈ I(St0). First assume that

(n − 1)τ < |I(S∞)|. This implies
τ

|I(S∞)|
<

1
n − 1

. We first show that for any time point t̄ ⩾ t0,

if v˜t̄ /∈ I(S∞) then av˜t̄(Ŝt̄) < 1. Let v˜t̄ = i. Since ai(Ŝt̄) = min{ τ

ri(Ŝt̄)
,1}, it is enough to show that

τ

ri(Ŝt̄)
< 1.

τ

ri(Ŝt̄)
=

τ

|I(Ŝt̄)|

|I(Ŝt̄)|+ ∑
j/∈I(Ŝt̄)∪{i}

aj(Ŝt̄)

 (as gij = c for all i ̸= j)
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=
τ

|I(S∞)|

|I(S∞)|+ ∑
j/∈I(S∞)∪{i}

aj(Ŝt̄)

 (as I(St0) = I(S∞) and t̄ ⩾ t0)

<
1

n − 1

|I(S∞)|+ ∑
j/∈I(S∞)∪{i}

aj(Ŝt̄)

 (as
τ

|I(S∞)|
<

1
n − 1

)

≤ 1 (as aj(Ŝt̄)⩽ 1. for all j /∈ I(S∞ ∪ {i}).

Since t̄ is arbitrary, it follows that ai(Ŝt) =
τ

ri(Ŝt)
for all t ⩾ t0 with v˜t = i. Hence,

ai(Ŝt) =
τ

ri(Ŝt)

=
τ

|I(Ŝt)|

|I(Ŝt)|+ ∑
j/∈I(Ŝt)∪{i}

aj(Ŝt)

 (as gij = c for all i ̸= j)

=
τ

|I(S∞)|

|I(S∞)|+ ∑
j/∈I(S∞)∪{i}

aj(Ŝt)

 . (C.2)

Taking limit on both the sides of C.2, we have

γ =
τ

|I(S∞)|

|I(S∞)|+ ∑
j/∈I(S∞)∪{i}

γ


=⇒ γ =

τ|I(S∞)|
(1 + τ)|I(S∞)| − τ(n − 1)

=⇒ γ <
τ|I(S∞)|

(1 + τ)|I(S∞)| − |I(S∞)|
= 1.

Now assume (n − 1)τ ⩾ |I(S∞)|. We have to show that γ = 1. Assume γ < 1. Consider i /∈ I(S∞).
Since by Claim 1 in Lemma 2, ai(St) is an increasing sequence for t > t0, γ < 1 implies ai(St) < 1

for all t > t0. This means ai(Ŝt) =
τ

ri(Ŝt)
for t > t0 with v˜t = i. Therefore, using similar arguments

as before we have

γ =
τ|I(S∞)|

(1 + τ)|I(S∞)| − τ(n − 1)

=⇒ γ ⩾
τ|I(S∞)|

(1 + τ)|I(S∞)| − |I(S∞)|
= 1.

But this is a contradiction to γ < 1. Therefore, γ = 1. ■
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D. PROOF OF THEOREM 4, THEOREM 6, THEOREM 8, AND THEOREM 10

D.1 PROOF OF THEOREM 4

Proof: We first explore the limiting actions for a fixed agent sequence, and then we use this to find
the limiting probability distribution. Let v˜ be an agent sequence and S be the DVSP induced by
v˜. Note that by Remark 1, it is enough to assume v˜ ∈ N∞. Therefore, by Lemma 10, all the agents
outside I(S∞) have the same action limit, and all the agents in I(S∞) have the action limit 1. Let

us denote the common limit by γ. First assume τ ⩾
1

n − 1
. By Theorem 3, I(S∞) = {1}. Therefore,

(n − 1)τ ⩾ |I(S∞)|, and hence, by Lemma 11, γ = 1. Thus, aN(S∞) = ˜
1.

Now assume that τ <
1

n − 1
. We distinguish two cases based on the value of N1(v˜) (as in the

proof of Theorem 3) to find γ.
Case 1: |N1(v˜)| = 0.
Recall that for this case the final infected set is N. Hence, aN(S∞) = ˜

1.
Case 2: |N1(v˜)|⩾ 1.
Recall that for this case, the final infected set has cardinality either n or n − 1. If cardinality is n
then aN(S∞) = ˜

1. If cardinality is n − 1, then as (n − 1)τ < 1, by Lemma 11, γ = τ. Hence,

ai(S∞) =

{
1 if i ∈ I(S∞),
τ if i /∈ I(S∞).

Note that this implies aN(S∞) ∈ An−1. Also, as P is uniform, any two vectors in An−1 have the
same probability. Thus, by Theorem 3, we have the following distribution

P(aN(S∞) =
˜
x) =



1 − n − 1
n2 if

˜
x ∈ An, i.e.,

˜
x =

˜
1,

1
n2 if

˜
x ∈ An−1,

0 otherwise.

■

D.2 PROOF OF THEOREM 6

Proof: We first explore the limiting actions for a fixed agent sequence, and then we use this to find
the limiting probability distribution. Let v˜ be an agent sequence and S be the DVSP induced by
v˜. Note that by Remark 1, it is enough to assume v˜ ∈ N∞. Therefore, by Lemma 10, all the agents
outside I(S∞) have the same action limit, and all the agents in I(S∞) have the action limit 1. Let us
denote the common limit by γ. We distinguish two cases based on the value of N1(v˜) (as in the
proof of Theorem 5) to find γ.
Case 1: |N1(v˜)|⩾ α̂.
Recall that for this case the final infected set is {1}. Moreover, by the assumption of the theorem,
(n − 1)τ ⩾ 1. Therefore, by Lemma 6, γ = 1. Hence, aN(S∞) = ˜

1.
Case 2: |N1(v˜)|⩽ α̂ − 1.
Recall that for this case, the final infected set is N1(v˜) ∪ {1}. Note that as α̂ ⩽ n − 1, N1(v˜) ∪ {1}⩽
n − 1. Therefore, by Lemma 6, if (n − 1)τ ⩾ |N1(v˜)| + 1 then aN(S∞) = ˜

1, and if (n − 1)τ <
|N1(v˜)|+ 1 then
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ai(S∞) =


1 if i ∈ I(S∞),

τ(|N1(v˜)|+ 1)
(1 + τ)(|N1(v˜)|+ 1)− τ(n − 1)

if i /∈ I(S∞).

Recall that β̂ =min{⌊(n− 1)τ⌋+ 1, α̂+ 1}. Thus, combining Cases 1 and 2, we have the following:

(i) |N1(v˜)|+ 1 ∈ [β̂, α̂] implies

ai(S∞) =


1 if i ∈ I(S∞),

τ(|N1(v˜)|+ 1)
(1 + τ)(|N1(v˜)|+ 1)− τ(n − 1)

if i /∈ I(S∞).

Note that (i) implies aN(S∞) ∈ A[|N1(v˜)|+1] when |N1(v˜)|+ 1 ∈ [β̂, α̂]. Also, as P is uniform, any two

vectors in Am, for m ∈ [β̂, α̂], have the same probability. Thus, we have the following distribution

P(aN(S∞) =
˜
x) =



1 − α̂ − β̂ + 1
n

if
˜
x ∈ An, i.e.,

˜
x =

˜
1,

1
n × n−1Cm−1

if
˜
x ∈ Am for some m ∈ [β̂, α̂],

0 otherwise.

■

D.3 PROOF OF THEOREM 8

Proof: We first explore the limiting actions for a fixed agent sequence, and then we use this to find
the limiting probability distribution. Let v˜ be an agent sequence and S be the DVSP induced by
v˜. Note that by Remark 1, it is enough to assume v˜ ∈ N∞. Therefore, by Lemma 10, all the agents
outside I(S∞) have the same action limit, and all the agents in I(S∞) have the action limit 1. Let
us denote the common limit by γ. First assume α̃ + 1 < ᾱ. As shown in the proof of Theorem
7, the infected set is either {1} or |N1(v˜)|+ 1 where N1(v˜) ∈ [1, α̃]. Since by the assumption of
the theorem, (n − 1)τ ⩾ 1, we have (n − 1)τ ⩾ I(S∞) when the infected set is {1}. Therefore, by
Lemma 11, γ = 1 and hence, aN(S∞) = ˜

1. On the other hand, if the final infected set is N1(v˜) ∪ {1},
the limiting action depends on |N1(v˜)|. By Lemma 6, if (n − 1)τ ⩾ |N1(v˜)|+ 1 then aN(S∞) = ˜

1,
and if (n − 1)τ < |N1(v˜)|+ 1 then

ai(S∞) =


1 if i ∈ I(S∞),

τ(|N1(v˜)|+ 1)
(1 + τ)(|N1(v˜)|+ 1)− τ(n − 1)

if i /∈ I(S∞).

Recall that the following was shown in the proof of Theorem 7 when α̃ + 1 ⩽ ᾱ:

• |I(S∞)| = 1 if |N1(v˜)| ∈ {0, α̃, α̃ + 1, . . . ,n − 1} and
• |I(S∞)| = |N1(v˜)|+ 1 if |N1(v˜)| ∈ {1,2, . . . , α̃ − 1}.

Recall that β̃ = min{⌊(n − 1)τ⌋+ 1, α̃ + 1}. Therefore, we have the following:



GAME THEORETIC EPIDEMIC MODEL 59

(i) |N1(v˜)|+ 1 ∈ [β̃, α̃] implies

ai(S∞) =


1 if i ∈ I(S∞),

τ(|N1(v˜)|+ 1)
(1 + τ)(|N1(v˜)|+ 1)− τ(n − 1)

if i /∈ I(S∞).

(ii) |N1(v˜)|+ 1 ∈ [1, β̃ − 1] ∪ [α̃ + 1,n] implies aN(S∞) = ˜
1.

Note that (i) implies aN(S∞) ∈ A[|N1(v˜)|+1] when |N1(v˜)| + 1 ∈ [β̃, α̃]. Also, as P is uniform,

any two vectors in Am, for m ∈ [β̃, α̃], have the same probability. Thus, we have the following
distribution

P(aN(S∞) =
˜
x) =



1 − α̃ − β̃ + 1
n

if
˜
x ∈ An, i.e.,

˜
x =

˜
1,

1
n × n−1Cm−1

if
˜
x ∈ Am for some m ∈ [β̄, ᾱ],

0 otherwise.

Now assume 2 ⩽ ᾱ < α̃ + 1. Recall that the following was shown in the proof of Theorem 7 when
2 ⩽ ᾱ < α̃ + 1:

(i) |I(S∞)| = 1 if |N1(v˜)| ∈ {0, α̃, α̃ + 1, . . . ,n − 1},
(ii) |I(S∞)| = |N1(v˜)|+ 1 if |N1(v˜)| ∈ {1,2, . . . , ᾱ − 2},

(iii) |I(S∞)| = n if |N1(v˜)| ∈ {ᾱ − 1, . . . , α̃ − 1} and there is no i ∈ N such that ki = k1 + 1 and
v˜k1+2 = i, and

(iv) |I(S∞)| = n − 1 if |N1(v˜)| ∈ {ᾱ − 1, . . . , α̃ − 1} and there is i ∈ N such that ki = k1 + 1 and
v˜k1+2 = i.

By the assumption of the theorem, (n − 1)τ ⩾ 1 and τ < 1. Thus, if |I(S∞)|= 1 we have (n − 1)τ ⩾
|I(S∞)|, and if |I(S∞)|= (n− 1) we have (n− 1)τ < |I(S∞)|. Recall that β̄ =min{⌊(n− 1)τ⌋+ 1, ᾱ}.
Combining all these observations, we may write the following

(i) |I(S∞)| ∈ [β̄, ᾱ − 1] ∪ {n − 1} implies

ai(S∞) =

1 if i ∈ I(S∞),
τ(|I(S∞)|)

(1 + τ)(|I(S∞)|)− τ(n − 1)
if i /∈ I(S∞).

(ii) |I(S∞)| ∈ [1, β̄ − 1] ∪ {n} implies aN(S∞) = ˜
1.

Note that (i) implies aN(S∞) ∈ A(|I(S∞)|) when |I(S∞)| ∈ [β̄, ᾱ − 1] ∪ {n − 1}. Also, as P is uniform,
any two vectors in Am, for m ∈ [β̄, ᾱ − 1] ∪ {n − 1}, have the same probability. Therefore, using
Theorem 7, we have the following distribution
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P(aN(S∞) =
˜
x) =



1 +
β̄ − ᾱ

n
− η(α̃, ᾱ,n) if

˜
x ∈ An, i.e.,

˜
x =

˜
1,

1
n × n−1Cm−1

if
˜
x ∈ Am for some m ∈ [β̄, ᾱ − 1],

η(α̃, ᾱ,n)
n − 1

if
˜
x ∈ An−1,

0 otherwise.
■

D.4 PROOF OF THEOREM 10

Proof: We first explore the limiting actions for a fixed agent sequence, and then we use this to find
the limiting probability distribution. Let v˜ be an agent sequence and S be the DVSP induced by
v˜. Note that by Remark 1, it is enough to assume v˜ ∈ N∞. Therefore, by Lemma 10, all the agents
outside I(S∞) have the same action limit, and all the agents in I(S∞) have the action limit 1. Let us

denote the common limit by γ. First assume τ =
a

n − 1
. By Theorem 9, I(S∞) = N. Therefore, by

Lemma 10, aN(S∞) = ˜
1.

Now assume that τ <
a

n − 1
. We distinguish two cases based on the value of N1(v˜) (as in the

proof of Theorem 9) to find γ.
Case 1: |N1(v˜)| = 0.
Recall that for this case the final infected set is N. Hence, aN(S∞) = ˜

1.
Case 2: |N1(v˜)|⩾ 1.
Recall that for this case, the final infected set has cardinality either n or n − 1. If cardinality is n
then aN(S∞) = ˜

1. If cardinality is n − 1, then as (n − 1)τ < 1, by Lemma C.2, γ = τ. Hence,

ai(S∞) =

{
1 if i ∈ I(S∞),
τ if i /∈ I(S∞).

Note that this implies aN(S∞) ∈ An−1. Also, as P is uniform, any two vectors in An−1 have the
same probability. Thus, by Theorem 9, we have the following distribution

P(aN(S∞) =
˜
x) =



1 − n − 1
n2 if

˜
x ∈ An, i.e.,

˜
x ∈ An, i.e.,

˜
x =

˜
1,

1
n2 if

˜
x ∈ An−1,

0 otherwise.

■
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