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Abstract

We investigate the ability of textual analysis-based metrics of physical or transition risks associated with
climate change in forecasting the daily volume of trade contracts of gold. Given the count-valued nature of
gold volume data, our econometric framework is a log-linear Poisson integer-valued generalized autoregressive
conditional heteroskedasticity (INGARCH) model with a particular climate change-related covariate. We
detect forecastability of gold volume at 5- and 22-day-ahead horizons, and that too from physical risks.
Given the underlying positively evolving impact of such risks on the trading volume of gold, as derived
from a full-sample analysis using a time-varying INGARCH model, we can say that gold acts as a hedge
against physical risks at medium- and long-horizons. Such a characteristic is also detected for platinum, and
to a lesser extent for palladium, but not silver. Our results have important investment implications. JEL
Classification: C22; C53; Q02; Q54.
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1. Introduction

Climate change is associated with two types of risks namely, physical and transition. The former involves
risks due to rising temperatures, higher sea levels, more destructive storms, and floods or wildfires. The
latter is associated with gradual switchover to a low-carbon economy, and include risks due to climate policy
changes, emergence of competitive green technologies, and shifts in consumer preferences. Naturally, though
the level and form of the underlying uncertainty may vary, every scenario in the future includes climate-
related financial risks. Hence, climate-related risks have been shown to adversely affect a large number of
asset classes including, equities, fixed-income securities, real estate, and even financial institutions (Battiston
et al., 2021; Giglio et al., 2021). In the process, climate risks tend to raise the stress of the entire financial
system (Flori et al., 2021).

Due to heightened distress in the financial system arising out of climate risks, gold, which is historically a
well-established “safe haven” (Boubaker et al. (2020), Bouri et al. (2022)), becomes highly important. This
is because gold serves as an investment vehicle which offers portfolio-diversification and/or hedging benefits
during periods of financial turmoil, originating from climate-related events. In such instances of “bad news”,
due to the information-seeking actions of traders, it is expected that gold returns and its volatility should
increase due to higher trading volumes, capturing information flows, emanating from its higher demand
(Wang and Yau, 2000; Lucey and Batten, 2010; Baur, 2012). Evidence of a positive relationship between
gold returns and its volatility with climate risks have been recently provided by {cCepni et al. (2022) and
Gupta and Pierdzioch (2022) respectively.

In light of the underlying intuition that climate risks can be associated with higher returns and volatility
of gold prices due to increased trading volumes, we aim to analyze the direct effect of climate risks on
volume of traded contracts of gold. In this regard, instead of an in-sample predictability analysis, we resort
to an out-of-sample forecasting exercise over the daily period of 3rd January, 2005 to 29th October, 2021.
The latter is important for two reasons: Statistically, forecasting is considered to be a more robust test of
predictability in terms of both models and the predictors (Campbell, 2008). Secondly, accurate real time
forecasting of volumes (based on information content of climate risks), which is known to lead returns and
volatility, should be of much more value to traders and investors in the gold market, relative to in-sample
evidence, in the timely pricing of related derivative securities and for devising portfolio-allocation strategies.

Realizing the count-valued nature of the time series data on the trading volume of gold, our econometric
framework is a log-linear Poisson integer-valued generalized autoregressive conditional heteroskedasticity
(INGARCH) model with predictors, which in turn are textual analysis-based metrics of physical or transition
risks associated with climate. While the focus is on gold, given that recent studies have also depicted the
possible safe haven characteristic for palladium, platinum, and silver (Lucey and Li, 2015; Salisu et al.,
forthcoming), we also consider the role of climate risks as predictors of the trading volumes of these three
additional precious metals as well, over the same period as gold. To the best of our knowledge, this is the
first paper to use count data based models to forecast daily volumes of precious metals by relying on the
information contained in physical and/or transition climate risks to provide a direct test of the safe haven
charateristic of this important asset-class. The remainder of the paper is organized as follows: Section 2
presents the methodology, while Section 3 discusses the data, and Section 4 is devoted to the empirical
findings. Finally, Section 5 concludes the paper.

2. Methodology

Consider the following autoregressive model for count time-series, inspired from the GARCH model of
Bollerslev (1986), which in turn is called an INGARCH model, and has become a state-of-the-art framework
(Davis et al., 2021) for analyzing count data:

yt|yt−1, yt−2, · · · ∼ Poi(λt) (2.1)

λt = α0 + α1yt−1 + β1λt−1
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However the parameter space for these models is restricted due to positivity, and this gives rise to the
following log-linear INGARCH model, making the parameter space reltively more unrestricted:

yt|yt−1, yt−2, · · · ∼ Poi(λt) (2.2)

λt = α0 + α1yt−1 + β1λt−1

Bringing in covariates or predictors, we obtain the following log-linear Poisson INGARCH(1,1) model:

yt|yt−1, yt−2, · · · ∼ Poi(λt) (2.3)

log(λt) = α0 + α1 log(1 + yt−1) + β1 log(λt−1) + ηTXt

where Xt is the matrix of covariates. To ensure stationarity it is necessary to assume that: 0 < α1+β1 <
1.

We use the prediction routine in the tscount package in R (Liboschik et al. (2017)) to produce forecasts.
Briefly put, this method chooses a roll-over forecasting scheme. To predict yn+1 based on y1, · · · yn, just
the simple conditional expectation is used, and for yn+2 one uses the same conditional expectation, but this
time replacing the unknown yn+1 by ŷn+1 based on the previous computation.

We judge the quality of future h−step aggregated forecast, i.e. yn+1 + · · ·+ yn+h for different values of
h through a pseudo-out-of-sample evaluation metric. More specifically, we follow the following steps:

• Predict FWCi,h = ŷi+m + · · ·+ ŷi+m+h−1 using the log-linear INGARCH tsglm predict routine with
covariate(s) based on pairs (yj , Xj) j = i, · · · , i+m− 1;

• FWOCi,h = ŷi+m + · · · + ŷi+m+h−1 using the log-linear INGARCH tsglm predict routine without
covariates based on pairs (yj) j = i, · · · , i+m− 1;

• Next we compare the two forecasted series FWC{},h and FWOC{},h by the means of Clark and West
(CW; 2007) test.

3. Data

Our climate risks data are sourced from Bua et al. (2022) and consist of a daily Physical Risk Index
(PRI) and Transition Risk Index (TRI). These two novel climate risk indicators are the result of a text-
based approach which combines the term frequency-inverse document frequency and the cosine-similarity
techniques expanding on the work of Engle et al. (2020). Specifically, the authors first group various scientific
texts on climate change by topic, either involving physical or transition risk, to obtain two documents that,
if digested, provide a comprehensive understanding of the physical and transition climate risks. The authors
then use these climate risks-related documents to feed their text-based algorithms, and search the same
structured information within a corpus of (European) news sourced by Reuters News. As output, they
obtain two distinct time series, so-called “concerns”, roughly representing the news media attention towards
physical and transition risks, which we indicate as: CONCERNPR and CONCERNTR respectively. As a
final step, the authors model the climate risks series, PRI and TRI, as autoregressive order one (AR(1))
residuals of the concerns series in order to capture shocks and innovations in physical and transition risks.

We use these measures of climate risks because the proposed measures, which originated from advanced
climate vocabularies, exhibit several advantages with respect to previous studies. They, for instance, embed
multiple dimensions of the risks without discarding relevant aspects resulting in complete climate risks
indicators, which can enhance studies on the financial implications of climate risks. The PRI includes both
acute and chronic physical risks like floods, extreme weather events, permafrost thawing, and sea level
rise, as well as issues about climate adaptation actions, and other physical risk-averse effects like the loss in
biodiversity. The TRI, on the other hand, includes news on regulations and measures to curb greenhouse gas
(GHG) emissions, news concerning the costs associated with the transition to a greener economy, and news

2



discussing the advances of technological innovation and renewable energies to reach, for example, net-zero
emissions targets. Bua et al. (2022) also perform commonality tests to assess the actual degree of overlap
of the two indicators and conclude that both PRI and TRI carry relevant individual information.

We collect daily data on the volume of traded contracts of the top four precious metals: gold, palladium,
platinum and silver, with the series downloaded from Bloomberg. Our analysis covers the period of 3rd
January, 2005 to 29th October, 2021, i.e., 4245 observations. Note that, the start and end dates of our
samples are driven purely by the availability of data on the climate risks predictors. All the variables of
interest have been plotted in Figure 1.

Figure 1: Data plot
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4. Empirical results

4.1. Preliminary analysis of the relationship between trading volumes and climate risks

Before we proceed to the formal forecasting exercise, we wanted to check if indeed climate risks positively
impact the trading volume of gold, as is expected in light of gold’s ability to hedge climate risks being a
safe haven. For this purpose, we utilize a time-varying analogue of Eq. (2.3).5 As can be seen from Panel
A of Figure 2, whereby we report the time-varying t-statistic involving the effect of CONCERNPR and
CONCERNTR on the trading volume of gold, the effect is generally positive in a statistically significant
manner under physical risks, i.e., CONCPR, while this is not necessarily the case under CONCTR capturing
transition risks of climate.6 Qualitatively similar observations were also drawn for palladium and platinum
in particular, and to a lesser degree for silver, as shown in Panels B, C and D respectively of Figure 2. This
finding is expected to a certain degree, given the underlying nature of these two risks, with the effects of
physical risks likely to be felt immediately on the stress of the financial system. In light of this evidence
related to the sign of the effect of climate risks, we would want to put relatively more reliance on the
forecasting accuracy of gold volumes emanating from physical rather than transition risks in the process of
validating the safe haven nature of gold (and palladium and platinum).

4.2. Climate risks and forecasting results of trading volumes of precious metals

In Table 1, we present the p-values of the CW test, derived based on a rolling-window estimation of m
= 500, i.e., approximately two years of data points, which in turn ensures that the out-of-sample basically
starts from the tumultous period associated with the beginning of the global financial crisis. The forecasts
were conducted for three horizons of h = 1, 5 and 22, corresponding to a one-day-, one-week-, and one-
month-ahead. We find that CONCERNPR produces statistically superior forecasting gains relative to the
benchmark model at h = 5 and 22 for trading volume of gold, which in turn are also reflected in the PRI for
these corresponding forecasting horizons. TRI is also found to produce statistical forecasting gains for gold
trading volumes at h = 5, but the corresponding PRI produces a much lower p-value, which is indicative of
a stronger predictive ability of the same. In sum, while we do not find evidence of forecastability of gold
volume a-day-ahead, we do so at a week- and month-ahead, and that too from the physical risks component
of climate change. Given the positive time-varying impact of such risks on the trading volume of gold (as
shown in Figure 2), we can say that gold acts as a hedge against physical risks at medium- and long-horizons.

Turning now to the other three precious metals, we find that statistically superior forecasting gains for
palladium emanating from both physical and transion risks are obtained at h = 1, while this holds for both
h = 5 and h = 22 for platinum. As far as silver is concerned, accurate forecasting is derived from the climate
risks-related metrics for all the three horizons, with stronger effect obtained under transition risks compared
to physical ones, especially when one compares the p- values associated with TRI and PRI. In light of the
underlying time-varying relationship between the trading volumes of palladium, platinum and silver with
climate risks, we tend to conclude that while the former two, especially platinum, can hedge climate risks,
silver, with its volume being negatively impacted, is not necessarily well-suited to play the role of a safe
haven relative to physical and transition risks.7

5The time-varying log-linear Poisson INGARCH(1,1) model can be described as: yt|yt−1, yt−2, · · · ∼ Poi(λt), with

log(λt) = α0(t/n) + α1(t/n) log(1 + yt−1) + β1(t/n) log(λt−1) + η(t/n)TXt. For the estimation of the parameter functions
(α0(·), α1(·), β1(·), η), we employ a kernel-based technique padded on quasi-maximum likelihood estimation as in Karmakar et
al. (2022). In this regard, we use the rectangular kernel K(x) = I(−1 ≤ x ≤ 1) and bandwidth bn = m/n to remain consistent
with our forecasting set-up, which in turn assumes stationarity of the last m observations.

6Using PRI and TRIs instead of CONCERNPR and CONCERNTR, yielded, not surprisingly, similar observations, with the
results available upon request from the authors.

7As part of an additional analysis, we collected 5-minute interval intraday price data of these four precious metals from
Bloomberg, and computed daily counts of positive and negative log-returns. The idea in this instance is that, if gold and the
other three metals are indeed safe haven, then climate risks should be able to predict relatively more accurately the positive
rather than the negative counts, as an indication of being a hedge against such risks. For this exercise, we consider the period
of 1st May, 2018 to 29th October, 2021, with the start date concentrated around the peak date (19th September, 2018) of the
physical risk metrics, with which gold trading volumes was shown to be, in general, positively related. As shown in Table A1
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Figure 2: Time-varying effect of climate risks on the volume of contracts traded for the precious metals
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Table 1: CW p-values for forecasts of trading volumes of precious metals based on metrics of climate risks

Gold Palladium Platinum Silver
h = 1 CONCERNPR 0.1516 0.0338 0.5155 0.0185

CONCERNTR 0.7873 0.0080 0.9380 0.5576
PRI 0.3311 0.0115 0.4822 0.0054
TRI 0.3779 0.0977 0.5424 0.0860

h = 5 CONCERNPR 0.0036 0.8603 0.0985 0.6815
CONCERNTR 0.3347 0.2218 0.5316 0.3738
PRI 0.0037 0.5924 0.0024 0.0078
TRI 0.0338 0.1357 0.0373 0.0000

h = 22 CONCERNPR 0.0071 0.8689 0.0139 0.5256
CONCERNTR 0.8585 0.8147 0.3902 0.1232
PRI 0.0146 0.5540 0.0037 0.0062
TRI 0.5376 0.6736 0.2331 0.0001

5. Conclusion

In this paper we forecast the daily volume of trade contracts of gold based on the information contained
in textual analysis-based metrics of physical or transition risks associated with climate change. In light
of the count-valued nature of the time series data of gold volume, we utilize a log-linear Poisson integer-
valued generalized autoregressive conditional heteroskedasticity (INGARCH) model involving a specific-type
of climate change-related predictor. Based on daily data covering the period of 3rd January, 2005 to 29th
October, 2021, emanating due to physical risks, we detect statistically superior forecasting gains for gold
volume at week- and month-ahead horizons, but not for one-day-ahead. Given the underlying positively
evolving impact of such risks on the trading volume of gold, obtained from a full-sample analysis using
a time-varying INGARCH model, we conclude that gold acts as a hedge against physical risks of climate
change at medium- and long-horizons. Such an observation could also be made detected for platinum, and
to a lesser extent for palladium, but not silver. With trading volume of known to lead gold returns and
volatility, our results have important investment implications in terms of design of optimal portfolios. In
particular, we find that gold can be included in a portfolio to hedge against the physical aspect of climate
risks that is known to negatively impact the risk financial assets.

A similar future analysis could be devoted to the forecasting of trading volume of “green” and “environ-
mental, social, and governance (ESG)” assets.
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Appendix

Table 2: CW p-values for forecasts of count of negative and positive log-returns of precious metals based on metrics of climate
risks. Palla, Plati and Silv stand for Palladium, Platinum and Silver respectively

Gold(−) Gold(+) Palla(−) Palla(+) Plati(−) Plati(+) Silv(−) Silv(+)
h =1 CONCERNPR 0.5133 0.1752 0.4537 0.3530 0.2563 0.3806 0.5666 0.1382

CONCERNTR 0.5863 0.0974 0.0005 0.2325 0.3271 0.2477 0.1800 0.4095
PRI 0.5582 0.3376 0.0911 0.1454 0.5451 0.1769 0.4141 0.0584
TRI 0.2448 0.0101 0.0000 0.0001 0.0979 0.0295 0.0055 0.0599

h = 5 CONCERNPR 0.8809 0.0614 0.6413 0.1020 0.8995 0.0616 0.6656 0.0231
CONCERNTR 0.8519 0.1150 0.6939 0.0674 0.5921 0.4680 0.9058 0.2494
PRI 0.4390 0.1400 0.4699 0.0724 0.8710 0.0501 0.3262 0.0173
TRI 0.6106 0.0978 0.1539 0.0061 0.4548 0.2239 0.7337 0.1364

h = 22 CONCERNPR 0.9741 0.4987 0.3309 0.6267 0.7895 0.5719 0.9915 0.1660
CONCERNTR 0.8692 0.5397 0.8881 0.1097 0.7086 0.8413 0.9736 0.6213
PRI 0.8479 0.8827 0.8744 0.7016 0.9113 0.6123 0.8696 0.1650
TRI 0.8745 0.7585 0.8180 0.0985 0.6247 0.9366 0.9059 0.5890

Note: − or + corresponding to the name of a precious metal indicates the case of negative or positive count of log-returns.

8


	Introduction
	Methodology
	Data
	Empirical results
	Preliminary analysis of the relationship between trading volumes and climate risks
	Climate risks and forecasting results of trading volumes of precious metals

	Conclusion

