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Abstract

In this paper, we investigate the problem of detecting synchronization of a single

change-point across components of a multivariate time series. The identification of syn-

chronized change-points can often lead to finding a unanimous reason behind such changes

whereas rejection might consequently prompt further analysis. Our proposed test statistic

is simple to perceive, but its null distribution can be highly nontrivial to explicitly charac-

terize. To overcome this, we employ a Gaussian approximation result, assisted by a clever

and agnostic (to the existence of change-point) estimation of covariance matrix. Extensive

simulations are provided to corroborate our theoretical results. We also provide two in-

teresting real-world applications and discuss the implications of our findings based on the

statistical tests.
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1 Introduction

Consider a multiple series Xi = (Xi,1, . . . , Xi,d)
T ∈ Rd with the mean-noise structure as

Xi = µi + ei = (µi,1, . . . , µi,d)
T + ei, i = 1, . . . , n, (1.1)

where ei ∈ Rd is a stationary time series. Throughout this paper, we assume E[ei] = 0. For each

1 ≤ j ≤ d, denote the j-th component of the time series, (X1,j, . . . , Xn,j)
T , as X ·j. Additionally,

we assume for each stream/co-ordinate series j, there is at most one change-point. If X ·j has a

change-point, namely,

µij =


µLj , if i/n ≤ τj,

µRj , if i/n > τj

, 1 ≤ i ≤ n, (1.2)

where τj ∈ (0, 1) is the (re-scaled) change-point, then the jump size δj at the point τj is defined

as δj = µRj − µLj . For notational convenience, if the X ·j has no such change-point, we set δj = 0.

Our focus in this paper lies in testing ‘synchronization hypothesis’, described as follows

H0 : τ1 = . . . = τd. (1.3)

Note that, if δj = 0, then τj is not well-defined. Assume k > 0 out of d coordinate-series

have true change-point at indices r1, . . . , rk. If the true change-locations are ‘synchronized’ i.e.

τr1 = . . . = τrk = l ∈ (0, 1) (say), then we set the convention that H0 in (1.3) is true, as one could

vacuously think τj = l, for any j /∈ {r1, . . . , rk} with corresponding δj = 0.

In defense of starting with a rather simple and yet interpretable model in (1.1), our aim in

this paper is to cover a large class of possibly non-linear, stationary multiple time series (ei),

so as to enlarge scope of applying it in large number of scenarios. Note, when ei are i.i.d.

normal variables, this is referred as the popular Gaussian sequence model. Our goal is to keep
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the simple model structure, and generalize substantially from the independence assumption of

ei. Technically speaking, even though we assume stationarity for ei, the mean-noise structure

imposed in (1.1) and the possibly piece-wise nature of the vectors µ’s, make the observed Xi

process non-stationary. Moreover, such non-stationarity is interesting, as it depends on whether

an individual component series has a change-point or not. Some components might not have

any change-point at all, while the ones that have one, are not guaranteed to have them all

synchronized. This translates to the following dynamics; before any change-point occurs at any

of the series, the multivariate series (Xi) is stationary. However, unless all the series have a

change-point which is exactly synchronized on their positions, post the first change-point at

any series, the multivariate process becomes non-stationary. If one looks at every component

individually, they are either completely stationary, or they are piece-wise stationary, depending

on whether there is no change-point or there is one true break, respectively. Holistically speaking,

we cover an interesting class of non-stationary multivariate series, which one could not simply

classify as a piece-wise stationary process. Change-point analysis for multiple time series is not

a new topic. However, as outlined below, almost all of the research works in this direction make

the simplifying assumption of a synchronized change-point, which makes the models piece-wise

stationary. Our paper, to the best of our knowledge, is a first in proposing a statistical test to

validate such an assumption of synchronization.

Change-point testing and detection for time series data has a widespread literature spanning

over several decades. Early work on change-points started with [86, 87], and then numerous

seminal papers [34, 50, 51, 35, 106, 120, 70] etc. discussed the problem of detecting structural

breaks in different settings, such as mean-shift or two-stage regression. A great overview of the

early progression of this literature can be found in [17]. As [6] points out through multiple

references, typically the literature first considers independent settings, for example [53] etc., and

then more complex dependent settings are considered in [1, 13, 18, 119, 99] etc. The literature

for change-point detection and inference for panel data or multivariate time series, albeit much
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smaller, also has a long history by now.

The early work in this particular research area dates back to [59, 60], in which they discuss a

random break model with the breakpoints having an independent and identical distribution in a

Bayesian framework. Later this was extended to autoregressive models in [61]. While they allow

for different breaks in different series and put a distribution around it to describe its randomness,

their models only allow for stationarity across components, which might be too restrictive for

panel data as [11] points out succinctly. In terms of notation, all these works assume that in (1.1),

X ·j is independent ofX ·k for j 6= k. On the other hand, the assumption of common breaks across

different components was slowly becoming popular around this time. [12] proposes construction

of confidence interval for this shared change-point, while allowing for only a subset of co-ordinates

to have a proper change. [53] tests for existence of such a shared change-point. Interested readers

might take a look at [54] and [4] for developments on this topic. A similar test for existence of

change-points was developed in [125] based on scan and segmentation algorithms, and in [52] using

adaptation of the CUSUM method to panel data. [11] constructs limiting distribution for such a

shared change-point in mean and variance for linear time series. [38] discusses hypothesis testing

about the magnitude of change in mean for multivariate data in the non-vanishing difference

regime. [65, 14, 118] investigated estimation of the change point in panel data, wherein the

cross-sectional dependence is modeled by a common factor model, which effectively makes the

cross-sectional dependence low-dimensional. [73] also discusses a problem of similar flavor; they

estimate the common breaks, but allow for unobservable fixed effect. [118] provides a consistent

estimation technique for an unknown shared change-point in mean. Inference on common change-

point for panel data with independence and cross-sectional dependence are discussed at [21] and

[22] respectively. Except for the Bayesian treatments at [59, 60, 61] and a very recent Bayesian

work [116], we believe that the vast literature of multivariate time series very rarely allowed

change-points to be asynchronized across the components and a solid theoretical framework is

due to test such a common assumption is probably due. As mentioned above, this assumption of
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common change-point induces piece-wise stationarity for regimes without any change-point, and

thus it becomes easier to use tools developed for stationary multivariate series even in settings

where there is significant spatial or contemporaneous correlations. But unfortunately, such an

assumption could turn out quite restrictive, as it is not very rare that abrupt changes occur at

different times, at different components or spatial locations of interest.

We now move on to discuss a few real-data scenarios, where the assumption of synchronization

can be questionable and performing inference falsely assuming synchronization could be mislead-

ing. The examples are widespread across different scientific fields and research areas. We start by

a very simplified scenario of a potentially asynchronous break-point along the line of model (1.1)

in the field of neuroscience. Consider multiple time series emanating from seemingly neighboring

voxels in an neuroimage data. Scientifically, it is important to understand whether these series

act in a synchronous fashion or not when certain intervention such as medication or some external

activities are introduced. An application of similar flavor can be found in the research area of

Human Activity Recognition (HAR). For example, [64, 3] analyze 561 such time series obtained

from different health tracker from smartphones. The change-points or the interventions are intro-

duced when an individual changes their activity. In the world of climate data, such asynchronous

behavior is not uncommon. Change-point analysis for hurricane or other adversarial climate

event is not new. Alongside a good review of this topic, [40] discusses a rate shift in hurricane

incidence and how these are different for overall US and the southern part of Florida. To perceive

why synchronization could be questionable, one can consider a pathway of a hurricane. The re-

lated climate variables will show some form of short-term abrupt change; however these changes

should pop up not together at all locations, depending on when how far are these from the eye

of hurricane and the timeline of the hurricane passing close to them. In different areas of time

series econometrics, especially those in the domain of energy and developments, change-points

often occur due to external events, political intervention, international relations, etc., and these

change-points have interesting spatial flavor in them. The question of synchronization is loosely
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related to the classical framework of Granger causality as it talks about correlation between two

series at some lag being significant. This was first proposed in [45] and then became very popular

in different areas of econometrics and beyond. Under this premise of Granger causality, it is easy

to perceive why these two series, observed simultaneously, might lead to similar pattern but in

an asynchronous fashion. See [77, 108] for excellent reviews on this literature. Granger causality

is also well studied for neuroscience [39, 104, 76, 49, 24, 42, 105, 36, 62, 15, 107, 102] and climate

analysis, [82, 110, 66, 7, 5, 89, 90, 91, 79, 109]. Finally, relevant applications can be found in epi-

demiology data as well. For instance, one could analyze incidence rate time series of contagious

diseases in different locations. If the synchronization hypothesis fails, then one could proceed to

understand the progression based on the spike or change-points observed. A recent work [116] A

recent work [116] states that for time-series analysis for different spatial location assumption of

shared changepoint might be too restrictive. They implemented a Bayesian method to allow for

asynchronized changepoints and showed that temperature data across 207 locations in California

and Covid count data across all counties of Illinois indeed show different breaks. We also show a

couple of interesting applications in Section 5 and discuss the implication of our findings.

We summarize our contributions in this paper as follows. First, we propose a test statistic

to test the synchronization hypothesis, which is spelt out at (1.3), and establish its validity and

consistency. However, even though the test statistic itself is intuitive, its null distribution does

not have a closed form expression, and thus, from the perspective of practicability, this poses a

challenge to actually carry this test out. To overcome this, we use a Gaussian approximation

result for multiple stationary time series with optimal rate. Although, there have been a few

works on this front, namely [75, 124, 63], none of the existing work suffices for our purpose. The

best possible rates were obtained in [63] for a general non-stationary process and we adopt this

to arrive at a Gaussian approximation with variance directly related to the long run covariance

matrix of the error process. One final step remain, in estimating this error (long-run) variance,

and given the premise of our problem of possible existence of possibly non-synchronized change-
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point, it is a non-trivial problem. To this end, we were able to establish consistency of our

proposed method of estimating this covariance, agnostic of both whether a particular series has

a change-point or the change-points across different series are synchronized or not. This is, to

the best of our knowledge, a novel contribution on its own. Finally, we conclude our paper

by discussing two interesting real life datasets where a synchronization testing could yield some

interesting insights. In the appendix, we provide extensive simulations to thoroughly address

different scenarios based on number of components with true change-points and whether they

are synchronized or not.

We conclude the introduction with organization and some notations, to be used throughout.

1.1 Organization

We begin Section 2 by rigorously introducing our test statistic for the synchronization problem.

We further prove that, under a very general class of alternative settings, a test based on this

test statistic will achieve full asymptotic power. Section 3 is devoted to the application of the

Gaussian approximation result to the bootstrap approximation for the null distribution of the

test statistic. In particular, we include an oracle bootstrap procedure and prove its validity. This

oracle bootstrap algorithm motivates us to estimate the long run covariance matrix Σ∞ of the

stationary error process (ei). Our estimate is shown to be consistent in an agnostic fashion, i.e.

irrespective of the presence or absence of a change point in each dimension. Finally, all of these

ideas are combined to yield our final bootstrap Algorithm 3, whose validity is shown in Theorem

4.1. Crucially, our bootstrap algorithm has a “hidden” first stage, where we individually test the

existence of change-point at each coordinate. This is discussed in Section 4. Finally, in Section

5, we briefly summarize our simulation studies, and provide two interesting data examples where

synchronization of change-points translates into meaningful hypotheses in corresponding fields,

and testing such synchronization reflects statistically valid insights from the data. Details of

our simulation studies backing up our methodology and all theoretical proofs are deferred to the

Appendix Section 7.

7



1.2 Notation

For a matrix A = (aij), define the Frobenius norm as |A| := (
∑
a2
ij)

1/2. With slight abuse of

notation, when suitable, we use | · | to denote (i) absolute value of a real number, (ii) Euclidean

norm of a vector ∈ Rd for d ≥ 2, and, (iii) Frobenius norm of a matrix. Moreover, for a matrix A,

we let ρ?(A) be the largest singular value of A. For a random vector Y ∈ Rd, write Y ∈ Lp, p > 0,

if ‖Y‖p := [E(|Y|p)]1/p <∞. Throughout the text, bxc refers to the greatest integer less than or

equal to x. Cp would refer to a constant that depends only on p, but could take different values

on different occurrences. If two sequences {xn} and {yn} satisfy |xn| ≤ cyn for some c <∞ and

all sufficiently large n, then we write xn . yn. If both xn . yn and yn . xn hold, then we write

xn � yn. We also use a ∧ b for min(a, b).

2 Methodology

We briefly discuss the motivation behind our test statistic in a very general set-up, and in

subsequent sections, we describe our algorithms in detail specific to our model (1.1). For

X := Xn
1 = {X1,X2, . . . ,Xn}, Xi ∈ Rd, assume the general parametric model

Xi ∼ f(λi),λi := (λi1, . . . , λi,d) ∈ Rd, f : Rd → Rd.

For each 1 ≤ j ≤ d, we let λij =


λLj , i ≤ nτj,

λRj , i > nτj,

with τj ∈ [0, 1) for all j. Suppose the change-

points are synchronized, i.e. τ1 = . . . = τd = τ . For each j ∈ {1, . . . , d}, assume the practitioner

uses a data-based loss function Lj : X n ×K → R, to estimate τj as

τ̂j := arg max
γ∈K
Lj(X, γ), (2.1)

where K ⊆ [0, 1) is some appropriate measurable set, and X is the sample space of the random

variables Xi. For the validity of our procedure, we require τ̂j
P→ τj. The usual choices of the

loss function include likelihood-based methods, or more general non-paramteric methods such as
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CUSUM, MOSUM or methods based on U-statistics or M-statistics (see [103, 37, 55]). Since, un-

der null we expect τ̂1 ≈ τ̂2 ≈ . . . ≈ τ̂d, it should be true that in the expression
∑d

j=1 maxγ Lj(X, γ),

the max and
∑

can be (approximately) interchanged. Based on this motivation, our test statistic

will be

Gn =
d∑
j=1

max
γ
Lj(X, γ)−max

γ

d∑
j=1

Lj(X, γ). (2.2)

Note that, Gn ≥ 0 always, and as suggested above, under H0, we expect Gn ≈ 0. Therefore, we

reject H0 for large values of Gn.

2.1 Test statistic for model (1.1)

With (1.1) being an additive model, testing (1.3) motivates us to use loss function same as that

of the well-studied CUSUM statistic. Mathematically speaking, in (2.1) we employ

Lj(X, γ) = |Sij − iX̄·j|/
√
n where i = bnγc, γ ∈ (0, 1).

Here and onwards, in (1.1) we assume Xi ∈ Rd for 1 ≤ i ≤ n. Therefore, for the specific model

(1.1), equation (2.2) can be rewritten as

Tn := Tn(X1,X2, . . . ,Xn) = n−1/2

(
d∑
j=1

|Snτ̂j ,j − nτ̂jX̄·j| −
d∑
j=1

|Snτ̂ ,j − nτ̂X̄·j|

)
, (2.3)

where,

τ̂j := arg max
1≤i≤n

|Sij − iX̄·j|/
√
n, and τ̂ := arg max

1≤i≤n

d∑
j=1

|Sij − iX̄·j|/
√
n. (2.4)

Subsequently in this paper, we will consider Tn as our test statistic. As explained in (2.1), it is

crucial that τ̂j is a consistent estimator of the individual change-points under suitable conditions.

Moreover, for the validity of our test, it is also necessary that under H0, the common change-

point τ is consistently estimated by τ̂ . However, in order to discuss such results, we first need to

explicitly characterize the dependency structures of the error processes (ei)i∈Z. In the following
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subsection, we provide a very general stationary causal set-up, which enables us to arrive at

interpretable and useful theoretical results.

2.2 Dependency structure

To perform some meaningful analysis of our test statistic Tn- in particular, to retrieve the unknown

change-points (τj)
d
j=1 from the observed (Xi)

n
i=1, we need to impose some dependence structure

on the process (ei). We assume the following causal representation:

ei = H(εi, εi−1, . . .) = (ei1, ei2, . . . , eid)
T , (2.5)

where H is a measurable function R∞ → Rd and εi’s are independent and identically distributed

random variables. We also assume that ei ∈ Lp where p > 2. This representation is inspired from

writing the joint distribution of (X1, . . . ,Xn) in terms of conditional quantile function of i.i.d.

uniform random variables. It allows us to employ the widely used idea of coupling to model the

dependence structure. In fact, we will use the framework of functional dependence measure on

the underlying process (see [121]). Suppose that (ε′i)i∈Z is an independent copy of (εi)i∈Z. Define

the functional dependence measure

θi,p = ‖ei − ei,{0}‖p = ‖H(Fi)−H(Fi,{0})‖p, i ≥ 0, p ≥ 2, (2.6)

where, for k ≤ i, Fi,{k} is the coupled version of Fi with εk in Fi replaced by ε′k:

Fi,{k} = (εi, εi−1, . . . , εk+1, ε
′
k, εk−1, . . .), (2.7)

and ei,{k} = H(Fi,{k}). In particular, [121] showed that for a linear process ei =
∑∞

k=0 akεi−k,

θk,p ≤ 2‖ε0‖p|ak|. Therefore, θk,p measures the dependence of ek on ε0. We further restrict
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ourselves to short range dependent processes; i.e. we assume that,

Θ0,p =
∞∑
i=0

θi,p <∞. (2.8)

Processes with long-range dependency often involve approximation through a “Non-Central Limit

Theorem”(see [20, 128]), and application of standard tools (such as various moment and large

deviation bounds [101, 29, 83, 43]) is very different, compared to weak dependent processes. How-

ever, (2.8) is not a major restriction, since, almost all popularly used stationary processes (such

as ARMA, ARCH, GARCH, Volterra processes, etc.) can be shown to fit into our framework.

Further interesting examples can be found in [33, 58, 127], among others. Subsequently, we dis-

cuss how we can establish the validity and consistency of our test statistic under this framework.

2.3 Validity and consistency of our test statistic

As discussed previously, let us begin with a consistency result for our individual CUSUM estimates

of change-points, τ̂j, as well as, a consistency result for our common change-point estimator τ̂

under H0.

Proposition 2.1. Grant model (1.1) for (Xt) with the error process (et) satisfying (2.5) and

(2.8). Then, for all 1 ≤ j ≤ d, |τ̂j − τj| = OP((nδ2
j )
−1 ∧ 1). Further, if H0 : τ1 = . . . = τd := τ is

true, then it also holds that |τ̂ − τ | = OP((n
∑d

j=1 δ
2
j )
−1 ∧ 1).

The rate OP(1/(nδ2)) has been long studied in the change-point literature, appearing at least in

[8], [9] and [10], as well as in recent minimax optimality results (see [117] and [113]). However,

to the best of our knowledge, the literature is missing any such results in the general setting of

causal stationary process satisfying (2.5) and (2.8). The argument for Proposition 2.1 is standard,

involving classical techniques such as Hàjek-Rényi inequality. As discussed immediately after

equation (2.1), Proposition 2.1 enables us to argue about the validity of our test statistic Tn in

the asymptotic sense. The following result summarizes this, as well as the effectiveness of Tn
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under the alternative hypothesis Hc
0.

Proposition 2.2. Grant model (1.1) for Xt with the error process et satisfying (2.5) and (2.8).

Then under the synchronized setting, i.e. under H0 described in (1.3), Tn = OP(1). On the other

hand, under Hc
0, i.e., if

H := {{j1, j2} : 1 ≤ j1, j2 ≤ d, τj1 6= τj2}

is non-empty, then Tn
P→∞ if

n max
{j1,j2}∈H

(δ2
j1
∧ δ2

j2
)→∞. (2.9)

Remark 1. For the consistency of our test based on Tn, the imposed condition (2.9) can be

shown to be optimal. Let us consider the following toy example. Suppose d = 2, τ1 6= τ2, and

nδ2
1 → ∞ (say, δ1 = 1), but nδ2

2 → 0 (eg., δ2 = 1/n). Clearly, this setting belongs to the

alternate case Hc
0. Intuitively speaking, since δ1 � δ2, τ̂ ≈ τ1, and since τ̂1

P→ τ1, therefore,

|Snτ̂1,1−nτ̂1X̄·1| ≈ |Snτ̂ ,1−nτ̂X̄·1|. On the other hand, note that since δ2 is small, τ̂2 is no longer

a consistent estimate of τ2. Therefore, from the null behavior of CUSUM estimate of τ̂2, as well

as the fact that τ̂ is not close to τ2, one can show both |Snτ̂2,2 − nτ̂2X̄·2| and |Snτ̂ ,2 − nτ̂X̄·2|

are small. Therefore, Tn can be shown to be OP(1). Thus, the condition (2.9) is necessary to

distinguish between the null H0 and alternate Hc
0; without this condition, the CUSUM estimates

of change-points are not consistent, and by extension, the test based on Tn will not achieve any

power.

The proofs of Propositions 2.1 and 2.2 are provided in Section 8. Note that, even though

under the null Tn = OP(1), in general the null distribution of Tn will be extremely complicated,

or even intractable. Therefore, we aim to provide a bootstrap approximation for it. In Section

3, we state a KMT-type Gaussian approximation result for the partial sums of the error process

Sei , which we then use to provide a bootstrap approximation to Tn.
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3 Approximation of null distribution of Tn

This section comprises of the two crucial theoretical results, that form the basis of our bootstrap-

based algorithm for testing the hypothesis of synchronization. First, in Section 3.1, we mention

a Gaussian approximation result that will be used to approximate the null distribution of Tn via

bootstrap. This result involves an unknown parameter in the form of Σ∞, the long-run variance

of (et), which is estimated in Section 3.2.

3.1 KMT-type Gaussian approximation

Strong invariance principles, originating as extensions of classical functional central limit theorems

(FCLTs), have been well-studied in the literature, with the case for i.i.d. random variables settled

by [68, 69] with the optimal rate n1/p for p > 2. For univariate stationary process, such optimal

rate has been achieved in the seminal work by [19]. Recently, [63] extended this to multivariate

non-stationary process, albeit with no explicit regularization of variance. However, following the

corresponding argument in [19], for stationary multivariate process (ei)i∈Z, the variance of the

approximating Gaussian process (Gi) can be regularized to be iΣ∞. We state the complete result

as follows without a proof.

Theorem 3.1. Suppose (ei)i∈Z has the causal representation (2.5), and satisfies (2.8) for some

p > 2. Let Sei =
∑i

j=1 ej, 1 ≤ i ≤ n. Define the long-run variance

Σ∞ =
∑
k∈Z

E[e0e
T
k ]. (3.1)

Assume it satisfies ρ?(Σ∞) ≥ c > 0 for some positive constant c. If we further suppose

Θi,p = O(i−A), with A > A0 =
p2 − 4 + (p− 2)

√
p2 + 20p+ 4

8p
,

then, there exists a probability space (Ωc, Ac, Pc) on which we can define random vectors (eci), with

the partial sums Sci =
∑i

j=1 ecj, and a Gaussian process Gi with independent increments, such
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that (Sci )
n
i=1

D
= (Sei )

n
i=1, and it holds

max
i≤n
|Sci −Gi| = oP(n1/p) where, Gi =

i∑
j=1

Zj with (Zi)
n
i=1

i.i.d.∼ N(0,Σ∞). (3.2)

The above theorem also appeared in [111, 74]. Let us discuss the implications of this result in

our context. We are interested in obtaining Gaussian approximations of functionals of the form

W (t) :=
n∑
i=1

eiwi(t),

where wi(·) : [0, 1] → R are weight functions, and (ei)
n
i=1 are mean-zero, multivariate stationary

process. Such quantities occur frequently in various methodologies of change point estimation,

and also in many other applications. One can employ our Theorem 3.1 to deal with W (t). A

similar treatment can also be found in [123, 23]. Suppose Z1, . . . ,Zn
i.i.d.∼ N(0,Σ∞) are such that

Gi =
∑i

j=1 Zi, and let

W �(t) =
n∑
i=1

wi(t)Zi. (3.3)

Here, W �(t) is the Gaussian process that we want to use to approximate W (t). Let

Ωn = sup
t∈(0,1)

{|w1(t)|+
n∑
i=2

|wi(t)− wi−1(t)|}.

Now, from Theorem 3.1, one obtains

sup
t∈(0,1)

|W (t)−W �(t)| ≤ Ωn sup
1≤i≤n

|Sei −Gi| = oP(Ωnn
1/p). (3.4)

We can motivate an oracle bootstrap algorithm based on (3.4). By “oracle”, we emphasize that

at this stage, we assume that Σ∞ and the means µi’s are known; we simply wish to investigate

the rate of error if Tn is approximated by its Gaussian analogue, as dictated by (3.3). This is

done in the following lemma, whose proof is provided in Section 9.1.
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Lemma 3.1. Assume (1.1), and suppose the null H0 in (1.3) is true with the common change-

point τ ∈ (0, 1). Then under the assumptions of Theorem 3.1, on a possibly enlarged probability

space, there exists independent (Zi ∼ N(µi,Σ∞))ni=1 such that it holds

|Tn − TZn | = oP(n1/p−1/2) where TZn := Tn(Z1, . . . ,Zn). (3.5)

This lemma is repeatedly used while analyzing the validity of the bootstrap algorithms proposed

subsequently. In view of Lemma 1, the aforementioned “oracle” bootstrap algorithm can be

motivated naturally. For simplicity, assume µLj = 0 for 1 ≤ j ≤ d. As a prelude to our complete

bootstrap algorithm in Section 4, we provide this algorithm here.

Algorithm 1: Oracle test of synchronization

1 Input: X = (X1, . . . ,Xn), bootstrap size B, τ ∈ (0, 1), sequence of jumps {δj}dj=1,
long-run covariance Σ∞.

2 Goal: Test if τ1 = . . . = τd = τ .
• Construct Test statistic Tn from (2.3).
• For s= 1, . . . , B

– Generate bootstrap samples (Z
(s)
i )ni=1

i.i.d∼ N(0,Σ∞).

– For j = 1, . . . , d, X
(s)
ij ← Z

(s)
ij + δjI{i/n > τ}, 1 ≤ i ≤ n .

– Generate T
(s)
n from (X

(s)
1 , . . . ,X

(s)
n ).

• Bootstrap p-value: p0 ← 1
B+1

(
B∑
s=1

I{Tn > T (s)
n }+ 1).

While the Lemma 3.1 emphasizes the efficacy of the oracle algorithm, it is important to take

note of what more a practitioner requires in order to obtain a valid, yet completely data-based

bootstrap algorithm to test (1.3). In particular, observe that in the input of Algorithm 1, the

usually unknown quantities are: common change point τ , the jumps {δj}dj=1 and Σ∞. It will be

convenient to have a checklist of the quantities that can be readily estimated, and the quantities

that are yet to be estimated. In the following, each of statement holds under the corresponding

set of assumptions of the accompanying mathematical results.

• Under null, the common change-point τ̂ is consistently estimated due to Proposition 2.1.
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• The jumps δj (and in general the means pre and post-change-point) can also be consistently

estimated under H0 as well as under Hc
0; upon consistently estimating τ̂j’s (or τ̂ under the

H0), we can simply consider δ̂j := µ̂Rj − µ̂Lj as an estimate, where µ̂j’s are defined as in

(3.6).

• Therefore, in order to have a consistent, data-based, Gaussian bootstrap algorithm, we

require an estimation procedure for Σ∞. This is addressed in our next section.

3.2 Estimation of Σ∞

Consider the model (1.1), and recall Σ∞ from (3.1) as the long-run variance matrix of the error

process (et). The challenge arises from the fact that since ei’s are not directly observed, we

have to use the original observations Xi’s and the estimated means pre and post-change-point.

Combining these ideas, in this section we propose a non-parametric estimator of Σ∞, which is

consistent if there is at most one change point (popularly referred as AMOC in the change-point

literature) in each time series. In particular, we show that our estimator is consistent agnostic to

whether H0 is true or not, i.e., the change-points do not need to be synchronized. For 1 ≤ j ≤ d,

recall τ̂j from (2.4) as a CUSUM-based estimate of true change-points τj. For 1 ≤ i ≤ n, define

the estimated means as,

µ̂i = (µ̂ij)
d
j=1, where µ̂ij =


µ̂Lj := 1

bnτ̂jc
∑bnτ̂jc

i=1 Xij, if i ≤ nτ̂j,

µ̂Rj := 1
n−bnτ̂jc

∑n
i=bnτ̂jc+1Xij, if i > nτ̂j

. (3.6)

The lag-k autocovariance matrix is estimated as

Γ̂k :=
1

n

n−k∑
i=1

(Xi − µ̂i)(Xi+k − µ̂i+k)T .
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Let K : [−ω, ω] → R be a continuous kernel with K(0) = 1. Then, with a suitable choice of

bandwidth Bn, our estimator of Σ∞ is:

Σ̂n,Bn := Γ̂0 +
n−1∑
k=1

K(k/Bn)(Γ̂k + Γ̂Tk ). (3.7)

Observe that, this is a multivariate version of a HAC estimator (see [84, 2]). The following result

yields the error rate of Σ̂n,Bn as an estimator of Σ∞.

Theorem 3.2. Assume model (1.1) for Xi, with ei satisfying (2.5) and (2.8) for some p > 2.

Moreover, let K : [−ω, ω]→ R , K ∈ C1 be a symmetric bounded kernel function with K(0) = 1

and supx |K ′(x)| ≤ C. Then, for a bandwidth Bn →∞, the error rate for the long-run covariance

estimate Σ̂n,Bn in (3.7) can be summarized as

ρ?(Σ̂n,Bn − Σ∞) = OP(Bnn
2/p′−1 +B−1

n ), where p′ = min{p, 4}. (3.8)

Here the Bnn
2/p′−1 is the consistency error, and B−1

n corresponds to bias.

Remark 2 (Agnostic nature of Theorem 3.2). We would like to point out that, even for those

coordinates j for which there is no change-points (i.e. δj = 0), we pretend that there is a change-

point, estimate it and use it to estimate the left and right means µ̂Lj and µ̂Rj . Interestingly, this still

results in a consistent estimate of Σ∞. This is convenient from the point of view of a practitioner,

since they usually have no way to know which coordinates have no change-point. To the best of

our knowledge, despite its intuitive structure, such agnostic yet statistically consistent estimator

of Σ∞ is a new contribution to the literature.

Remark 3 (Choice of the kernel function). A special class of kernel function is the Rectangular

kernel: KRec(u) = I{|u| ≤ 1}. This is a very classical and yet popular choice of kernel and dates

back several decades in works of [16] and others. Note that KRec /∈ C1. Nevertheless, almost

the entire argument of Theorem 3.2 goes through to yield a bias of O(B−An ) where we recall

A > A0 is the decay exponent of Θi,p. This rate is strictly better than that of (3.8). However, a
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major disadvantage of Krec is that it is not a positive semi-definite kernel, and therefore it is not

guaranteed that Σ̂n,Bn � 0. On the other hand, the error rate (3.8) can be improved by assuming

r > 1 continuous derivatives of K. A sweet spot, with regards to positive-definiteness and bias

reduction, is advocated through the use of Splitted Rectangular Cosine kernels, as in [25, 27]

etc. This idea is also related with the infinite-order flat top kernels, suggested by [96, 97, 95]

and many others in the context of spectral density estimation. Some other choices include the

Bartlett kernel and its convolutions. In view of such a huge literature, and in order not to divert

too much from our main topic of discussion, we choose not to delve any deeper into the theory

behind the appropriate choice of kernel function (and the corresponding bandwidth). Instead, we

take this issue up empirically through some simulation exercises in Section 7.3.

The proof of Theorem 3.2 is deferred to Section 9.2. A key insight into our proof is that, indifferent

to the existence of change-points and even jump-sizes, the estimated mean vector µ̂i in (3.6) will

always be close, on an average, to the original mean vector µi. On first glance, this is not quite

obvious, since, for a fixed 1 ≤ j ≤ d, some algebra shows that with probability 1,

max
1≤i≤n

|µ̂ij − µij| � δj +OP(1/
√
n),

which can be large for larger jump-sizes. However, we show that the number of indices i on which

this maximum occurs, decreases with increasing δj, and therefore on an average |µ̂i −µi| can be

proven to be small. This is quantified in the following proposition.

Proposition 3.1. Recall µ̂i from (3.6). Then uniformly for 0 ≤ k ≤ n − 1 and 1 ≤ j, l ≤ d, it

holds that

1

n

n−k∑
i=1

(µ̂ij − µij)(µ̂i+k,l − µi+k,l) = OP(1/n), (3.9)

where we have assumed (2.5) and (2.8) for our error process (et), and (1.1) for (Xt).

We emphasize that, agnostic to the location of change-points and size of the jump, Proposition

3.1 asserts that µ̂i achieves the optimal rate of estimation. Of particular interest is the case, when
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the jump is small, or zero, which we briefly discuss here. In this case, Proposition 3.1 can be

realized in the context of the well-known result, that when δj = 0, τ̂j will be approximately

distributed as arg maxt∈(0,1) |Bbr(t)| where Bbr(t) is a standard Brownian Bridge. Therefore, with

high probability, the estimated change-point will lie towards the middle of the sequence {1, . . . , n},

leading to the optimal rate that we observe in Proposition 3.1.

However, the proof of Proposition 3.1 does not require such asymptotic results for the case

when δj is small. In particular, when δj = 0, our proof assumes a dummy change-point τj ∈ (0, 1),

and shows that, the argument used for large δj also works for this case. This is, of course consistent

with our notion of synchronization, where we have assumed τj1 = τj2 if δj1 = δj2 = 0. The details

of the proof can be found in the Section 9.2.

4 Bootstrap algorithm and theoretical validity

With the estimation of Σ∞ dealt with, we now move towards describing our complete bootstrap

algorithm. In order to conveniently establish the theoretical validity of our bootstrap procedure,

we impose a condition on the jump-sizes of each dimension. Suppose V0 = {1 ≤ j ≤ d : δj = 0},

and V1 = {1, . . . , d} \ V0. We assume the following.

Assumption 4.1. For each 1 ≤ j ≤ d, the jumps δj satisfy minj:δj∈V1 |δj| � 1/
√
n.

Assumption 4.1 resembles the well-known “beta-min” condition from high dimensional regres-

sion literature (see [80, 126]). As asserted by [26], such restrictive conditions on the minimum

signal strength are necessary in order to achieve asymptotic validity of the corresponding proce-

dure. In our context, it is important to briefly discuss the motivation behind such an assumption.

Along with Σ̂n,Bn , we aim to use τ̂ , and δ̂j = µ̂Rj − µ̂Rj as a plug-in for τ and δj respectively, in the

oracle algorithm 1. Note that, when nδ2
j → ∞, it can be shown that δ̂j = OP(1/

√
n). However,

for δj � 1/
√
n, the estimate δ̂j can be quite large compared to δj. This is primarily because,

for such a small size of jump, the CUSUM estimate is not enough accurate (cf. Proposition 2.1

entails a rate of only OP(1)). Therefore, it is clear that, for the validity of our procedure, if |δj|
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is small, we should draw our bootstrap samples (Z1j, . . . , Znj) while pretending that δj = 0. On

the other hand, for nδ2
j → ∞, δ̂j works well enough from the sense of optimality. Importantly,

in this case, τ̂j is very close to τ̂ under H0, which ensures validity of our bootstrap procedure.

This immediately results in a thresholded/banded estimation procedure, where we estimate

δj only if we know nδ2
j → ∞, and otherwise estimate δj by zero (see Step 3 of Algorithm 3).

In practice, δj’s would not usually be known, necessitating a “regularized” bootstrap procedure,

whereby we first estimate V0 and V1. We undertake an individual level CUSUM test, and then

conclude the δj = 0 if the null hypothesis H0j of existence of change-point in the j-th dimension

is not rejected. This approach essentially determines the assignment of dimensions to sets V̂0 and

V̂1 based on δ̂jI{|δ̂j| � 1/
√
n}. It can be interpreted as a “hard-thresholding” (eg. [28, 115]) of

the naive estimator δ̂j of δj.

Therefore, as motivated above, we start off by testing for the existence of change-point for each

individual dimension. The detailed procedure for this “hidden” first step of our main algorithm,

is given in Algorithm 2. Following up, we briefly discuss the Algorithm 2 from a theoretical

Algorithm 2: Test of existence of change-point

1 Input: X1, . . . ,Xn, long-run variance estimate Σ̂n,Bn .
2 Goal: For each j : 1, . . . , d: Test H0j : δj = 0 vs Hc

0j.
• For j = 1, . . . , d: construct Unj := Unj(X1, . . . ,Xn) as in (4.1).
• For s = 1, . . . , B

1. For i = 1, . . . , n, generate bootstrap samples Z
(s)
i

i.i.d∼ N(0, Σ̂n,Bn).

2. For j = 1, . . . , d: U
(s)
nj ← Unj(Z

(s)
1 , . . . ,Z

(s)
n ).

• For j = 1, . . . , d, pj ← 1
B+1

(
∑B

s=1 I{Unj > U
(s)
nj }+ 1).

perspective. Let us denote

Unj(X1, . . . ,Xn) := max
1≤k≤n

|
k∑
i=1

(Xij − X̄·j)|/
√
n. (4.1)

For some α ∈ (0, 1), observe that the B Monte Carlo bootstrap samples in Algorithm 2 are used
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essentially to estimate the (1− α)-th quantile aα,j(Σ̂n,Bn) such that

aα,j(Σ∞) := inf{a : P(Unj(Z1, . . . ,Zn) > a) ≤ α} for Z1, . . . ,Zn
i.i.d∼ N(0,Σ∞).

The following result shows rigorously that under null, the test statistic Unj cannot be too bigger

than aα,j(Σ̂n,Bn) with high probability.

Proposition 4.1. Assume the model (1.1) and the conditions of Theorem 3.1 for the stationary

error process (ei). Fix α ∈ (0, 1) and j ∈ {1, . . . , d}. If cn → 0, vn → 0 are chosen to be two

deterministic positive sequence such that c2
n � v−1

n (B−1
n + Bnn

2/p′−1), with p′ = p ∧ 4, then for

Unj as in Algorithm 2, under H0j for every 1 ≤ j ≤ d it holds that,

lim
n→∞

P(Unj ≥ aα−vn,j(Σ̂n,Bn) + cn) ≤ α, (4.2)

where Σ̂n,Bn is constructed as in (3.7), satisfying the conditions of Theorem 3.2.

Proposition 4.1 allows us to confidently discern the sets V0 := {j : nδ2
j → 0} and V1 := {j : nδ2

j →

∞}. In fact, this yields that P(V̂1 ⊇ V1)→ 1, and limP(V̂0 ⊇ V0) ≥ 1−α, as n→∞. With this

premise, we can now provide a complete algorithm for testing synchronization of change-points.

Algorithm 3: Testing synchronization of change-points

1 Input: X, bootstrap size B, bandwidth bn, level α. Goal: To test H0 : τ1 = . . . = τd.

1. Construct Tn, τ̂ and Σ̂n,Bn based on X1, . . . ,Xn as in (2.3) and (3.7) respectively.

2. Use Algorithm 2 to obtain sets V̂0 := {j : H0j was not rejected}, and

V̂1 = {j : H0j was rejected}.
3. For s = 1, . . . , B,

• Generate bootstrap samples (Z
(s)
i )ni=1

i.i.d∼ N(0, Σ̂n,Bn).

• If j ∈ V̂0: X
(s)
ij ← Z

(s)
ij + X̄·j, 1 ≤ i ≤ n.

• If j ∈ V̂1: X
(s)
ij ← Z

(s)
ij + 1

nτ̂

∑nτ̂
i=1Xij + ( 1

n−nτ̂
∑n

i=nτ̂+1 Xij − 1
nτ̂

∑nτ̂
i=1 Xij)I{i/n > τ̂},

1 ≤ i ≤ n .

• Calculate T
(s)
n based on (X

(s)
i )ni=1.

4. p-value: p0 ← 1
B+1

(
B∑
s=1

I{Tn > T (s)
n }+ 1).
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Since we have already established the validity of our Algorithm 2, it is reasonable to assume

that V0 and V1 are known for subsequent analysis. We provide a theoretical analysis of showing

the efficacy of the bootstrap-based quantile of Algorithm 3. Such a result also appears in [81],

Section 4, to justify their bootstrap-based tests.

Theorem 4.1. For the model (1.1), grant the conditions of Theorem 3.1 for the error process ei,

and the conditions of Theorem 3.2 for the long-run covariance estimate Σ̂n,Bn. Further suppose

that the sets V0 and V1 are known in Step 2 of Algorithm 3, and the Assumption 4.1 holds for

all 1 ≤ j ≤ d. For a general sequence of vectors (νi)
n
i=1 ∈ Rd, and a symmetric positive definite

matrix Γ, let a generic Gaussian-based quantile bα(ν,Γ) be defined as:

bα(ν,Γ) = inf{b : P(Tn(Y 1, . . . ,Y n) ≥ b) ≤ α},

where Y i := Zi + νi and Zi
i.i.d∼ N(0,Γ). Recall µ̂i from (3.6). Suppose {un}, {hn} are two

positive deterministic sequences such that un → 0, hn → 0, and

u2
n � h−1

n (B−1
n +Bnn

2/p′−1) + h−2
n max

j∈V1

1/(nδ2
j ). (4.3)

Then, under H0 in (1.3), it holds that,

lim
n→∞

P(Tn ≥ bα−hn(µ̃, Σ̂n,Bn) + un) ≤ α, (4.4)

for µ̃i = (µ̃ij)
d
j=1 defined as

µ̃ij =


X̄·j, j ∈ V0, 1 ≤ i ≤ n

1
nτ̂

∑nτ̂
i=1XijI{1 ≤ i ≤ nτ̂}+ 1

n−nτ̂
∑n

i=nτ̂+1 XijI{nτ̂ + 1 ≤ i ≤ n}, j ∈ V1.

The proofs of Proposition 4.1 and Theorem 4.1 are provided in Section 10. It is instructive to

briefly discuss the rather technical condition (4.3) on un and hn. It can be noted that B−1
n +
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Bnn
2/p′−1 & n1/p′−1/2, with p′ ∈ (2, 4] for all choices of Bn. Therefore, for the “strong signal”

setting with minj∈V1 |δj| � n−1/p′ , a choice satisfying (4.3) is un � hn � 1/ log n, and Bn �

n1/2−1/p′ . In particular, this includes the setting where δj’s are constant. Note that, with this

particular choice of un and hn, and for all sufficiently large n, the above restriction on Bn can be

generalized to

(log n)3 � Bn � n1−2/p′(log n)−3.

On the other hand, for the complementary setting with weaker signal strength, a choice of un

and hn will crucially depend on minj∈V1 |δj|. If cn := minj∈V1 |δj| with n−1/2 � cn � n−1/p′ ,

then, a conservative choice is given by un � hn � 1/ log(
√
ncn) along with (log

√
ncn)3 � Bn �

n1−2/p′(log
√
ncn)−3.

Another important facet of Proposition 4.1 and Theorem 4.1 is, that they show that the

bootstrap-based tests of Algorithms 2 and 3 are conservative. In the simulation studies of Section

7, (A summary is provided below) we will see that, in practice, the sizes of these tests not only

achieve the level of significance, but they also produce much power under various alternatives.

However, the theoretical analyses of size and powers of these tests would require a case-by-case

treatment, and are out of the scope of this paper.

5 Applications: Simulation and Real Data analyses

In this section we discuss a brief summary of some simulation studies and then present two

interesting real-life applications.

5.1 Simulation studies (Summary)

Due to space constraints, the details of our extensive simulation exercises are relegated to Section

7 and here we present a brief summary. In particular, Section 7.1 explores the distribution of Tn

under different synchronized settings. Here, we focus on identifying the affect of jump-sizes δ on

the distribution of Tn, and hereby proceed with a relatively simple VAR model for the stationary

errors ei’s. Increasing the jump-size δ compels Tn to converge towards 0- a phenomena discussed
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in more detail in Section 7.1. Working under the same setting, in Section 7.2 we move on to

numerically inspect the efficacy of our Gaussian approximation result by looking at how the

finite sample distributions of the T
(s)
n ’s from the oracle bootstrap Algorithm 1 compare with the

null distributions of Tn.

The set of simulations in Section 7.3 aims to numerically showcase the effect of bandwidths

Bn and choice of kernel functions K on the estimation accuracy of Σ̂n,Bn . Here we observe that

the choice of kernel does not seem to hugely affect the performance of Σ̂n,Bn , as long as the choice

of Bn is restricted to bn1/4c between bn1/3c. Finally, in Section 7.4, we take up two non-linear

and yet very popularly used models for the stationary error processes: a TAR model, and a GJR-

GARCH model. For both the models, we compute the empirical type-1 errors and powers of our

bootstrap-based Algorithm 3 under null (synchronized) and various alternative (asynchronized)

scenarios. See Tables 3, 4 and 5. These simulation studies clearly highlight that testing procedure

via Algorithm 3 maintains empirical size close to the nominal level and yet achieves high power

even in the “difficult” scenarios of (1) asynchronized change-points being relatively close to each

other, as well as (2) the jumps corresponding to the change-points being small.

5.2 Real data analyses

In this section, we gather interesting analyses of two real-world datasets. In the first one, we test

for synchronization of two time series in two spatial locations, recovering interesting connotations

behind the asynchronization. On the other hand, for the second dataset, we show that blindly

assuming synchronized change-points across the panel results in missing potentially interesting

disturbances or shifts.

5.2.1 Onset of winter floods in Mississippi river

Change-point analysis is often employed to detect various climate-influenced or man-made changes

in hydrological data [71]. With regards to flood statistics, Pettitt’s test[93] and CUSUM-based

methods have been applied in detecting change-points in annual flood peaks in the mainland

United States [78, 114]. However, often such an analysis is limited by an i.i.d. assumption, or
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an adaptation of any particular stationary parametric model such as Log-Pearson type III [41].

Several works, such as [85, 56, 114], also analyze the lower-Mississippi water levels using spatio-

temporal modelling. On the other hand, the upper Mississippi basin already suffered a record

catastrophic flood [88] in Dec 2018-19, causing an estimated $2 billion dollars in damages [98].

Thus, analyzing onset of flood, particularly in winter, is also necessary in In particular, we would

attempt to understand how the onset dates of winter surge in water level have varied (or stayed

the same) in two different locations ∼ 200 miles apart. This problem can be conveniently posed

in our test of synchronization framework, where the change-points signify the flood onset at the

corresponding location. Note that, in most of the works on spatio-temporal modeling of water-

levels, usually Gaussianity and a suitable parametric form of the covariance structure is assumed

in order to incorporate the spatial effects. On the contrary, under a mild set of assumptions,

our methodologies allow us to draw meaningful statistical inferences about this problem, without

resorting to sophisticated modeling exercises involving stringent and un-testable assumptions.

We will discuss more about the potential usefulness of our results after having looked into the

dataset and the statistical results.

The data is taken from USGS Water Data for the Nation. Figure 1 shows the time series

plots of the daily water discharge (in ft3 per second) from 1st September 2023 to 1st May 2024

at Memphis and Vicksburg, along with their individual change-points. In particular, we have

d = 2 corresponding to the two locations, and n = 243 observations for each locations. The

locations on the same river obviously have spatial interaction, further justifying our bootstrap

procedure based on simultaneous Gaussian approximation of stationary multivariate processes.

To perform the test of synchronization, we use B = 5000 bootstrap samples. For covariance

matrix estimation we take Bn = bn1/4c. The p-value comes out to be 0.0264, which implies we

reject the null hypothesis of synchronized change-point at 5% level of significance. The conclusion

of asynchronized flood onset dates for Memphis and Vicksburg have important connotations for

policy planning, preparation for flooding events, and much more. In particular, Memphis saw
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Figure 1: Water discharge data of Mississippi river at two different locations from Sept’23 to
May’24. The vertical red line indicates the individual change points detected by CUSUM.

a sudden increase in the amount of water discharged on 13-th January of 2024, whereas this

increased volume of water reached downstream at Vicksburg only three days later, i.e. on 16-th

January, 2024. This difference can be interpreted as the additional time available for Vicksburg

to prepare for a flood event, after Memphis (around 220 miles away) has witnessed a surge in

river discharge. Our test statistically validates this difference in flood onset dates, and makes way

for further detailed research to understand how distance affect the flood onset dates in different

locations.

5.2.2 Mental load of aviation pilots

In this section, we analyze the data on cardio-respiratory response of pilots, collected by [46].

We describe the data briefly. 61 pilots underwent four phases of increasing mental and physical

demand, whose start and end-time are indicated in parenthesis that follows

1. “Resting Baseline”(0-332s) phase of simply focusing on a cross;

2. “Vanilla Baseline”(333-673s) phase of a minimally demanding vigilance task;

3. “Multiple Tasks”(674-1053s) phase of performing three demanding, cognition-related activ-

ities simultaneously, and,
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4. “Recovery”(1054-1393s) phase of relaxation by watching a movie.

For more details and context, readers are referred to [46]. For each pilot, there are three time

series on their heart rate (HR), partial pressure of end-tidal CO2 (petCO2) and respiratory rate

(RR) respectively. We work with the dataset of a randomly selected pilot as provided in R package

kcpRS. The common change-point between “Vanilla Baseline” and “Multiple Task” can be easily

spotted; it is intuitive and well-documented in [46, 31, 30]. In that light, we first focus on the

change-points occurring during the shift between “Resting Baseline” and “Vanilla Baseline”. We

do this by analyzing these 3-dimensional time-series for the first 500 time points (Time 1-500s).

We plot this data at Figure 2. Note that, [30] found no change-points in variance, and only

found change in auto-correlations for specific choices of hyper-parameters while performing non-

parametric change-point detection methods. Thus, we also assume the multivariate time series

to be stationary, and focus on mean-based change points. Both [31, 30] assume synchronized

change-points for this dataset, with their common change-point estimated at exactly the location

of shift between phases-i.e, at t = 332s.

We will employ our Algorithm 3 to test synchronization at level 5%. For estimating Σ∞, we

specify Bn = bn1/4c with n = 500. The corresponding p-value for the test of synchronization is

0.0362. Therefore, for the early stage comprising of the first shift between the first two phases,

our test result implies asynchronized change-point. Since this finding is inconsistent with what

was assumed in literature, some follow-up analyses and explanations are in order.

There seems to be no change-point detected in the heart-rate time series. [57] hypothesized the

heart-rate to decrease during vanilla baseline. On the other hand, the petCO2 time series displays

a change-point in between the “Resting Baseline” phase (estimated at t = 206s), and then the

mean level stays the same through the initial “Vanilla Baseline” period. One possible explanation

could be that, after the start of the experiment, the level of stress recedes leading to decreased

CO2 circulation, and intensity of the body’s metabolism improves regulated midway through the

resting phase [94]; this stays the same even through the “Vanilla Baseline”, the task in the second
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Figure 2: Time series plot for early stage (Time 1-500s) of the pilot mental load dataset. The
red, green and blue plots indicate the time series corresponding to heart rate, PET CO2, and
respiratory rate respectively. The white and shaded regions indicate the phases “Resting Base-
line” and “Vanilla Baseline”. The black dashed lines indicate the estimated change-points by our
method, and the solid horizontal black lines denote the estimated means of the corresponding
piece-wise segments.

phase being only minimally demanding. The respiratory rate displays a clear change point near

the boundary between “Resting” and “Vanilla Baseline” phases (estimated at t = 325s). In fact,

we see that consistent with our intuition, breathing increases slightly in performing the vigilance

task at the Vanilla Baseline stage. It is important to note that, these follow up analyses of

introspecting into individual components and the subsequent findings are results of questioning

the ‘popular’ assumption of synchronized changepoint through our statistical testing procedure.

We also employ our algorithm separately to the later stage of this dataset i.e. a period

that comprises of the shift between “Multiple Tasks” and “Recovery”. We fail to reject the null

hypothesis here, as the p-value according to our test for this part of the data comes out at 0.1088.

The common change-point is detected exactly when the phase shift happens at t = 1053. This

echoes the assumption in [30]. The corresponding plot for this dataset is shown in Figure 3.

6 Conclusion

In the literature of change-point analyses of multiple time series, it is almost unanimously as-

sumed that all co-ordinates exhibit the change-points simultaneously at the same time-stamp.

Citing reasons and motivations why this might be too restrictive, in this paper, we propose a
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Figure 3: Time-series plot, corresponding to Figure 2, for the later stage of the pilot mental
load dataset (Time 894-1393s). The white and shaded regions in the figure indicate the phases
“Multiple Tasks” and ”Recovery”.

statistical test for this synchronization assumption. Although, we discuss only the synchroniza-

tion of mean, our methods are general enough to do similar testing for other moments such as

variance, correlations, kurtosis etc. In the financial econometrics literature, volatility plays a

crucial role, and our method could be instrumental to test whether multiple stocks/indices show

similar changes in their (possibly estimated) volatility.

Moreover, sometimes irregularity in time series can be observed due to the errors being non-

stationary. This can be easily handled by a uniform notion of functional dependence measure and

using suitable Gaussian approximation such as [63, 23]. Since this does not require any technical

novelty, we decided to restrict ourselves to a stationary case here. It is important to reemphasize

that the final observed process can potentially be non-stationary when change-points occur at

different times for different components.

Finally, one natural extension could be testing for synchronization when multiple change-

points could be present in th multivariate stream. Note that, when we reject the synchronization

hypothesis, it could be automatically thought of as if we have detected multiple change-points, as

the ones not synchronized with others form another change-point. Therefore, our problem faces

some identifiability issues if we allow for more than one change-point in each co-ordinate, as one

has to put a restriction that change-point time-stamp in any of the co ordinates has to differ from

each other by a significant time-delay. If such an assumption is made, we could possibly replace
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our CUSUM based method by moving sum (MOSUM) restricting to a window with atmost one

change-point, and execute a similar statistical test.
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[69] J. Komlós, P. Major, and G. Tusnády. An approximation of partial sums of independent RV’s,
and the sample DF. II. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 34(1):33–58, 1976.
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7 Simulation results

Here we present detailed simulation studies justifying the theoretical excursions of Sections 2, 3

and 4.

7.1 Behavior of test statistic under H0

Proposition 2.2 instructs that under H0, the test statistic Tn = OP(1). In this subsection, we

aim to empirically investigate the distribution of Tn under different type of null behavior, i.e.

under τ1 = . . . = τd. For our numerical studies, we consider d = 4, and look at the following five

settings of synchronized change-points. Let us consider some δ(n) such that nδ2(n) → ∞, and

denote

• Model 1: (No jumps) δ1 = δ2 = δ3 = δ4 = 0.

• Model 2: (One jump) δ1 = δ(n), δ2 = δ3 = δ4 = 0.

• Model 3: (Two jumps) δ1 = δ2 = δ(n), δ3 = δ4 = 0.

• Model 4: (Three jumps) δ1 = δ2 = δ3 = δ(n), δ4 = 0.

• Model 5: (Four jumps) δ1 = δ2 = δ3 = δ4 = δ(n).

We consider two values of n : 500 and 1000 For the model (1.1), let the errors (ei)i∈Z follow a

Vector Autoregressive (VAR) model of lag 1:

ei = Aei−1 + εi, where (εi)
n
i=1

i.i.d.∼ N(0,Σ5,1
RQ). (7.1)

Here Σa,k
RQ is the Rational Quadratic covariance matrix, i.e,

Σa,k
RQ(j1, j2) = (1 +

|j1 − j2|2

2ak2
)−a with a > 0, k > 0.

1



The A matrix is taken so that Aij = 0.3 exp(−|i − j|). Since we are working under null, the

common change-point is taken to be 0.5. Finally, in order to properly investigate the effect of

large jumps on Tn, we consider δ(n) = 0.5. For each of the five models, the null distribution of

Tn has been empirically estimated based on 5000 independent Monte Carlo draws, and is shown

in Figure 4. Even if Proposition 2.2 instructs Tn = OP(1), the asymptotic distribution of Tn

is markedly different for each of the models. In particular, Tn is small if no dimensions have

change-point. As more and more dimensions have a large enough jump, the distribution of Tn

seems to become more and more spread out, until the number of dimensions with change-points

is no longer greater than the number of dimensions without change-points. Subsequently, as we

continue increasing the number of coordinates with large jumps, Tn puts more and more mass

on zero. This behavior is, of course, natural, since if dimension j has a large jump, we expect

τ̂j ≈ τ̂ under null, and in turn, |Snτ̂j ,j−nτ̂jX̄·j| ≈ |Snτ̂ ,j−nτ̂X̄·j|. Therefore, Tn will have smaller

values with increasing probability, as more and more dimensions have a significant jump. In fact,

if nminj δ
2
j →∞, then following (8.17), one can show Tn

P→ 0 under H0. This behavior is indeed

verified in Figure 4.

Figure 4: Distribution of Tn for the five models in Section 7.1 for n = 500(left) and n =
1000(right).
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7.2 Performance of oracle bootstrap

This section is devoted to the efficacy of our Gaussian approximation theorem 3.1. Here, we look

through the lens of our oracle bootstrap algorithm 1, and will explore how well the distribution

of oracle bootstrap test statistic TZn approximates that of Tn. Consider the Models 1-5 from

Section 7.1, and let n = 1000. For each model, the distribution of Tn is estimated based on

5000 iterations. Similarly, 5000 “oracle” bootstrap samples of T
(s)
n are drawn as in Algorithm 1.

Figure 5 justifies the validity of the oracle bootstrap, in turn showcasing the effectiveness of the

asymptotic approximation of Theorem 3.1.

Figure 5: QQ plot of Tn with the oracle bootstrap samples T
(s)
n for Models 1(left-most)-5(right-

most).

7.3 Choice of kernel function and bandwidth for estimation of Σ∞

In this section, we focus on the performance of Σ̂n,Bn as an estimator of long-run variance Σ∞ for

different choices of bandwidths Bn, and also different choices of the Kernel function K ∈ C1. The

long-run covariance matrix Σ∞ for the innovations (ei) from (7.1) can be computed explicitly,

and has spectral norm ρ?(Σ∞) = 9.534. To estimate Σ∞, consider three popular kernel functions.

• Parzen Kernel: K1(x) = (1− 6|x|2 + 6|x|3)I{0 ≤ |x| ≤ 1
2
}+ 2(1− |x|)3I{1

2
≤ |x| ≤ 1}.

• Tukey-Hanning Kernel: K2(x) = 0.5(1 + cos(πx))I{|x| < 1}.

• A split Rectangular Cosine kernel. K3(x) = I{|x| < 0.95}+0.5(1+cos(20(x−0.95)π))I{0.95 ≤

|x| ≤ 1}.

3
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Figure 6: Plot of K1(x) (in blue), K2(x) (in black), and K3(x) (in red).

Note that K3(x) can be viewed as smoothed version of rectangular window. On the other hand,

K1 and K2 are standard examples of C1 kernel functions [92, 25, 100]. In the following simulation

studies, we again consider the five different models, and two values of n = 500 and 1000 as in

Section 7.1. For each setting, the empirical mean and SD of ρ?(Σ̂n,Bn−Σ∞) is estimated via 5000

independent Monte Carlo draws. Regarding the choice of bandwidth Bn, we note that for p ≥ 4,

(3.8) is minimized for Bn � n1/4. Some other popular choices include n1/3 ([25], [27]) and n1/(2r+1)

for Cr kernels ([96]). In light of this, we let Bn vary from bn1/5c to bn1/3c for each n. Tables 1

and 2 show that, on an average, K3 consistently achieves the least estimation error, in line with

its reduced bias, as discussed in Remark 3. As a trade-off, it also has slightly higher variation

compared to Parzen or Tukey-Hamming kernel functions. The bandwidths from bn1/4c to bn1/3c

seem to yield better accuracy in estimation with regards to both bias and variance; the different

choices of kernel function for these bandwidths do not translate into any striking differences in

performance in terms of MSE. Therefore, for our subsequent simulations and real-data exercises,

we work with Bn = bn1/4c.
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Kernel Bn = 3 Bn = 4 Bn = 5 Bn = 6 Bn = 7

Model 1
Parzen 3.093(0.481) 3.494(0.798) 2.686(0.328) 2.976(0.461) 2.87(0.653)

Tukey-Hanning 4.117(1.437) 3.386(0.736) 2.901(0.332) 2.591(0.271) 2.407(0.38)
Splitted Rectangular Cosine 2.425(0.461) 2.003(0.798) 1.986(0.871) 2.11(0.848) 2.276(0.832)

Model 2
Parzen 3.027(0.483) 3.429(0.802) 2.605(0.337) 2.88(0.451) 2.763(0.633)

Tukey-Hanning 4.072(1.454) 3.33(0.739) 2.833(0.334) 2.517(0.281) 2.329(0.39)
Splitted Rectangular Cosine 2.358(0.46) 1.941(0.791) 1.931(0.862) 2.049(0.851) 2.206(0.839)

Model 3
Parzen 2.984(0.488) 3.378(0.802) 2.539(0.338) 2.817(0.446) 2.697(0.619)

Tukey-Hanning 4.045(1.471) 3.293(0.748) 2.788(0.341) 2.465(0.289) 2.276(0.396)
Splitted Rectangular Cosine 2.315(0.454) 1.893(0.792) 1.89(0.868) 2.014(0.855) 2.171(0.846)

Model 4
Parzen 2.868(0.506) 3.256(0.812) 2.391(0.357) 2.645(0.442) 2.53(0.607)

Tukey-Hanning 3.97(1.507) 3.196(0.771) 2.673(0.366) 2.34(0.316) 2.146(0.421)
Splitted Rectangular Cosine 2.209(0.455) 1.8(0.781) 1.81(0.868) 1.937(0.884) 2.093(0.899)

Model 5
Parzen 2.829(0.524) 3.211(0.821) 2.335(0.369) 2.574(0.44) 2.455(0.616)

Tukey-Hanning 3.943(1.528) 3.161(0.788) 2.63(0.383) 2.291(0.331) 2.094(0.429)
Splitted Rectangular Cosine 2.167(0.463) 1.755(0.78) 1.772(0.873) 1.905(0.901) 2.063(0.93)

Table 1: Empirical mean (standard deviation) of ρ?(Σ̂n,Bn − Σ∞) for different choices of K and
Bn. Here n = 500. Results have been rounded to three decimals.

Kernel Bn = 3 Bn = 4 Bn = 5 Bn = 6 Bn = 7 Bn = 8 Bn = 9

Model 1
Parzen 2.811 (0.675) 3.215 (1.035) 2.178 (0.291) 2.49 (0.415) 2.188 (0.402) 2.32 (0.46) 2.3 (0.602)

Tukey-Hanning 3.954 (1.778) 3.165 (1.003) 2.616 (0.495) 2.238 (0.262) 1.986 (0.317) 1.827 (0.425) 1.734 (0.504)
Splitted Rectangular Cosine 2.111 (0.342) 1.531 (0.726) 1.417 (0.855) 1.467 (0.849) 1.566 (0.807) 1.677 (0.772) 1.791 (0.757)

Model 2
Parzen 2.794 (0.686) 3.191 (1.04) 2.141 (0.29) 2.447 (0.412) 2.14 (0.413) 2.266 (0.469) 2.242 (0.609)

Tukey-Hanning 3.943 (1.795) 3.15 (1.017) 2.596 (0.505) 2.213 (0.268) 1.957 (0.321) 1.795 (0.429) 1.699 (0.511)
Splitted Rectangular Cosine 2.094 (0.343) 1.508 (0.722) 1.396 (0.851) 1.448 (0.847) 1.547 (0.808) 1.657 (0.772) 1.767 (0.757)

Model 3
Parzen 2.746 (0.694) 3.144 (1.048) 2.079 (0.302) 2.378 (0.413) 2.065 (0.419) 2.185 (0.47) 2.165 (0.603)

Tukey-Hanning 3.914 (1.814) 3.112 (1.029) 2.549 (0.516) 2.161 (0.284) 1.902 (0.333) 1.739 (0.438) 1.643 (0.52)
Splitted Rectangular Cosine 2.049 (0.35) 1.465 (0.718) 1.357 (0.848) 1.412 (0.849) 1.517 (0.814) 1.631 (0.785) 1.74 (0.78)

Model 4
Parzen 2.706 (0.7) 3.102 (1.053) 2.025 (0.312) 2.315 (0.413) 1.999 (0.421) 2.114 (0.469) 2.101 (0.603)

Tukey-Hanning 3.887 (1.829) 3.077 (1.038) 2.508 (0.522) 2.114 (0.291) 1.852 (0.34) 1.687 (0.448) 1.591 (0.53)
Splitted Rectangular Cosine 2.007 (0.352) 1.419 (0.718) 1.321 (0.842) 1.382 (0.845) 1.489 (0.816) 1.609 (0.79) 1.727 (0.787)

Model 5
Parzen 2.678 (0.712) 3.065 (1.057) 1.967 (0.329) 2.256 (0.418) 1.938 (0.416) 2.045 (0.456) 2.017 (0.581)

Tukey-Hanning 3.872 (1.852) 3.055 (1.054) 2.478 (0.532) 2.077 (0.302) 1.81 (0.351) 1.643 (0.456) 1.547 (0.534)
Splitted Rectangular Cosine 1.982 (0.349) 1.39 (0.708) 1.297 (0.834) 1.363 (0.844) 1.466 (0.825) 1.573 (0.81) 1.676 (0.812)

Table 2: Empirical mean (standard deviation) of ρ?(Σ̂n,Bn − Σ∞) for different choices of K and
Bn. Here n = 1000. Results have been rounded to three decimals.

7.4 Simulation for Algorithm 3

In this section, we carry out an extensive simulation study that numerically justifies the asymp-

totic validity of our bootstrap procedure as proved in Theorem 4.1. We consider two separate

models below.
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7.4.1 Threshold autoregressive models

In this section, we consider observations from Model (1.1) with the stationary errors (ei)i∈Z

following a Threshold Auto-Regressive (TAR) process [112, 32]. Mathematically, borrowing the

notation of (1.1) and (1.2), we write

eij = −ρ|ei−1, j|+ εij, 1 ≤ i ≤ n, 1 ≤ j ≤ d, (7.2)

and εi = (εi1, . . . , εid) ∈ Rd are the innovations such that (εi)
n
i=1

i.i.d.∼ N(0, 0.75Σ5,1
RQ). We work

with d = 4, n = 500 and 1000, and ρ = 0.5 in (7.2). For each 1 ≤ j ≤ d, let µLj = 0. Let us

consider the following scenarios.

• Setting 1. (τ1, τ2, τ3, τ4) = (0.5, 0.5−r1, 0.5+r2, 0.5), where r1, r2 ∈ {0, 0.01, 0.02, . . . , 0.1}.

The jumps δj are taken as (6/ log n,−6/ log n, 6/ log n, 0). Note that, the null H0 corre-

sponds to r1 = r2 = 0. When exactly one of r1 and r2 is zero, then this setting has

asynchronized change-points at only two component series. When min{r1, r2} > 0, one

finds asynchronized change-points at three component series.

• Setting 2. (τ1, τ2, τ3, τ4) = (0.5, 0.5−r, 0.5, 0.5) with r = 0.01, 0.02, . . . , 0.1. The jumps are

(δ1, δ2, δ3, δ4) = (6/ log n,−6/ log n, 0, 0). Under the alternate, Setting 2 has asynchronized

change-points at only two component series.

For each n, we use the bandwidth Bn = bn1/4c while estimating Σ∞ by Σ̂n,Bn . The bootstrap

quantile bα(µ̃, Σ̂n,Bn) is empirically estimated based on 5000 bootstrap samples. Finally, for each

particular simulation setting in each of the model, we have used 1000 independently sampled

Monte Carlo draws to empirically estimate the Type-1-error or power (at 5% level of significance)

for that corresponding setting. Figure 7 shows that, under Models 1 and 2, the distinct change-

points are difficult to spot in the asynchronized case.
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Figure 7: A random draw of X(n = 1000) from Setting 1 with r1 = r2 = 0 (left), and r1 = r2 = 0.1
(right).

r2

n r1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0 0.057 0.123 0.178 0.268 0.403 0.508 0.573 0.67 0.729 0.794 0.855

0.01 0.1 0.181 0.302 0.362 0.502 0.607 0.674 0.755 0.768 0.812 0.889
0.02 0.191 0.267 0.383 0.512 0.63 0.718 0.732 0.829 0.852 0.882 0.908
0.03 0.298 0.377 0.491 0.617 0.707 0.75 0.824 0.867 0.895 0.925 0.94
0.04 0.4 0.481 0.615 0.67 0.756 0.826 0.88 0.884 0.923 0.938 0.965
0.05 0.496 0.615 0.682 0.757 0.81 0.885 0.899 0.934 0.955 0.967 0.982
0.06 0.583 0.691 0.746 0.81 0.883 0.898 0.924 0.948 0.97 0.974 0.973
0.07 0.663 0.747 0.817 0.882 0.889 0.929 0.96 0.954 0.962 0.977 0.982
0.08 0.724 0.799 0.849 0.912 0.907 0.946 0.961 0.964 0.979 0.987 0.99
0.09 0.788 0.837 0.885 0.92 0.952 0.966 0.977 0.979 0.988 0.986 0.994

500

0.1 0.814 0.863 0.913 0.943 0.95 0.969 0.975 0.982 0.989 0.995 0.993
0 0.062 0.132 0.232 0.381 0.527 0.667 0.768 0.861 0.894 0.924 0.939

0.01 0.123 0.24 0.368 0.529 0.66 0.758 0.851 0.886 0.928 0.962 0.963
0.02 0.218 0.387 0.523 0.683 0.776 0.839 0.923 0.939 0.966 0.977 0.978
0.03 0.358 0.502 0.665 0.767 0.86 0.917 0.935 0.963 0.98 0.988 0.988
0.04 0.554 0.663 0.763 0.854 0.912 0.944 0.972 0.981 0.995 0.989 0.994
0.05 0.659 0.771 0.861 0.92 0.935 0.964 0.985 0.997 0.995 0.996 0.998
0.06 0.764 0.842 0.88 0.948 0.966 0.984 0.991 0.991 0.996 1 0.998
0.07 0.824 0.894 0.929 0.959 0.98 0.981 0.995 0.998 0.996 0.999 0.999
0.08 0.877 0.925 0.946 0.977 0.99 0.994 0.998 1 0.998 1 0.999
0.09 0.908 0.956 0.963 0.979 0.989 0.992 0.997 1 0.997 1 1

1000

0.1 0.951 0.962 0.978 0.992 0.991 0.996 1 0.998 0.999 0.999 1

Table 3: Type-I error (when r1 = r2 = 0), and power of Algorithm 3 for Setting 1.

r 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
n = 500 0.093 0.111 0.141 0.186 0.219 0.302 0.322 0.355 0.411 0.489
n = 1000 0.099 0.109 0.17 0.225 0.287 0.382 0.422 0.512 0.598 0.672

Table 4: Power of Algorithm 3 for Setting 2.
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7.4.2 GJR-GARCH models

Next, we also apply our bootstrap algorithm to the case when the error process (ei) follows a

GJR-GARCH(1,1) model ([44]):

ei,j = σi,jεi,j ;σ2
i,j = 0.01 + 0.7σ2

i−1,j + 0.1e2
i−1,j + 0.2e2

i−1,jI{ei−1,j ≤ 0}. (7.3)

As in Section 7.4.1, we work with innovations (εi)
n
i=1

i.i.d.∼ N(0, 0.75Σ5,1
RQ). We let d = 4, µLj = 0

for all 1 ≤ j ≤ d, and for each particular setting, consider n = 500 and n = 1000. We focus on

the following model.

• Setting 3. (τ1, τ2, τ3, τ4) = (0.5, 0.5−r1, 0.5+r2, 0.5), where r1, r2 ∈ {0, 0.01, . . . , 0.1}. The

jumps are (δ1, δ2, δ3, δ4) = (1/(log n), 1/(log n),−1/(log n), 0).

For each particular setting, we compute the empirical type-1-error and power via exactly the

same mechanism as described in Section 7.4.1. Tables 3, 4, and 5 show the empirical type-

Figure 8: A random draw of X(n = 1000) from Setting 3 with r1 = r2 = 0 (left), and r1 = r2 = 0.1
(right).

1 error and powers of the models in Sections 7.4.1 and 7.4.2. The simulation results are as

expected, based on the theory of the preceding sections. In particular, in Tables 3 and 5, as

the sample size n increases from 500 to 1000, the empirical type-1 error stabilizes to around

5% for both TAR and GJR-GARCH errors. This justifies the asymptotic result of Theorem

4.1. Obviously, the empirical powers under different alternative settings increase with increasing

n. Moreover, Table 4, and the entries corresponding to r1 = 0 or r2 = 0 in Table 3 show

that, the power is comparatively lesser when there are only two distinct change-points under the
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r2

n r1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0 0.083 0.102 0.112 0.169 0.257 0.326 0.419 0.515 0.54 0.628 0.692

0.01 0.083 0.114 0.174 0.248 0.329 0.41 0.474 0.563 0.619 0.669 0.715
0.02 0.133 0.184 0.234 0.32 0.383 0.477 0.566 0.628 0.685 0.704 0.76
0.03 0.177 0.256 0.322 0.385 0.487 0.548 0.617 0.686 0.749 0.775 0.826
0.04 0.254 0.327 0.399 0.498 0.554 0.617 0.673 0.732 0.797 0.829 0.847
0.05 0.339 0.39 0.502 0.554 0.626 0.69 0.755 0.777 0.811 0.851 0.867
0.06 0.414 0.483 0.542 0.616 0.65 0.762 0.796 0.82 0.84 0.868 0.886
0.07 0.519 0.532 0.623 0.688 0.728 0.777 0.841 0.851 0.895 0.916 0.912
0.08 0.561 0.618 0.665 0.741 0.763 0.825 0.852 0.887 0.898 0.915 0.935
0.09 0.618 0.636 0.723 0.788 0.811 0.842 0.869 0.893 0.905 0.93 0.942

500

0.1 0.676 0.736 0.75 0.799 0.845 0.857 0.898 0.91 0.934 0.932 0.961
0 0.06 0.088 0.164 0.272 0.366 0.515 0.592 0.679 0.751 0.809 0.834

0.01 0.1 0.172 0.226 0.347 0.47 0.559 0.675 0.738 0.815 0.863 0.892
0.02 0.169 0.249 0.367 0.47 0.571 0.651 0.763 0.813 0.853 0.895 0.904
0.03 0.268 0.377 0.413 0.565 0.673 0.761 0.803 0.856 0.909 0.929 0.944
0.04 0.375 0.484 0.587 0.661 0.758 0.817 0.861 0.885 0.923 0.944 0.964
0.05 0.475 0.56 0.69 0.728 0.83 0.859 0.912 0.93 0.953 0.961 0.98
0.06 0.587 0.665 0.719 0.806 0.858 0.91 0.923 0.949 0.95 0.972 0.98
0.07 0.669 0.726 0.794 0.878 0.885 0.943 0.948 0.963 0.974 0.982 0.982
0.08 0.742 0.822 0.85 0.889 0.93 0.937 0.972 0.979 0.979 0.985 0.983
0.09 0.787 0.868 0.873 0.934 0.939 0.953 0.966 0.982 0.981 0.995 0.991

1000

0.1 0.83 0.894 0.907 0.918 0.95 0.964 0.977 0.987 0.987 0.99 0.993

Table 5: Type-1 error (r1 = r2 = 0) and Power of Algorithm 3 for Setting 3.

alternative; the other columns and rows in Table 3 correspond to three distinct change-points,

and in conjunction, to an increased power. This is corroborated by the proof of Proposition 2.2,

where, with an increase in the number of distinct τj’s with jumps δj � 1/
√
n, Tn

P→ ∞ faster.

Interestingly, in Table 5, even for the conditionally heteroscadastic set-ups such as GARCH, our

Gaussian bootstrap-based test performs really well, and achieves around 80% power for n = 1000

when the two distinct change-points are separated by only 0.09. These results augur well for

the performance and robustness of Algorithm 3 in real-life scenarios; in particular, based on our

theoretical excursion and extensive simulation studies, we expect the test to remain valid and

yield considerable power in very general settings.
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8 Proofs of Section 2: Behavior of test statistic

In this section, our main aim is to prove Propositions 2.1 and 2.2. Proposition 2.1 plays a crucial

role in guaranteeing that our test statistic has a small value under the null of synchronization,

thereby leading to the statement of Proposition 2.2. In fact, Proposition 2.2 characterize both

the validity and consistency of our test statistic.

The main technical tool we require in order to analyze the behavior of CUSUM statistic

under various scenarios, is a variation of the well-known Hàjek-Rényi type inequality ([47]). In

the context of time series, [8] proved such inequalities for linear stochastic processes of the form

of Xi =
∑∞

j=0 ajεi−j. It has since been extended further for more general processes, for example

in Theorem 1 of [72] and Theorem 4.1 of [67]. For the sake of completeness, we provide a version

of Hàjek-Rényi inequality for processes satisfying (2.5) along with a simple proof. We also use

a well-known Rosenthal-type inequality controlling the maximum of block sums of stationary

processes. To state both the results in a general setting, we invoke the univariate stationary

process {Yi}i∈Z. In particular, let Yi ∈ R have the causal representation Yi = g(εi, εi−1, . . .) for

i.i.d. innovations εi’s, and a measurable function g : R∞ → R. Further suppose (Yi)i∈Z satisfy

(2.8), where θi,p’s are defined as in (2.6) with Yi’s. Now we are ready to state the results discussed

above.

Lemma 8.1 (Theorem 2.(i) of [121]). Consider stationary processes (Yi)i∈Z with E(Yi) = 0,

satisfying (2.5) and (2.8) for some p ≥ 2. Then, for 1 ≤ m ≤ n it holds that

max
a
‖ max

1≤k≤m
|Ya+1 + . . .+ Ya+k|‖p ≤

p√
p− 1

m1/2Θ0,p. (8.1)

Lemma 8.2 (A Hàjek-Rényi-type inequality). Under the assumptions of Lemma 8.1, we have

P

(
max

0≤k≤m

1

n− k

∣∣∣∣ n∑
i=k+1

Yi

∣∣∣∣ ≥ α

)
≤

CpΘ
2
0,p

α2(n−m)
for m ≤ n− 2, (8.2)

where Cp denotes a constant depending only on p.
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Proof of Lemma 8.2. Let L0 := blog2(n−m)c ≥ 0, and L1 := blog2 nc. Therefore, using Lemma

8.1 and Markov’s inequality

P

(
max

1≤k≤m

1

n− k

∣∣∣∣ n∑
i=k+1

Yi

∣∣∣∣ ≥ α

)
≤

L1∑
l=L0

P

(
max

(n−2l+1)∨0≤k≤(n−2l)∧m

1

n− k

∣∣∣∣ n∑
i=k+1

Yi

∣∣∣∣ ≥ α

)

≤
L1∑
l=L0

P

(
max

(n−2l+1)∨0≤k≤(n−2l)∧m

∣∣∣∣ n∑
i=k+1

Yi

∣∣∣∣ ≥ α(2l ∧ (n−m))

)

≤
L1∑
l=L0

Cp
Θ2

0,p

α22l−1
.
CpΘ

2
0,p

α22L0
≤

CpΘ
2
0,p

α2(n−m)
,

which completes the proof.

The Hàjek-Rényi type inequality enables us to tackle the behavior of sample mean to the left and

right of the estimated change-point. The use of Lemma 8.2 underpins much of the probabilistic

arguments in the proof of Propositions 2.1 and 2.2, which are provided below sequentially.

Proof of Proposition 2.1. We will first show that |τ̂j − τj| = OP((nδ2
j )
−1 ∧ 1) for each 1 ≤ j ≤ d.

Fix 1 ≤ j ≤ d and ε > 0. Let Cε > 1 denote a large enough constant depending on ε, whose

choice will be made explicitly clear in the appropriate part of our argument. Moreover, let Mε

be another large constant such that P(|τ̂j − τj| > Mε/(nδ
2
j )) ≤ ε. Our argument will necessarily

hinge on finding an appropriate Mε. Note that, if nδ2
j ≤ Cε, then the conclusion follows trivially

by choosing Mε ≥ Cε. Henceforth, it is assumed that nδ2
j > Cε. Let k̂j = nτ̂j, and k0,j = bnτjc.

Clearly, n− k0,j � n(1− τj). Observe that k̂j can be written as arg max1≤i≤n |V X
i,j |, where

V X
i,j = Sij − iX̄·j. (8.3)

11



Further, let V e
i,j := Seij − iē·j. A crucial observation for our subsequent arguments is that,

V X
i,j − E[V X

i,j ] = V e
i,j, with E[V X

i,j ] =


−i(1− k0,j

n
)δj, i/n ≤ τj,

−k0,j

n
(n− i)δj, i/n > τj,

for all 1 ≤ i ≤ n, 1 ≤ j ≤ d.

(8.4)

LetX ·j denote the vector (X1j, . . . , Xnj)
T for 1 ≤ j ≤ d. Since (V X

i,j )ni=1 are invariant with respect

to µLj , hence without loss of generality, we can let µLj = 0 for 1 ≤ j ≤ d. Further, without loss of

generality, assume that δj > 0 (otherwise consider −X ·j). Observe that for all sufficiently large

n,

P
(
|τ̂j − τj| >

Mε

nδ2
j

)
≤ P

(
max

k:|k−k0,j |>Mε/δ2
j

|V X
k,j| ≥ |V X

k0,j ,j
|

)

≤ P

(
max

k:|k−k0,j |>Mε/δ2
j

V X
k,j + V X

k0,j ,j
≥ 0

)
+ P

(
max

k:|k−k0,j |>Mε/δ2
j

V X
k,j − V X

k0,j ,j
≤ 0

)

:= P1 + P2. (8.5)

Now, for the first term, suppose k1 := arg maxk:|k−k0,j |>Mε/δ2
j
V X
k,j + V X

k0,j ,j
. Consider the following

sequence of implications

V X
k1,j

+ V X
k0,j ,j

≥ 0

=⇒ (V X
k1,j
− E[V X

k1,j
]) + (V X

k0,j ,j
− E[V X

k0,j ,j
]) ≥ −(E[V X

k1,j
] + E[V X

k0,j ,j
])

=⇒ 2 max
1≤k≤n

|V X
k,j − E[V X

k,j]| ≥ −E[V X
k0,j ,j

], (as E[V X
k1,j

] < 0 for δj > 0)

=⇒ 2 max
1≤i≤n

|V e
i,j| ≥ −E[V X

k0,j ,j
] = k0,j(1− k0,j/n)δj.

Therefore, in view of these assertions and applying Lemma 8.1 and Markov’s inequality, one

12



obtains for sufficiently large n,

P1 ≤ Cp
nΘ2

0,p

k2
0,j(1− k0,j/n)2δ2

j

≤ Cp
Θ2

0,p

τ 2
j (1− τj)2nδ2

j

<
CpΘ

2
0,p

τ 2
j (1− τj)2Cε

< ε,

where the last inequality can be guaranteed by choosing Cε large enough. On the other hand,

for P2, suppose k2 := arg maxk:|k−k0,j |>Mε/δ2
j
V X
k,j − V X

k0,j ,j
. Again, note the following sequence of

implications:

V X
k2,j
− V X

k0,j ,j
≤ 0

=⇒ (V X
k2,j
− E[V X

k2,j
])− (V X

k0,j ,j
− E[V X

k0,j ,j
]) ≤ −(E[V X

k2,j
]− E[V X

k0,j ,j
])

=⇒ |Sek0,jj
− Sek2j

− (k0,j − k2)ē·j| ≥


(k0,j − k2)(1− k0,j/n)δj, k2 ≤ k0,j,

(k2 − k0,j)(k0,j/n)δj, k2 > k0,j

=⇒ max
k:|k−k0,j |>Mε/δ2

j

∣∣∣∣ 1

k0,j − k
(V e

k0,j ,j
− V e

k,j)

∣∣∣∣ ≥ min{k0,j/n, 1− k0,j/n}δj.

By virtue of Lemmas 8.1 and 8.2, and in view of |τ̂j−τj| > Mε/(nδ
2
j ), from the above implications

we obtain

P2 ≤
CpΘ

2
0,p

min{τ 2
j , (1− τj)2}Mε

< ε,

where, as in the case for P1, the last inequality is guaranteed by a choice of large enough Mε.

Combining the analysis of P1 and P2, from (8.5) we obtain the conclusion.

Next we prove consistency of the τ̂ under the null of synchronization. Let k̃ = bnτc. As

k̃/n � τ , for ease of exposition and to avoid cumbersome notation, we assume k̃ = nτ ∈ N.

Recall X ·j = (X1,j, . . . , Xn,j)
T , j-th component of the time series. Observe that, for any set

A ⊆ {1, 2, . . . , d}, replacing X ·j by −X ·j for all j ∈ A does not change τ̂ . Therefore, without

loss of generality, we assume that δ1 ≥ . . . ≥ δd ≥ 0. Given ε > 0, we aim to find a large enough

Lε such that P(|τ̂ − τ | > Lε/(nδ
2
1)) < ε for all sufficiently large n. Fix a constant Dε > 1,

whose value will be specified later. If nδ2
1 ≤ Dε, then the conclusion follows trivially by choosing

13



Lε ≥ Dε. Henceforth it is assumed that nδ2
1 > Dε. As we go along in our proof, we will indicate

the choices to be made for Lε and Dε.

We are interested in the following probability:

P(|τ̂ − τ | > Lε/(nδ
2
1)) ≤ P

(
max

i:|i−k̃|>Lε/δ2
1

d∑
j=1

|V X
i,j | >

d∑
j=1

|V X
k̃,j
|

)
. (8.6)

We will bound (8.6) with a similar, but much more general argument compared to the first part

of the proposition. In particular, the presence of
∑d

j=1 on both sides of the inequality of the

event

X :=
d∑
j=1

|V X
i,j | >

d∑
j=1

|V X
k̃,j
|,

necessitates the introduction of some notations. Let k3 := arg maxi:|i−k̃|>Lε/δ2
1

∑d
j=1 |V X

i,j |. Define

the random variables

αj := I{V X
k3,j
≥ 0} − I{V X

k3,j
< 0} ; βj := I{V X

k̃,j
≥ 0} − I{V X

k̃,j
< 0}. (8.7)

Obviously both αj, βj ∈ {−1, 1} for 1 ≤ j ≤ d. Suppose 1 ≤ j? ≤ d be such that δj? ≥ δ1/d >

δj?+1. In particular, j? = d if δd ≥ δ1/d. Write (8.6) as

P(X ) = P(X , ∃j0 ≤ j? such that αj0 = 1︸ ︷︷ ︸
X1

) + P(X , α1 = . . . = αj? = −1︸ ︷︷ ︸
X2

) := P(X1) + P(X2). (8.8)

We tackle the two terms P(X1) and P(X2) in (8.8) one-by-one. For a fixed 1 ≤ i ≤ n, define the

function fn,j(i) = E[V X
i,j ]. Further, for 1 ≤ j ≤ d, let us denote Aj := V e

k3,j
, Bj := −fn,j(k3),

Cj := V e
k̃,j

, and Dj := −fn,j(k̃). From (8.4) and δ1 ≥ . . . ≥ δd ≥ 0, it follows

D1 ≥ . . . ≥ Dd ≥ 0, B1 ≥ . . . ≥ Bd ≥ 0, and Dj ≥ γBj for all 1 ≤ j ≤ d and γ ∈ {−1, 1}.

(8.9)
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Moreover, (8.4) instructs V X
k3,j

= Aj − Bj, and Vk̃,j = Cj − Dj. We will leverage (8.9) to make

P(X1) and P(X2) amenable to Lemmas 8.1 and 8.2. To begin with, observe that X can be written

as

d∑
j=1

αj(Aj −Bj)−
d∑
j=1

βj(Cj −Dj) > 0. (8.10)

For P(X1), we note that, (8.10) implies,

X1 =⇒
d∑
j=1

(αjAj + Cj) >
d∑
j=1

(Dj + αjBj) = Dj0 +Bj0 +
∑
j 6=j0

(Dj + αjBj) > Dj? ≥ nτ(1− τ)δ1/d,

(8.11)

where the first implication is due to
∑d

j=1 βj(Cj −Dj) >
∑d

j=1(Cj −Dj), the second inequality

follows from (8.9), and the final inequality holds by definition of j? and Dj. Noting that

d∑
j=1

(αjAj + Cj) ≤ 2d max
1≤j≤d

max
1≤i≤n

|V e
ij|,

from (8.11), we finally have

X1 =⇒ max
1≤j≤d

max
1≤i≤n

|V e
ij| > nδ1Cd,

where Cd = τ(1 − τ)/(2d2). Applying Lemma 8.1 and Markov’s inequality, for a constant Cp,d

depending on p and d we obtain

P(X1) ≤ Cp,d
Θ2

0,p

nδ2
1

≤ Cp,d
Θ2

0,p

Dε

< ε, (8.12)

where the final inequality is guaranteed by choosing δ1 large enough.

Now we focus on tackling P(X2). Let us define the random sets A := {1 ≤ j ≤ d : βj = 1},
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and B := {1 ≤ j ≤ d : αj = −1}. Observe that

d∑
j=1

βj(Cj −Dj) =
∑
j∈A

(Cj −Dj)−
∑
j /∈A

(Cj −Dj)

≥ −
∑
j∈A∩B

(Cj −Dj) +
∑

j∈A∩Bc
(Cj −Dj)−

∑
j∈Ac∩B

(Cj −Dj) +
∑

j∈Ac∩Bc
(Cj −Dj)

= −
∑
j∈B

(Cj −Dj) +
∑
j∈Bc

(Cj −Dj),

where for the inequality we have used Cj − Dj ≥ 0 for j ∈ A, and Cj − Dj < 0 for j ∈ Ac.

Therefore, from (8.10) one obtains

−
∑
j∈B

(Aj −Bj) +
∑
j∈Bc

(Aj −Bj) +
∑
j∈B

(Cj −Dj)−
∑
j∈Bc

(Cj −Dj) > 0

=⇒
∑
j∈B

(−Aj + Cj) +
∑
j∈Bc

(Aj − Cj) >
∑
j∈B

(Dj −Bj)−
∑
j∈Bc

(Dj −Bj)

≥


(1− τ)(k̃ − k3)(

∑
j∈B δj −

∑
j∈Bc δj), k3 ≤ k,

τ(k3 − k̃)(
∑

j∈B δj −
∑

j∈Bc δj), k3 > k.

(8.13)

Now, for P(X2), note that since α1 = . . . = αj? = −1, therefore {1, . . . , j?} ⊆ B. Moreover, by

definition of j?,
∑d

j=j?+1 δj ≤ (1− j?/d)δ1, and hence,

∑
j∈B

δj −
∑
j∈Bc

δj ≥
j?∑
j=1

δj −
d∑

j=j?+1

δj ≥
j?

d
δ1 + . . .+ δj? ≥

δ1

d
.

In view of this, (8.13) entails

X2 =⇒ max
k:|k−k̃|>Lε/δ2

1

∑d
j=1 |V e

k,j − V e
k̃,j
|

|k − k̃|
≥ δ1

d
min{τ, 1− τ}.
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Therefore, using Lemma 8.2 and |k − k̃| > Lε/δ
2
1, we have

P(X2) ≤ Cp,d
Θ2

0,p

min{τ 2, (1− τ)2}Lε
< ε, (8.14)

where the last inequality is guaranteed by choosing large enough Lε. The proof is complete in

light of (8.12) and (8.14).

Now we proceed towards the proof of Proposition 2.2.

Proof of Proposition 2.2. Write Tn =
∑d

j=1(|V X
nτ̂j ,j
| − |V X

nτ̂,j|)/
√
n. We tackle the validity and

consistency of our test separately.

8.1 Behavior under H0: Validity

For each 1 ≤ j ≤ d, we will show that |V X
nτ̂j ,j
| − |V X

nτ̂,j| = OP(
√
n). Henceforth in this subsection,

we will fix j. In light of (8.4) and d being fixed, we have

||V X
nτ̂j ,j
| − |V X

nτ̂,j|| ≤ (|V e
nτ̂j ,j
|+ |V e

nτ̂ ,j|) + |fn,j(nτ̂j)− fn,j(nτ̂)|. (8.15)

Lemma 8.1 instructs that

‖ max
1≤i≤n

V e
i,j‖p = O(

√
nΘ0,p), (8.16)

which takes care of the first term in the RHS of (8.15). The second term is tackled as follows.

Recall the convention that change-points are synchronized for dimensions with δj = 0. If τ1 =

. . . = τd = τ , then Proposition 2.1 implies that |τ̂j − τ̂ | = OP(min{1/(nδ2
j ), 1}). Following (8.4),

this assertion further yields that

∣∣∣∣|fn,j(nτ̂j)| − |fn,j(nτ̂)|
∣∣∣∣ ≤ 2(τ ∨ (1− τ))n|δj|OP(

1

1 ∨ nδ2
j

) = OP(
√
n ∧ |δj|−1). (8.17)
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This completes the proof of validity under H0 in light of (8.15) and (8.16).

8.2 Behavior under Hc
0: Consistency

Recall H from the statement of Proposition 2.2, and in view of (2.9), consider j1, j2 such that

nδ2
j →∞ for j ∈ {j1, j2}. Observe that for all 1 ≤ j ≤ d, |V X

nτ̂j ,j
| ≥ |V X

nτ̂,j|. Therefore, from (8.4)

it is enough to show that

n−1/2
∑

j∈{j1,j2}

(|V e
nτ̂j ,j

+ fn,j(nτ̂j)| − |V e
nτ̂ ,j + fn,j(nτ̂)|) P→∞. (8.18)

Note that, (8.16) implies that ‖n−1/2V e
nτ̂j ,j
‖ = OP(1), and ‖n−1/2V e

nτ̂ ,j‖ = OP(1). Therefore, we

focus on characterizing how far off fn,j(nτ̂) can be from fn,j(nτ̂j). Note that |fn,j(nτj)| ≥ |fn,j(nτ̂)|

always. Moreover, for j ∈ {j1, j2}, it holds always that

|fn,j(nτj)| − |fn,j(nτ̂)|/
√
n ≥
√
n|δj|Cj|τj − τ̂ |, (8.19)

where Cj := min{τj(1− τj), (1− τj)τj}. Therefore, from (8.19) it follows almost surely

n−1/2
∑

j∈{j1,j2}

(|fn,j(nτj)| − |fn,j(nτ̂)|) ≥
√
n
∑

j∈{j1,j2}

|δj|Cj|τj − τ̂ |

≥ C
√
n min
j∈{j1,j2}

Cj|δj| → ∞, (8.20)

where C := min{|τj1 − τj2 | : {j1, j2} ∈ H, n(δ2
j1
∧ δ2

j2
) → ∞} > 0 is a constant, and the limiting

assertion follows from (2.9). Moreover, noting that an argument similar to (8.17) along with

|τ̂j − τj| = OP((nδ2
j )
−1 ∧ 1), we have

n−1/2
∑

j∈{j1,j2}

(|fn,j(nτ̂j)| − |fn,j(nτj)|) = OP(1). (8.21)
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From (8.20), along with (8.21), we obtain

n−1/2
∑

j∈{j1,j2}

(|fn,j(nτ̂j)| − |fn,j(nτ̂)|) P→∞, (8.22)

which completes the proof of (8.18).

9 Proofs of Section 3

This section is devoted to the proofs of the results appearing in Section 3.

9.1 Proof of Lemma 3.1

Proof. Let Si =
∑i

j=1Xj denote the partial sums of Xj’s. Since the quantities (Si − iX̄·j)ni=1 are

invariant with respect to µLj , therefore, without loss of generality, suppose µLj = 0 for 1 ≤ j ≤ d.

In light of Theorem 3.1, there exists independent random variables Zi ∼ N(µi,Σ∞) such that

max
1≤i≤n

|Si −
i∑

k=1

Zi| = oP(n1/p). (9.1)

Write |Tn − TZn | = |W1 −W2|/
√
n where

W1 :=
d∑
j=1

[
|Snτ̂j ,j − nτ̂jX̄·j| − |SZnτ̃Zj ,j − nτ̃

Z
j Z̄·j|

]
,

W2 :=
d∑
j=1

[
|Snτ̂ ,j − nτ̂X̄·j| − SZnτ̃Z ,j − nτ̃

ZZ̄·j|
]
.

For W1, observe that by definition of τ̂j and τ̃j,

||Snτ̂j ,j − nτ̂jX̄·j| − |SZnτ̃Zj ,j − nτ̃
Z
j Z̄·j|| ≤ max

1≤i≤n
|Sij − iX̄·j − SZij + iZ̄·j|,
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which entails, in light of (3.4) and (9.1), that

|Snτ̂j ,j − nτ̂jX̄·j| − |SZnτ̃Zj ,j − nτ̃
Z
j Z̄·j| = oP(n1/p), (9.2)

where we have used that Ωn = 2 − 1/n. Now we focus on W2. Let V X
i := (V X

i,1 , . . . , V
X
i,d)T ,

where V X
i,j ’s are defined as in (8.3). Similarly define V Z

i based on Z1, . . . ,Zn. We use the

notation | · |L1 for the vector L1 norm. Note that nτ̂ := arg max1≤i≤n |V X
i |L1 , and similarly,

nτ̃Z := arg max1≤i≤n |V Z
i |L1 . Therefore, a similar treatment to (9.2) yields,

W2 =

∣∣∣∣|V X
nτ̂ |L1 − |V Z

nτ̃Z |L1

∣∣∣∣ ≤ max
1≤i≤n

|V X
i − V Z

i |L1 = oP(n1/p), (9.3)

where we have used the uniform over 1 ≤ j ≤ d bound from Theorem 3.1 to obtain the oP(n1/p)

term. The proof is complete in light of (9.2) and (9.3).

9.2 Proofs of Section 3.2

In this section, we will prove Theorem 3.2, establishing the consistency of our estimate of long-run

covariance matrix. We begin with a proof for the Proposition 3.1, which might be of independent

interest.

Proof of Proposition 3.1. Let B := {1 ≤ j ≤ d : δj > 0}. To facilitate an intermediary oracle

estimate, we define

µ̃Lj =
1

bnτjc

bnτjc∑
i=1

Xij, µ̃
R
j =

1

n− bnτjc

n∑
i=bnτjc+1

Xij

for all 1 ≤ j ≤ d. Note that in particular for j /∈ B, we pick a dummy τj ∈ (0, 1). This is consistent

with our notion of synchronization, where we assume the change-points to be synchronized if the

jump is zero. For 1 ≤ i ≤ n, 1 ≤ j ≤ d, define µ̃i = (µ̃i1, . . . , µ̃id) with µ̃ij = µLj +(µRj −µLj )I{i/n >

τj}. Since µ̂i − µi is invariant with respect to the mean left of change-point, without loss of
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generality we can assume µLj = 0 for δj > 0, and µj = 0 otherwise. In light of Cauchy-Schwarz

inequality, it is enough to upper bound

n∑
i=1

(µ̂ij − µij)2 (9.4)

for 1 ≤ j ≤ d. We start with an upper bound on
∑n

i=1(µ̂ij − µ̃ij)2. For ease of exposition, let us

introduce some more notations. For 1 ≤ j ≤ d, let

DLLj = |µ̂Lj − µ̃Lj |,

DRRj = |µ̂Rj − µ̃Rj |, and,

DLRj = |µ̂Lj − µ̃Rj |I{τ̂j > τj}+ |µ̂Rj − µ̃Lj |I{τj > τ̂j}.

(9.5)

Let us further denote ςjj = |τ̂j − τj| for 1 ≤ j ≤ d. Observe that

DLRj ≤ max

{∣∣∣∣ 1

nτ̂j

nτ̂j∑
i=1

eij −
1

n(1− τj)

n∑
i=nτj+1

eij

∣∣∣∣I{τ̂j > τj},

∣∣∣∣ 1

n− nτ̂j

n∑
i=nτ̂j+1

eij −
1

nτj

nτj∑
i=1

eij

∣∣∣∣I{τj > τ̂j}
}

+ |δj|+ C|δjςjj|

= OP(|δj|+ 1/
√
n), (9.6)

uniformly in j, where the OP(·) rate follows from Lemma 8.2 and Proposition 2.1. Note that in

particular for j /∈ B, the tactic of choosing an arbitrary τj ∈ (0, 1) is crucial; otherwise, say for

τj = 0, we would end up with

∣∣∣∣ 1

nτ̂j

nτ̂j∑
i=1

eij −
1

n

n∑
i=1

eij

∣∣∣∣ ≤ max
1≤k≤n

∣∣∣∣1k
k∑
i=1

eij −
1

n

n∑
i=1

eij

∣∣∣∣ = OP(1),
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which is worse than the OP(1/
√
n) rate we obtain in (9.6). Similar to (9.6) one can show

DLLj ∨ DRRj = OP(
1√
n
∧ 1

n|δj|
) uniformly in j. (9.7)

It can be verified by some elementary algebra that

n∑
i=1

(µ̂ij − µ̃ij)2 ≤nςjj(DLRj )2 + nτj(DLLj )2 + n(1− τj)(DRRj )2, (9.8)

which in light of Proposition 2.1, (9.6) and (9.7), immediately yields

n∑
i=1

(µ̂ij − µ̃ij)2 = OP(1), for 1 ≤ j ≤ d. (9.9)

We would like to point out that in (9.8), only nςjj(DLRj )2 contributes exactly to the OP(1) rate,

and rest of the terms are at most OP((nδj)
2)−1 ∧ 1). Moreover, noting that |Senj| = OP(

√
n) for

each 1 ≤ j ≤ d, it is easy to see that
∑n

i=1(µ̃ij − µij)2 = OP(1). Therefore, preceding discussion

along with (9.9) and Cauchy-Schwarz inequality completes the proof of the Lemma.

Now we move towards proving the main result of this section.

Proof of Theorem 3.2. We first show that for 0 ≤ k ≤ n− 1

ρ?(Γ̂k − Γk) = OP(1/
√
n), (9.10)

where Γk = E[e0e
T
k ]. Using Gershgorin circle theorem and since d is fixed, it is enough to show

that Rn,j,l := |(Γ̂k)j,l − (Γk)j,l| is small for all 1 ≤ j, l ≤ d. Observe that, from (1.1)

|Rn,j,l| ≤
∣∣∣∣ 1n

n−k∑
i=1

eijei+k,l − (Γk)j,l

∣∣∣∣+

∣∣∣∣ 1n
n−k∑
i=1

(µ̂ij − µij)(µ̂i+k,l − µi+k,l)
∣∣∣∣+∣∣∣∣ 1n

n−k∑
i=1

(
eij(µ̂i+k,l − µi+k,l) + ei+k,l(µ̂ij − µij)

)∣∣∣∣. (9.11)
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The second term in (9.11) yields a bound of OP(1/n) from Lemma 3.1. On the other hand, for

the first term in (9.11), an argument same as Lemma 1 of [122] yields that

∣∣∣∣ 1n
n−k∑
i=1

eijei+k,l − (Γk)j,l

∣∣∣∣ = OP(n2/p′−1),

where p′ = p ∧ 4. Note that 1
n

∑n−k
i=1 e

2
ij = OP(1). Since 1/

√
n < n2/p′−1, Therefore, by Cauchy-

Schwarz inequality, the third term is also OP(n2/p′−1). Thus we have established (9.10). Com-

bining this with
∑

k |K(k/Bn)| = O(Bn), the consistency of our estimator can be characterized

as

ρ?(Σ̂n,Bn − E[Σ̂n,Bn ]) = OP

(
Bnn

2/p−1)

)
. (9.12)

On the other hand, the bias term can be tackled as follows. Note that max1≤j,l≤d |γk,j,l| ≤∑
s∈Z θs,pθk+s,p. Hence, for a constant Cd depending on d,

n∑
k=Bn+1

ρ?(Γk) ≤ Cd
∑
s∈Z

θs,p

∞∑
k=Bn+1

θk+s,p ≤ CdΘ0,pΘBn+1,p = O(B−An ),

and
Bn∑
k=1

|K(k/Bn)− 1|ρ?(Γk) ≤ Cd
∑
s∈Z

θs,p

Bn∑
k=1

(k/Bn)θk+s,p = O(1/Bn),

which together yield

ρ?(E[Σ̂n,Bn ]− Σ∞) = O(B−1
n ). (9.13)

Hence, (9.12) along with (9.13) jointly implies (3.8), thereby completing the proof.

10 Proofs of Section 4

Here, we establish the theoretical results concerning our bootstrap procedure.
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Proof of Proposition 4.1. Our proof will follow along similar lines to Proposition 4.3 of [81].

Recall that Σ∞ =
∑

k∈Z E[e0e
T
k ] is the long-run variance of the error process (ei). Observe that,

by Theorem 3.1, there exists Z1, . . . ,Zn
i.i.d∼ N(0,Σ∞) such that

P(Unj ≥ aα−vn,j(Σ̂n,Bn) + cn) ≤ α + P(aα,j(Σ∞) ≥ aα−vn,j(Σ̂n,Bn) + cn/2)+

P(|Unj − Unj(Z1, . . . ,Zn)| > cn/2). (10.1)

Let Σ2 be a symmetric, positive definite matrix, and denote by R := ρ?(Σ∞ − Σ2). Then by

Lemma 5.2 of [81], there exists i.i.d Gaussian variables η1, . . . ,ηn such that (Z̃i := Zi+ηi)
n
i=1

i.i.d∼

N(0,Σ2). Using Doob’s Lp maximal inequality (Theorem 2.2 of [48]) for p = 2, along with the

fact that ρ?(A) ≥ maxj,l |Ajl| for any square matrix A, implies that, for every 1 ≤ j ≤ d,

E[|Unj(Z1, . . . ,Zn)− Unj(Z̃1, . . . , Z̃n)|2] ≤ CR

for some constant C > 0 possibly depending upon d. Therefore,

P(Unj(Z1, . . . ,Zn) ≥ aα−vn,j(Σ2) + cn/2)

≤α− vn + P(|Unj(Z1, . . . ,Zn)− Unj(Z̃1, . . . , Z̃n)| ≥ cn/2)

≤α− (vn − 2C
R
c2
n

) ≤ α, (10.2)

if R ≤ c2
nvn/(2C). Therefore, if R ≤ c2

nvn/(2C), then aα,j(Σ∞) ≤ aα−vn,j(Σ2) + cn/2. Now we

replace Σ2 by Σ̂n,Bn . This being a random quantity, the corresponding random error be denoted

as R̂. Thus, in view of (10.2), from (10.1) we have

P(aα,j(Σ∞) ≥ aα−vn,j(Σ̂n,Bn) + cn/2) ≤ P(R̂ > c2
nvn/(2C)).
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Observe that by our choice of cn and vn, from Theorem 3.2 we have

lim
n→∞

P(R̂ > c2
nvn/(2C)) + P(|Unj − Unj(Z1, . . . ,Zn)| > cn/2) = 0.

Hence in light of (10.1), the proof of (4.2) is complete.

Proof of Theorem 4.1. In the following, C will denote a constant depending on d whose value

may change from line-to-line. We will follow the proof strategy of Proposition 4.1, with some

additional but significant modification necessitated by the form of our test statistic Tn. By

Theorem 3.1, there exists η1, . . . ,ηn
i.i.d∼ N(0,Σ∞) such that |Sei − S

η
i | = oP(n1/p). Write

P(Tn ≥ bα−hn(µ̃, Σ̂n,Bn) + un)

≤α + P(bα(µ,Σ∞) ≥ bα−hn(µ̃, Σ̂n,Bn) + un/2) + P(|Tn − Tn(Z1, . . . ,Zn)| > un/2) (10.3)

where Zi = ηi +µi. For the third term in (10.3), Lemma 3.1 along with our choice of un implies

that limn→∞ P(|Tn − Tn(Z1, . . . ,Zn)| > un/2) = 0. Thus we focus on bounding P(bα(µ,Σ∞) ≥

bα−hn(µ̃, Σ̂n,Bn) + un/2).

Hereafter, we write Tn(Z1, . . . ,Zn) as Tµ,Σ∞
n . Let Σ† be a symmetric positive definite matrix,

with R := ρ?(Σ∞ − Σ†). Moreover, let τ † ∈ (0, 1), (γ†j )
d
j=1 ∈ R, (νLj )dj=1 ∈ R and (νRj )dj=1 ∈ R be

given. Consider a sequence of vectors µ†1, . . . ,µ
†
n ∈ Rd such that

µ†ij =


γj, if j ∈ V0,

ν†ij, if j ∈ V1.

Here

ν†ij =


υLj , if i ≤ nτ †

υRj , if i > nτ †.

Denote GLLj1 = |υLj − µLj |, GRRj1 = |υRj − µRj | and GLRj1 = |υLj − µRj |I{τ † > τ}+ |υRj − µLj |I{τ > τ †}.
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Further, let ψ := |τ † − τ |. We point out that above definitions are motivated from the definition

of Dj’s from (9.5). Indeed, we will pursue an argument conditional on Gj0, GLLj1 , GLRj1 , GRRj1

and τ †j . Note that, by Lemma 5.2 of [81], there exists independent Gaussian random variable

W1, . . . ,Wn such that Λi := Zi + Wi ∼ N(µi,Σ
†). Let Tµ,Σ†

n = Tn(Λ1, . . . ,Λn). Further denote

Tµ†,Σ†
n = Tn(Z†1, . . . ,Z

†
n), where Z†i = Λi + µ†i − µi. Note that

P(Tµ,Σ∞
n ≥ bα−hn(µ†,Σ†) + un/2)

≤α− hn + P(|Tµ,Σ∞
n − Tµ,Σ†

n | > un/4) + P(|Tµ†,Σ†

n − Tµ,Σ†

n | > un/4). (10.4)

Similar to Lemma 3.1 and (10.2), P(|Tµ,Σ∞
n −Tµ,Σ†

n | > un/4) ≤ CR/u2
n. To tackle |Tµ†,Σ†

n −Tµ,Σ†
n |,

we introduce some notation. Let V †i,j =
∑i

k=1(Z†kj − Z̄
†
·j), τ̂

†
j = (arg max1≤i≤n |V

†
i,j|)/n, and τ̂ † =

(arg max1≤i≤n
∑d

j=1 |V
†
i,j|)/n. Likewise, define V Λ

i,j, τ̂
Λ
j and τ̂Λ with Λ1, . . . ,Λn. Now, simplify

|Tµ†,Σ†
n − Tµ,Σ†

n | as

d∑
j=1

∣∣∣∣ (|V †nτ̂†j ,j| − |V Λ
nτ̂Λ

j ,j
|
)
−
(
|V †
nτ̂†,j
| − |V Λ

nτ̂Λ,j|
) ∣∣∣∣/n. (10.5)

For the first term in (10.5), note that

∣∣∣∣V †nτ̂†j ,j − V Λ
nτ̂Λ

j ,j

∣∣∣∣ ≤ max
1≤i≤n

∣∣∣∣ i∑
k=1

(Z†kj − Z̄
†
·j − Λkj + Λ̄·j)

∣∣∣∣
= max

1≤i≤n

∣∣∣∣ i∑
k=1

µ†kj −
i

n

n∑
k=1

µ†kj −
i∑

k=1

µkj +
i

n

n∑
k=1

µkj

∣∣∣∣ (10.6)

For j ∈ V0, (10.6) immediately vanishes to 0. For j ∈ V1 we can observe

max
1≤i≤n

|
i∑

k=1

(µ†kj − µkj)| ≤ Cn(GLLj1 + GRRj1 + ψGLRj1 ).
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Therefore combining above, we have

max
1≤j≤d

∣∣∣∣V †nτ̂†j ,j − V Λ
nτ̂Λ

j ,j

∣∣∣∣ /√n ≤ Cd
√
nmax
j∈V1

(GLLj1 + GRRj1 + ψGLRj1 ) :=M. (10.7)

In light of the argument in (9.3), a similar bound also holds for
∑

1≤j≤d |V
†
nτ̂†,j

− V Λ
nτ̂Λ,j|/

√
n.

Therefore, from (10.7), we finally arrive at E|Tµ†,Σ†
n − Tµ,Σ†

n | ≤ M. Hence, from (10.4), P(Tn ≥

bα−hn(µ†,Σ†) + un/2) ≤ α if

hn − C
R
u2
n

− 4M/un ≥ 0. (10.8)

Clearly, P(Tn ≥ bα−hn(µ†,Σ†) + un/2) ≤ α implies that bα(µ,Σ∞) ≤ bα−hn(µ†,Σ†) + un/2. We

now apply the implication (10.8) with µ†ij = µ̃ij, τ
† = τ̂ and Σ† = Σ̂n,Bn . The corresponding M,

R, ψ, and Gj’s are denoted by M̂, R̂, ψ̂, and Ĝj respectively. All of these are random variables.

In particular, an argument similar to (9.6) and (9.7) shows that, under H0 in (1.3),

max
j∈V1

ĜLLj1 ∨ ĜRRj1 = OP(
1√
n

), and max
j∈V1

ĜLRj1 /|δj| = OP(1).

Therefore, M̂ = OP(maxj∈V1 1/(
√
n|δj|)) after noting ψ̂ = OP((n

∑d
j=1 δ

2
j )
−1), from Proposition 2.1.

Moreover, Theorem 3.2 instructs R̂ = OP(Bnn
2/p′−1 +B−1

n ), which implies, in light of (10.8),

lim
n→∞

P(bα(µ,Σ∞) ≥ bα−hn(µ̃, Σ̂n,Bn) + un/2)

≤ lim
n→∞

P
(
R̂ ≥ C

2
u2
nhn

)
+ lim

n→∞
P(M̂ ≥ 1

8
unhn) = 0, (10.9)

where, the final equality follows from our choice of un and hn. This completes the proof of our

theorem.
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