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Abstract

In this work, we explore the forecasting ability of a recently proposed
normalizing and variance-stabilizing (NoVaS) transformation with the
possible inclusion of exogenous variables in GARCH volatility spec-
ification. From an applied point-of-view, extra knowledge such as
fundamentals- and sentiments-based information could be beneficial
to improve the prediction accuracy of market volatility if they are in-
corporated into the forecasting process. In the classical approach, these
models including exogenous variables are typically termed GARCHX-
type models. Inspired by a Model-free prediction principle, NoVaS has
generally shown more accurate, stable and robust (to misspecifications)
performance than that compared to classical GARCH-type methods.
This motivates us to extend this framework to the GARCHX forecasting
as it enlarges the scope of application especially where one conjectures
the improvement in prediction performance by including covariates. We
derive the NoVaS transformation needed to include exogenous covariates
and then construct the corresponding prediction procedure. We show
through extensive simulation studies that bolster our claim that the
NoVaS method outperforms traditional ones, especially for long-term
time aggregated predictions. We also provide an interesting data analy-
sis to exhibit how our method could possibly shed light on the role of
geopolitical risks in forecasting volatility in national stock market indices
for three different countries in Europe.
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1 Introduction
In the long history of time series econometrics literature, accurate forecasting has
always stood out as a fundamental and important problem. It has a range of
applications in various industries, e.g., weather forecasting, climate forecasting, and
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economic forecasting. Discrete-time series data, e.g., heights of ocean tides, and
temperature of a city, is the realization of a stochastic process {Xt, t ∈ Z}. The
earliest modern time series analysis could be traced back to the work of Yule (1927)
where the pattern of the sunspots number was studied. Unlike the prediction of
independent data, the prediction of time series gets more complicated due to the
inherent data dependence. To get accurate predictions and inferences, it is crucial to
model the dependent relationship within the data. Usually, very generally speaking,
the time series data is assumed to be generated by some underlying mechanism as
follows:

Xt = G(Xt−p, ϵt); (1)

G(·, ·) could be any suitable function; ϵt is called innovation and assumed to be
i.i.d. with appropriate moments and independent with Xt−i, i ≥ 1; Xt−p represents
{Xt−1, . . . , Xt−p} and stands for the historical information. To further simplify the
forecasting problem, participators focus on some standard formats of G(·, ·), e.g.,
linear or non-linear. For linear models, such as linear AR, MA and ARMA models,
we can apply the Box-Jenkins method of identifying, fitting, checking and predicting
models systematically (Box et al., 2015). However, the prediction of non-linear models
is not as trivial as the case of linear models since the innovation must be appropriately
included in the prediction process, especially for the multi-step ahead predictions; see
Wu and Politis (2023) for more related discussions.

In this paper, we are exclusively interested in one non-linear type of Eq. (1)
which is the so-called Generalized Auto-Regressive Conditional Heteroskedasticity
(GARCH) model proposed by Bollerslev (1986) and has a form below:

Yt = σtWt,

σ2
t = a+ a1Y

2
t−1 + b1σ

2
t−1;

(2)

where, a ≥ 0, a1 > 0, b1 > 0, and Wt are usually assumed to be i.i.d. with standard
normal distribution in practice. The GARCH model is a generalization of the famous
Autoregressive Conditional Heteroskedasticity (ARCH) model proposed by Engle
(1982). Its ability to forecast the absolute magnitude and quantiles or entire density
of squared financial log-returns (i.e., equivalent to volatility forecasting to some
extent) was shown by Engle and Patton (2001) using the Dow Jones Industrial Index.
Later, many studies to investigate the performance of different GARCH-type models
in predicting volatility of financial series were conducted; see following references
(Peters, 2001; González-Rivera et al., 2004; Lim and Sek, 2013; Herrera et al., 2018;
Karmakar and Roy, 2021). For ARCH/GARCH-type models, it is usual practice to
identify and fit models based on quasi-maximum likelihood inference. However, the
distributional assumption on Wt brings unavoidable model misspecification when it
is hard to assume the normality of the unobservable innovation process. Later, we
will show one advantage of our method is that such a restrictive assumption can be
weakened.

Traditionally, economists primarily utilize univariate GARCH-family models to
understand dynamics of econometric data such as stock/ index/ price, etc observed for
a long time. However, one of the key focuses of financial econometrics is to understand
how extra knowledge such as fundamentals- and sentiments-based information could
be beneficial to improve the prediction accuracy of market volatility if they are
incorporated into the forecasting process; see more discussion from Engle and Patton
(2007) and the references therein. When the predictor is incorporated into the GARCH
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volatility specification, the model is called GARCHX (X standing for covariate). The
estimation methodology of GARCHX models was discussed thoroughly in the work of
Francq and Thieu (2019); see more details about the GARCHX model in Section 2.1.

Rather than taking the traditional approach (i.e., specifying and fitting a model
and then predicting), we utilize a Model-free prediction principle which was proposed
by Politis (2015). In short, the Model-free prediction principle hinges on the idea
of applying an inverse transformation function to bridge two equivalent probability
spaces. For example, if we observe a univariate time series {Y1, . . . , YT }, we can
try to find a transformation to map {Y1, . . . , YT } to an i.i.d. series {Z1, . . . , ZT }.
Since the prediction of i.i.d. data is trivial, we can then transform the prediction
of i.i.d. data back to the prediction of the original data; see more details about the
Model-free prediction principle in Section 2.2. Guided by such a prediction principle,
the normalizing and variance-stabilizing transformation (NoVaS transformation)
method was developed and showed superior performance compared to other classical
counterparts in the context of volatility forecasting. This NoVaS method was initially
developed by Politis (2003) and then well discussed under the framework of the
Model-free prediction principle in Politis (2015).

In the literature this NoVaS method is usually called Model-free method but a
discussion about its nature is in order. Usually, for both estimation and prediction
of various types of time-series models, one assumes certain distributions of the i.i.d.
innovation and often this distribution is taken to be standard normal to facilitate
computations for both the steps. Comparatively, our NoVaS based method in this
paper only depends on the i.i.d. nature of the innovations and relaxes any specific
distributional assumption on the innovations. However, we use the specific model
structure of GARCHX process to arrive at a suitable transformation that leads to
obtaining the i.i.d. transformed variables from the observed data. Therefore, the
NoVaS method concerned in this paper is at an intermediate stage between purely
Model-free and Model-based approaches and probably a somewhat clearer description
is to call it distribution-free; see more discussions in Remark 2.1. To clear up any
confusion, we call the NoVaS a Bootstrap-based method since its cornerstone is about
determining a transformation function and applying the Bootstrap technique to mimic
the distribution of future values.

In the huge literature of applied econometrics, while analyzing data observed over
a long time that can show signs of heteroscedasticity, the usual practice is to pick
some specific GARCH-type model. Next an estimation of that model is carried out
accordingly and subsequently the forecast of future volatility will be made based
on the estimated model. Apparently, there is no universal rule for the choice of the
specific GARCH model. In other words, a specific GARCH model can not work
uniformly well across different datasets compared to other variants. On the other
hand, the NoVaS prediction method could work well for any scenario as long as a
suitable transformation function can be found. Therefore, the model-selection stage
is shunned and the NoVaS prediction approach is more robust against the model
misspecification. Moreover, the standard GARCH methods require a relatively large
sample size to be estimated well. For the NoVaS method, it tends to work stably
even with short data. The existence of such transformation function in the context of
predicting with exogenous variables will be analyzed theoretically in Section 2.2.

Empirically speaking, NoVaS methods were mainly applied to forecast volatility
in financial econometrics in the past few years. Gulay and Emec (2018) showed
that the NoVaS method could beat GARCH-type models (GARCH, EGARCH and
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GJR-GARCH) with generalized error distributions by comparing the pseudo-out of
sample (POOS) forecasting of volatility. Here the POOS forecasting analysis means
using data up to and including the current time to predict future values. Later, Chen
and Politis (2019) extended the NoVaS method to do multi-step ahead predictions.
Wu and Karmakar (2021) further substantiated the great performance of NoVaS
methods on time-aggregated long-term (30-steps ahead) predictions. Wang and Politis
(2022) applied the Model-free idea to provide estimation and prediction inference for a
general class of time series. Our present work is motivated by the Wu and Karmakar
(2023) work where the authors recommended a so-called GARCH-NoVaS (GA-NoVaS)
transformation structure inspired by the development of GARCH from ARCH. This
NoVaS method is significantly robust against different model misspecification. Given
this, it was a natural and probably quite an important question to see if such a robust
forecasting framework can be built where exogenous covariates can be included and
thus improve forecasting accuracy.

In this work, we explore the new methodology of forecasting stock market volatility
with additional covariates being available to be included in the volatility dynamics. As
far as we know, the NoVaS prediction idea has not been studied when the exogenous
variables are featured even in modeling the mean or average let alone the more
complicated variance or volatility dynamics of a time-series. Due to the superior
performance of the GARCH-NoVaS method in volatility forecasting, for this paper,
we stick to the variance part and attempt to further boost the ability of the GA-
NoVaS method with the help of exogenous covariate information. Towards this,
we propose a so-called GARCHX-NoVaS (abbreviated as GAX-NoVaS henceforth)
method which takes the GARCHX model as the starting step to build transformation.
To obtain the inference about the future situation at an overall level, we choose
the time-aggregated prediction metric. This aggregated metric has been applied to
evaluate future predictions of electricity price or financial data (Fryzlewicz et al., 2008;
Chudý et al., 2020; Karmakar et al., 2022); see the formal definition in Section 4.1.
We wanted to check if the NoVaS prediction method can incorporate exogenous
variables. More importantly, we hope the GAX-NoVaS method can sustain its great
performance compared to the GARCHX method.

In addition to comparing our NoVaS method and the classical GARCHX model
with several simulated datasets, we also provide an interesting real data analysis. Our
goal is to exhibit how our method could possibly shed light on the role of geopolitical
risks, which are currently engulfing the global economy with multiple wars taking
place, in forecasting the volatility of three stock markets of Europe: Germany and
its two neighbors (Austria and Switzerland), based on a daily index of uncertainty
associated with the Russia-Ukraine war as perceived by German Twitter activity. We
also use newspaper-based metrics of global geopolitical risks due to acts and threats,
as developed by Caldara and Iacoviello (2022), to check for the robustness of our result
covering a longer data sample. Hence, we add from a methodological perspective
to the existing literature on forecasting international stock returns volatility using
the information contained in geopolitical events and threats that basically rely on
GARCH-type models (see, for example, Salisu et al. (2022); Zhang et al. (2023) for
details discussion of this literature). In this regard, note that, Caldara and Iacoviello
(2022) pointed out that entrepreneurs, market participants, and central bank officials
view geopolitical risks as key determinants of investment decisions and stock market
dynamics, with such risks, along with economic and policy uncertainties, forming
an “uncertainty trinity” that would adversely impact the economy and the financial
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sector, as has been traditionally reported in the large existing literature on the impact
of terror attacks and threats Mehmet et al. (2018); Christos et al. (2019); Bouri et al.
(2020). In our empirical and simulation exercises, we measure the performance of
GARCHX and GAX-NoVaS methods by the standard mean square prediction error.
Moreover, we apply the forecast comparison tests to compare the two methods in a
statistical way.

Our main contributions are summarized as follows:

• We propose a new methodology– namely GAX-NoVaS–to do the volatility
forecasting with exogenous variables. This method depends on a transformation
function to connect two equivalent probability spaces instead of relying on any
restrictive model assumption. The idea behind the GAX-NoVaS method hinges
on the Model-free prediction principle.

• Due to the manner of the transformation idea, the standard normality assump-
tion of the GARCH model can be avoided with our method. As a result, our
method is more robust against model misspecification. In other words, instead
of estimating a GARCH model with the maximum likelihood technique which
relies on distributional assumption inescapably, the NoVaS method aims to
solve an optimization problem that yields good forecasting results even when
particular model assumptions fail.

• To make volatility forecasting with (multiple) covariates X under the framework
of the NoVaS method, we show the existence of a transformation function that
maps {Xi}Ti=1 and {Yi}Ti=1 to i.i.d. {Zi}Ti=1 which possesses a simple distribution
under some mild conditions. This serves as the theoretical foundation of our
method. Our NoVaS method is further a practically useful approximation to
this oracle transformation function; see more discussions in Section 2.2.

• We apply our new method and standard GARCHX model to investigate the
role of geopolitical risks in forecasting volatility. It turns out that our new
method can be significantly more accurate, especially for long-horizon time
aggregated predictions.

We organize the remainder of this article as follows. In Section 2, we review
the classical forecasting model, namely GARCHX, which is used as the starting
point to propose the GAX-NoVaS method. Also, we present more details of the
Model-free prediction principle and prove the existence of a transformation function
with some exogenous variables existing. In Section 3, we delineate the details of
proposed GAX-NoVaS method. Then, some simulation studies and model evaluation
criteria are collated in Section 4. Next, we contrast our methods to existing classical
ones on three empirical datasets in Section 5. Finally, in Section 6, we conclude by
discussing the implications of our findings and some future directions.

2 GARCHX estimation and Model-free predic-
tion principle

Before introducing our GAX-NoVaS method, we first explain the GARCHX model
since the transformation of GAX-NoVaS is based on the GARCHX model. In addition,
we give more details on the Model-free prediction principle and we prove the existence
of a transformation function to achieve the Model-free prediction goal.
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2.1 GARCHX model
In a seminal work, ARCH was proposed by Engle (1982) to model volatility or σ2

t for a
time-series in a dynamic way. Following this, many different variants were developed
in the econometrics literature. The GARCH model, especially the GARCH(1,1)
expressed in Eq. (2), stands as possibly the most popular one. When additional
information is available, people would like to utilize this extra knowledge to improve
prediction accuracy. Subsequently, the so-called GARCHX model enters the public
eye; see Francq and Thieu (2019) for discussions on the quasi-maximum likelihood
estimation inference of GARCHX models. To simplify the analysis, participators
usually assume the normality of Wt. As mentioned before, the normality assump-
tion is not necessary with the NoVaS method. After taking a vector of exogenous
covariates X = (X1, . . . , Xm) into account, we can wrap the exogenous covariates
into the prediction process by turning the GARCH(1,1) model into the following
GARCHX(1,1,1) model:

Yt = σtWt,

σ2
t = a+ a1Y

2
t−1 + b1σ

2
t−1 + cTXt−1.

(3)

To guarantee the non-negativity of σ2
t , we define Xt−1 as (|X1,t−1|, . . . , |Xm,t−1|)

and restrict the coefficients of these exogenous variables to be positive, i.e., c ≥ 0.
To perform a moving-window out-of-sample prediction experiment, we first need
to estimate the GARCH(1,1) and GARCHX(1,1,1) models1, and then we compute
predictions iteratively; see Section 4 for details. In this process, we assume that we
know the true exogenous variables, which is feasible because we generate out-of-sample
predictions. For practical applications, if needed, the future exogenous information
can be estimated separately.

2.2 Model-free prediction principle
The model-free prediction principle was initially well developed by Politis (2015).
Later, Chen and Politis (2019) applied this idea to multi-step ahead predictions of
financial returns in the context of an ARCH-model structure. In short, the main idea
behind the model-free prediction is to apply an invertible transformation function, HT ,
that can map a non-i.i.d. vector, {Yt ; t = 1, . . . , T}, to a vector, {ϵt; t = 1, . . . , T},
with i.i.d. components (chosen as standard normal in this work, but we should notice
that other simple distributions can also work). Due to the invertibility of the function,
HT , it is possible to construct a one-to-one relationship between a future value, YT+1,
and ϵT+1, i.e.,

YT+1 = fT+1(YT ,XT+1, ϵT+1); (4)

where YT denotes all historical data {Yt; t = 1, . . . , T}; XT+1 is the collection of all
absolute predictors, and it also contains the value of a future predictor |XT+1|; the
form of fT+1(·) depends on H−1

T . This relationship implies that we can also transform
the prediction of ϵT+1 to the prediction of YT+1. Assume we have ϵ̂T+1 to the be the
predictor of ϵT+1, we can express the predictor of YT+1 as

ŶT+1 = fT+1(YT ,XT+1, ϵ̂T+1). (5)

1For estimation of the GARCH and GARCHX models, we use the fGarch (Wuertz et al.,
2013) and garchx packages (Sucarrat, 2020) in the R language and environment (R Core
Team, 2023).
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Because the prediction of i.i.d. data is standard, the L1 (Mean Absolute Deviation),
L2 (Mean Squared Error), or another optimal quantile predictor of ϵT+1 can easily
be found. We, thus, can easily obtain the corresponding optimal predictor of YT+1.

For multi-step (h-step) ahead prediction, we simply repeat this prediction process,
i.e., we express YT+h through a function w.r.t. YT , XT+1 and {ϵT+1, . . . , ϵT+h}:

YT+h = fT+h(YT ,XT+1, ϵT+1, . . . , ϵT+h). (6)

In order to compute the prediction of YT+h, we take a distribution-match approach to
approximate the distribution of YT+h. Ideally, when we know the exact distribution
of the i.i.d. ϵ, we can use a Monte Carlo simulation to approximate the distribution
of YT+h based on Eq. (6). Practically speaking, when we just have the empirical
transformation results, i.e., the observed sample {ϵt}Tt=1, bootstrap is an appropriate
approach. Moreover, we can even predict g(YT+h), where g(·) is a general continuous
function. For example, we can compute the L1 and L2 optimal predictors of g(YT+h)
as below:

g(YT+h)L2 =
1

M

M∑
m=1

g(fT+h(YT ,XT+1, ϵ̂T+1,m, . . . , ϵ̂T+h,m)),

g(YT+h)L1 = Median of {g(fT+h(YT ,XT+1, ϵ̂T+1,m, . . . , ϵ̂T+h,m));m = 1, . . . ,M};
(7)

where g(YT+h)L2 and g(YT+h)L1 represent the optimal L2 and L1 predictor of g(YT+1),
the {ϵ̂T+1,m}Mm=1 are generated by bootstrap or Monte Carlo simulation, and M is
some large number (2000 in our empirical analysis). For further discussion, see Politis
(2015).

To the best of our knowledge, the model-free prediction idea has not been studied
when the model features exogenous variables. However, it may be beneficial to take
into account in the prediction process the additional information embedded in such
exogenous variables. To show the NoVaS approach is still applicable, we need a
transformation function that maps the targeted variables and exogenous predictors
together into some simple i.i.d. random variables. Under some mild conditions, we
show the existence of such a transformation function based on the probability integral
transform. We assume:

• A1. The joint density of {Y1, · · · , YT } exists for any T ≥ 1.

• A2. For exogenous random vector X := {X1, · · · , Xm}, the joint density
{Y1, · · · , YT , X1, · · · , Xm} exists for any m ≥ 1.

Then, the feasibility of NoVaS transformation with exogenous variables existing is
guaranteed by Theorem 2.1 shown below:

Theorem 2.1. Under A1 and A2, there exists a function g such that Z = g((Y ,X))

and the corresponding inverse function h such that (Ỹ , X̃) = h(Z); Z ∼ N(0, IT+m);
Y = (Y1, · · · , YT ) and X = (X1, · · · , Xm) are any two random vectors; (Ỹ , X̃) have
the same joint distribution of (Y ,X).

Proof. The proof of Theorem 2.1 is based on the probability integral transform; see
Angus (1994) for a review. Without loss of generality, we start from Y1 to determine
the transformation function g. Let U1 := g̃1(Y ) = F (Y1); F (Y1) is the distribution
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of Y1. According to the probability integral transform, we know U1 has a uniform
distribution on [0, 1]. Then, we make

U2 := g̃2(Y1, Y2) = F (Y2|Y1). (8)

F (Y2|Y1) is the conditional distribution of Y2. Eq. (8) implies that Z2 is Uniform(0, 1)
conditional on Y1. Thus, the unconditional (marginal) distribution of U2 is still
Uniform(0, 1), and U2 and Y1 are independent so that U2 is also independent with
U1. This can be seen from the equation below:

pU2,Y1(u2, y1) = pU2|Y1
(u2|y1)pY1(y1). (9)

Integrating both sides w.r.t. y1, we can find pU2(u2) = 1 on the region [0, 1], since
Z2 is Uniform(0, 1) conditional on Y1 = y1 for any y1. We can repeat this process as
a Gram–Schmidt-like recursion, i.e., we let U3 := g̃3(Y1, Y2, Y3) = F (Y2|Y1, Y2) and
so on. In total, we need {g̃1, · · · , g̃T+m} and they are functions of Y . Thus, there
exists a function g̃ which maps (Y ,X) to U which has i.i.d. uniform components
{U1, · · · , Um+T }, i.e., U = g̃((Y ,X)). Then, Z = Φ−1 ◦ g̃((Y ,X)) has multivariate
normal distribution N(0, IT+m); Φ−1 is the quantile function of N(0, IT+m). Finally,
we can take g = Φ−1 ◦ g̃.

On the other hand, if F−1
Y1

:= inf{x : FY1(x) ≥ y}, 0 ≤ y ≤ 1, then F−1
Y1

(U1) has
the distribution as the same as Y1. Similarly, we can get the conditional distribution
of Y2 on Y1 by taking F−1

Y2|Y1
(U2). By repeating this process, we can recover the joint

distribution of (Y ,X) by chain rule. In other words, there exists a h such that
(Y ,X)

d
= h(Z).

The direct implication of Theorem 2.1 is that the Model-free prediction principle
is feasible even when exogenous variables are included in the dependence dynamics.
Moreover, our theorem is more general than Lemma 3.1 from Wang and Politis (2022)
where the time series model must satisfy some strict conditions.

Remark 2.1. To go one step further, Theorem 2.1 implies the fact that there
are two oracle functions g and h which can serve as our desired transformation
functions so that the prediction can be made without any restrictive model assumption.
Unfortunately, g and h are unknown and must be determined by the data at hand.
Moreover, g and h can be pretty complicated so the non-parametric estimation may
be needed to achieve a purely Model-free prediction, but the curse of dimensionality
impairs its feasibility when the dimension of X and Y are high. Thus, the NoVaS
method, which is more parsimonious, can be thought of as a compromise between
applying a naive model-based and thoroughly Model-free prediction approaches, i.e.,
the terminology distribution-free put forward in Section 1. Also, this distribution-free
property is implied by Theorem 2.1 since no requirement about X and Y to possess
some specific distribution. In other words, the NoVaS method attempts to estimate g
and h motivated by some specific model structure.

3 GAX-NoVaS prediction method
We first present the state-of-the-art GARCH-NoVaS method which is based on a
so-called NoVaS transformation. Then, we extend the GARCH-NoVaS method to a
GAX-NoVaS method, which features the exogenous variables.
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3.1 NoVaS transformation
For the sake of completeness, we first give a brief introduction to the NoVaS trans-
formation (model) which is a direct application of the Model-free prediction idea
explained in Section 2.2. Initially, the NoVaS transformation is developed from the
ARCH model:

Yt = Wt

√√√√a+

p∑
i=1

aiY 2
t−i; (10)

here, these parameters satisfy a ≥ 0, ai ≥ 0, for all i = 1, . . . , p; Wt can be i.i.d.
standard normal in the Model-based approach. In other words, the structure of the
ARCH model gives us a ready-made H−1

T . We can express Wt in Eq. (10) using other
terms to get a potential HT :

Wt =
Yt√

a+
∑p

i=1 aiY
2
t−i

; for t = p+ 1, . . . , T. (11)

Politis (2003) further modified Eq. (11) as follows:

Wt =
Yt√

αs2t−1 + βY 2
t +

∑p
i=1 aiY

2
t−i

; for t = p+ 1, . . . , T ; (12)

here, {Yt; t = 1, . . . , T} is the sample data; {Wt; t = p + 1, . . . , T} should not be
understood as the innovation term anymore. It is more appropriate to treat it as the
transformed vector which mimics some specifically simple distribution, e.g., standard
normal in this paper; α is a fixed scale invariant constant; s2t−1 is an estimator of the
variance of {Yi; i = 1, . . . , t− 1} and can be calculated by (t− 1)−1

∑t−1
i=1(Yi − Y )2,

where Y is the sample mean of {Yi; i = 1, . . . , t − 1}. For making Eq. (12) be a
qualified function HT , i.e., making {Wt}Tt=p+1 obey i.i.d. standard normal distribution,
we need to impose some restrictions on α and β, a1, . . . , ap. We first stabilize the
variance by requiring:

α ≥ 0, β ≥ 0, ai ≥ 0 ; for all i ≥ 1, α+ β +

p∑
i=1

ai = 1. (13)

In application, {Wt}Tt=p+1 transformed from financial log-returns by NoVaS transfor-
mation are usually uncorrelated. Therefore, if we make {Wt}Tt=p+1 close to a Gaussian
series i.e., normalizing {Wt}Tt=p+1, we can get the desired i.i.d. property. This is why
this transformation is called NoVaS.

There are many criteria to measure the normality of a series. Under the observation
that the distribution of financial log-returns is usually symmetric, we choose the
kurtosis to be a simple distance to measure the departure of a non-skewed dataset from
that of the standard normal distribution (Politis, 2015). Besides, matching marginal
distribution seems sufficient to normalize the joint distribution of {Wt}Tt=p+1 for
practical purposes based on empirical results. If we denote the marginal distribution
of {Wt}Tt=p+1 and the corresponding kurtosis by F̂w and KURT(Wt), respectively,
we then attempt to minimize |KURT(Wt)− 3| to obtain the optimal combination of
α, β, a1, . . . , ap such that F̂w is as close to standard normal distribution as possible.
Subsequently, the NoVaS transformation can be determined.
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The remaining difficulty is how to finish this optimization step to get optimal
coefficients α, β, a1, . . . , ap, especially when p is large. To simplify this problem,
Politis (2015) defined an exponentially decayed form of {ai}pi=1:

α ̸= 0, β = c′, ai = c′e−ci ; for all 1 ≤ i ≤ p, c′ =
1− α∑p
j=0 e

−cj
. (14)

The NoVaS transformation based on coefficients defined in Eq. (14) is called General-
ized Exponential NoVaS (GE-NoVaS). In other words, we can represent the p+ 2
number of coefficients by two parameters c and α, which relieve the optimization
burden, but with a sacrifice that the coefficients are fixed in a decayed form. To
achieve a balance between the relief of the optimization dilemma and the freedom
of coefficients, inspired by the development of GARCH from ARCH, Wu and Kar-
makar (2023) built a NoVaS transformation according to the GARCH model, namely
GARCH-NoVaS which was shown to be more stable and accurate. Later, we specify
the GAX-NoVaS transformation in detail.

3.2 GAX-NoVaS transformation method
Starting from Eq. (3), we take similar steps of building GA-NoVaS to find the
transformation function of the GAX-NoVaS method. To simplify the notation, we
consider the case of only one exogenous covariate Xt. The case of multiple exogenous
covariates can be analyzed analogously. First, we notice that we can rewrite the
Eq. (3) as

Wt =
Yt√

a0 + a1Y 2
t−1 + b1σ2

t−1 + c1Xt−1

. (15)

We also have

σ2
t−1 = a0 + a1Y

2
t−2 + b1σ

2
t−2 + c1Xt−2,

σ2
t−2 = a0 + a1Y

2
t−3 + b1σ

2
t−3 + c1Xt−3,

...

(16)

so that we can substitute these terms into Eq. (15). We then get

Wt =
Yt√

a0
1−b1

+
∑p

i=1 a1b
i−1
1 Y 2

t−i +
∑p

i=1 c1b
i−1
1 Xt−i

; (17)

where p is a large constant that is used to truncate the infinite summation. This fits
with common intuition since the effects of previous data on prediction decrease as
the time lag increases. In line with the NoVaS transformation, we finally write the
transformation function as follows:

Wt =
Yt√

αst−1,Y + βst−1,X +
∑p

i=1 a1b
i−1
1 Y 2

t−i +
∑p

i=1 c1b
i−1
1 Yt−i

, for t = p+1, . . . , T ;

(18)
where s2t−1,Y and s2t−1,X are the sample variance of {Y1, . . . , Yt−1} and {X1, . . . , Xt−1},
respectively. Thus, we can use Eq. (18) as the transformation function for the GAX-
NoVaS method, where {Wt}Tt=p+1 is the transformed series. Consequently, the
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one-step (conditional) prediction ŶT+1 can be expressed as

ŶT+1 = ŴT+1

√√√√αs2T,Y + βs2T,X +

p∑
i=1

a1b
i−1
1 Y 2

T+1−i +

p∑
i=1

c1b
i−1
1 XT+1−i; (19)

where ŴT+1 is the optimal point prediction of WT+1. If {Wt} are indeed i.i.d.

normal, ŴT+1 can be taken as the sample mean or sample median of {Wp+1, . . . ,WT }
which leads to optimal L2 or L1 prediction of YT+1, respectively. Multi-step-ahead
predictions can be computed as explained in Section 2.2 with the help of Bootstrap.
To illustrate a little bit further, we take the procedure for 2-step ahead optimal point
prediction as an example. Based on Eq. (18), we can express YT+2 by WT+2, WT+1

and all other historical information we are conditional on:

YT+2 = WT+2

√√√√αsT+1,Y + βsT+1,X +

p∑
i=1

a1b
i−1
1 Y 2

T+2−i +

p∑
i=1

c1b
i−1
1 YT+2−i; (20)

YT+1 is involved in Eq. (20) which depends on WT+1 implicitly. To derive the optimal
point prediction of YT+2, we can bootstrap pseudo values {WT+1,mWT+2,m}Mm=1 from
{Wp+1, . . . ,WT } with a large M and then determine the optimal L1 or L2 prediction
of YT+2 as the method indicated in formula Eq. (7).

The final question left now is how to find a transformation function that indeed
makes {Wt} i.i.d. normal. While we have made some brief remarks on this question
in Section 3.1, we next provide a full explanation with a focus on the GAX-NoVaS
method. Our goal is to determine the coefficients, α, β, a1, b1, c1, of Eq. (18) to obtain
the desired transformation. The most important step is to minimize |KURT(Wt)− 3|,
where 3 is the kurtosis of normal distribution. For this optimization, we use the
numerical technique to find the optimal coefficients.2 In operation, one may obtain
some extremely large values from the transformed series {Wt}, and such outliers may
spoil the normality of the transformed series and may also influence prediction
performance. Thus, before moving on to the prediction step, we truncate the
transformed series by the 0.99 and 0.01 quantile values of a normal distribution
with mean and standard deviation given by the sample mean and sample standard
deviation of {Wt}.

Remark 3.1. It is not difficult to perceive that the transformed series {Wt} may
be correlated, such that the decorrelation step is beneficial and necessary. One way
to carry out this step is by fitting an AR(p) model on the {Wt} series. Then, we
record the residuals of the AR fit as {ϵ̂t}. Also, we can approximate the one-step-
ahead value ŴT+1 with a fitted AR model. Then, we can create the new series as
{ϵt + ŴT+1}. We use the empirical distribution of this new series to approximate the
distribution of WT+1. Eq. (19) can be used with the optimal prediction ŴT+1 derived
from this empirical distribution. It is still an open question, however, how to extend
this decorrelation step to multi-step-ahead predictions.

4 Simulations
In this section, we deploy several simulations to check the performance of GARCH,
GARCHX and GAX-NoVaS methods. Before presenting the data-generating model

2We use the nloptr package (Ypma et al., 2014) for R.
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used to do simulations, we explain the procedure of the moving-window time-
aggregated predictions and give the model evaluation metrics to measure the perfor-
mance of different methods.

4.1 Moving-window time-aggregated prediction
If we have sample {Y1, . . . , YN} at hand, in order to fully exhaust the dataset, we can
focus on moving-window out-of-sample predictions, i.e., we use {Y1, · · · , YT } to predict
{Y 2

T+1, · · · , Y 2
T+h}, then we use {Y2, · · · , YT+1} to predict {Y 2

T+2, · · · , Y 2
T+h+1}, and so

on until we reach the end of the sample (that is, until we use {YN−T+h+1, · · · , YN−h}
to predict {Y 2

N−h+1, . . . , Y
2
N}). Here, T denotes the moving window size; we fix its

size as 250; h is the prediction horizon, i.e., 1, 5, 20 in our setting. Sometimes, we
may not have enough data available to perform predictions. Thus, the window size
T = 250 is designed to see if this method is stable and can still return accurate
predictions even with short data. A 250-size moving window is in line with around
one year of daily financial data. In this perspective, it is important to keep in mind
that a 250-size moving window is practically meaningful since the time series may
not be stationary on a wider span.

In addition, we are not only interested in the one-step-ahead prediction h = 1
but also multi-step-ahead prediction h > 1. From a practical aspect of forecasting
volatility, as mentioned above in our introduction Section 1, the long-term prediction
(h takes a large value) is important and can guide future strategic decisions. Before
this evaluation, we start by writing time-aggregated predictions as follows:

Ŷ
2

T,h =
h∑

k=1

Ŷ 2
T+k/h; (21)

where Ŷ
2

T,h is the h-step ahead time-aggregated volatility prediction starting from YT .
For example, if the total number of data N = 1000 and we consider the 6-step-ahead
moving window time-aggregated predictions with T = 500, we need to find predictions

Ŷ
2

T,6 for T = 500, . . . , 994.
We hope the time-aggregated volatility prediction is close to the true aggregated

value calculated from the realized average squared log-returns Y
2
l,h =

∑h
k=1(Y

2
T+k/h).

To evaluate the accuracy, we can consider the specific mean of squared prediction
errors (MSPE) shown below, with this statistic aiming to compare the prediction
performance in an absolute way:

P =
1

N − h− T + 1

N−h∑
l=T

(Ŷ
2

l,h − Y
2
l,h)

2; (22)

where Ŷ
2

l,h and Y
2
l,h denote the predicted and true time-aggregated values for each

moving-window forecasting, respectively.

4.2 Simulation setting
In this part, we present three data-generating models to simulate data and then
evaluate the performance of various methods considered in this paper. Due to the
true data-generating process being known to us, we can simulate any size of the
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sample and compare predictions from various methods with oracle values. Besides,
we remove the variance term βs2T−1,X of Eq. (18) when we do the transformations
since the prediction performance hardly changes with or without βs2T−1,X . Three
true underlying models are presented below:

Model 1: Standard GARCH(1,1):
Yt = σtϵt, σ2

t = 0.00001 + 0.73σ2
t−1 + 0.1Y 2

t−1 + c|Xt−1|,
Xt−1 ∼ i.i.d. N(0, 1); {ϵt} ∼ i.i.d. t distribution with four degrees of freedom
c = 1.

Model 2: Standard GARCH(1,1) with another set of coefficients:
Yt = σtϵt, σ2

t = 0.00001 + 0.8895σ2
t−1 + 0.1Y 2

t−1 + c|Xt−1|,
Xt−1 ∼ i.i.d. N(0, 1); {ϵt} ∼ i.i.d. t distribution with four degrees of freedom
c = 1.

Model 3: Time-varying GARCHX(1,1):
Yt = σtϵt, σ2

t = btσ
2
t−1 + atY

2
t−1 + c|Xt−1|,

Xt−1 ∼ i.i.d. N(0, 1); {ϵt} ∼ i.i.d. t distribution with five degrees freedom;
c = 1; gt = t/n; at = 0.1− 0.05gt; bt = 0.7 + 0.2gt, n is the total length of the
time series.

To check the robustness of methods on model misspecification, we intend to take
the innovation distribution of simulation models as the t-distribution. Besides this
purpose, we argue that the t distribution as the innovation to mimic the real-world
cases is more appropriate since real data usually show the heavy tail phenomenon.
Models 1 and 2 are from a standard GARCH where in Model 2 we intended to explore
a scenario that α1 + β1 is very close to 1 and thus mimics what would happen for
the iGARCH situation. In addition, we make the coefficients of the GARCHX model
change linearly in Mode-3 so that we can observe the ability of different methods to
handle the data generated from a time-varying model which is more coherent to the
real-world situation. To sync with the empirical studies later, we simulate a time
series with a length T = 4694. We take the moving-window size T = 250. MSPE of
GARCH, GARCHX and GAX-NoVaS methods with three simulation settings are
presented below:

Table 1: MSPE ratios of different methods on three simulated datasets.

Model-1 Model-2 Model-3
Prediction steps 1 5 20 1 5 20 1 5 20
GARCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GARCHX 0.985 1.007 0.854 1.014 0.957 0.701 0.921 0.956 2.680
GAX-NoVaS 0.842 0.566 0.222 0.798 0.818 0.085 0.870 1.276 0.006

Note: To simplify the presentation, we compute the ratio of MSPE of different methods, i.e.,
we divide all MSPE for each prediction horizon and models by the MSPE of the GARCH
(benchmark) method. In addition, 0.000 value in the above table is a rounding number.

From Table 1, it is clear that the GAX-NoVaS is much better than GARCH and
even the classical GARCHX models according to the MSPE criterion. Interestingly,
the GARCHX model is even much worse than the GARCH model for some specific
cases, e.g., the 20-step-ahead prediction of Model-3. By taking a deeper analysis,
we find the terrible performance GARCHX method is due to some extremely large
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predictions. On the other hand, the prediction returned by GAX-NoVaS is more
stable. The superiority is further shown in Section 5 with three real datasets and
various exogenous predictors.

Since the focus of this paper is exploring a new approach to incorporate exogenous
variables, we take the DM test to evaluate the performance of GARCHX and GAX-
NoVaS methods more formally; see Diebold and Mariano (2002) for the technical
details of the DM-test3. The DM-test results on comparing GARCHX and GAX-
NoVaS for forecasting three simulated datasets are tabularized in Table 2. These tests
further verify the advantage of our methods on forecasting with exogenous variables,
especially for a long-prediction horizon.

Table 2: DM-test results on simulated datasets.

Model-1 Model-2 Model-3
Prediction steps 1 5 20 1 5 20 1 5 20
GARCHX
GAX-NoVaS 0.009 0.020 0.000 0.038 0.107 0.000 0.172 1.000 0.102

Note: The values in the different rows are one-sided p-values of the DM-test on the
prediction error of GAX-NoVaS and GARCHX. For the DM-test here, the alternative
hypothesis is that the former method GAX-NoVaS is more accurate than the latter one,
GARCHX.

5 Empirical analyses with real data
A summarizing note of our findings in Section 4 reads that the GAX-NoVaS method
performs better than standard GARCH-type methods, especially for long-term time
aggregated predictions. In this section, we deploy an interesting data analysis to
exhibit how our method could shed light on the role of geopolitical risks in forecasting
volatility with real-world data. We start by describing the data below.

5.1 Data description
The ongoing Ukraine-Russia has led many countries in Europe, particularly Germany,
to adjust their military and security, as well as energy policies in light of new
geopolitical risks, with such adjustments entailing large costs to the macroeconomy
and financial markets, as depicted by Grebe et al. (2024). In this regard, these
authors, first, assemble a data set of more than eight million German Twitter posts
related to the war in Ukraine to construct a daily index of uncertainty about the
war as perceived by German Twitter based on using state-of-the-art methods of
textual analysis. Grebe et al. (2024) show that an increase in uncertainty has strong
effects on financial markets, associated with a significant decline in economic activity
as well as an increase in expected inflation. We utilize this index (Ukraine)4 in
our empirical analysis to forecast stock market volatility of not only Germany, but
two of its neighbors namely, Austria and Switzerland, over the daily period of 1st
January, 2021 to 28th February, 2023. The national stock market indexes (ATX

3We perform the DM-test with the function DM-test in the R package multDM.
4The data is available for download from: https://www.uni-giessen.de/de/fbz/fb02/

fb/professuren/vwl/tillmann/forschung/ukraine-uncertainty-index.
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(Austria), DAX (Germany), SMI (Switzerland)) of these three countries, for which
we compute log-returns to feed into our volatility models were derived from the
Bloomberg terminal. With the focus being on geopolitical risks, we also utilized the
daily newspapers-based geopolitical risks index (GPRD) of Caldara and Iacoviello
(2022)5, which, in turn, allowed us to analyze a longer data sample covering 2nd
January, 2006 to 10th August, 2023. The starting date of this longer sample, and
the choice of these three countries, were also motivated by the availability of Google
searches-based daily data on economic activity (Trend) for all three countries, and
inflation (Inflation) for Germany and Switzerland,6 which are used as additional
predictors to ensure that our results are not only limited to geopolitical risks.

We present three log-return series of Germany, Switzerland and Austria from 2nd
January, 2006 to 10th August, 2023 in Fig. 1. The volatility clustering phenomena
observed in all plots reveals the heteroskedasticity within these three series. To
investigate the property of three long return series, we provide the summary statistics,
e.g., the mean, skewness, and kurtosis in Table 3. To verify the heteroskedasticity
with all series more directly, we split the whole time period into four equal-length
sub-periods and denote the sample variance of all four sub-periods by Vi, i =
1, . . . , 4. These statistics are also provided. Towards statistical tests, we also perform
modified Ljung-Box (m-LB) and ARCH Lagrange Multiplier (ALM) tests to check
the autocorrelation and ARCH effects of squared return series. For the m-LB test,
we consider the lag order 20. For the ALM test, we consider the maximum lag
order 10. These two tests are performed in R with functions lbtest and Lm.test,
respectively. The p-values of tests are presented. Summarizing Table 3, the large
kurtosis values indicate the heavy-tailed property for all three log-return series. The
variance of return series in different time regions changes notably, indicating the
heteroskedasticity. The ALM test with a pretty small p-value also confirms the
heteroskedasticity for all return series. The m-LB test shows strong evidence of
autocorrelation within all squared return series.

Table 3: Summary statistics of three long return series.

Returns series Mean Skew. Kurt. V1 V2 V3 V4 m-LB ALM
Germany 0.01 -0.24 11.37 2.51 1.52 1.22 1.79 0.00 0.00
Switzerland 0.01 -0.43 12.59 1.83 0.83 0.88 0.95 0.00 0.00
Austria -0.01 -0.41 10.26 4.78 2.15 1.81 3.27 0.00 0.00

Note: columns Vi, i = 1, . . . , 4 represent the sample variance of each long series on four
equal-length sub-periods splitted from the whole period 01/02/2006 to 08/10/2023. The
column ALM represents the p-value of the ALM test with the maximum lag order being 10;
the column m-LB represents the p-value of the m-LB test at the lag order being 20; 0.00
indicates the p-value is less than 3× 10−16 for these two tests. Skew. and Kurt. represent
the skewness and kurtosis respectively.

To show the fluctuations behind the Ukraine index and GPRD index, we present
two plots in Fig. 2. As one can see from there, these two indices fluctuate severely
around the beginning of 2022 which corresponds with the real-world event. Later,
we attempt to use this information to forecast the stock market volatility of three
countries.

5The data can be accessed from: https://www.matteoiacoviello.com/gpr.htm.
6The data can be downloaded from: https://www.trendecon.org/.
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Figure 1: Top to bottom: The log-returns of Austria’s, Switzerland’s, and Germany’s
national stock market index from 01/02/2006 to 08/10/2023.
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Figure 2: Left figure: The exogenous variable GPRD index from 01/02/2006 to
08/10/2023. Right figure: The exogenous variable Ukraine index from 01/01/2021 to
28/02/2023 which corresponds to the time period of our short data.

5.2 Empirical results
We first consider the forecasting exercise with the short period (1st January, 2021 to
28th February, 2023) data described in Section 5.1. Then, the analysis of three long
returns series is given in Section 5.2.2.

5.2.1 Short data

To compare the performance of GARCH, GARCHX and GAX-NoVaS methods, we
still apply the time aggregated prediction metric described in Section 4.1. We consider
h = 1, 5, 20 and use a 250-size moving window, which is about 1 year of daily data.
We start the empirical analysis with the short period of data and we take the Ukraine
index as the exogenous predictor. The MSPE results are summarized in Table 4.

Table 4: MSPE ratios of different methods on three short datasets.

S-Germany S-Austria S-Switzerland
Prediction steps 1 5 20 1 5 20 1 5 20
GA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GAX-Ukraine 1.011 1.023 0.989 1.002 1.003 0.994 1.003 1.008 1.005
GAX-NoVaS-Ukraine 1.038 1.141 0.898 1.017 0.984 0.822 1.010 1.100 0.879

Note: “S” represents “short”. To simplify the presentation, we compute the ratio of MSPE of
different methods, i.e., we divide all MSPE for each prediction horizon and model by the
MSPE of the GARCH (benchmark) method.

From Table 4, we can see that the GAX-NoVaS method can bring some large
improvements, especially for long-horizon aggregated predictions. Meanwhile, it seems
that the GARCHX and GARCH models have indistinguishable performance. However,
the GAX-NoVaS method is generally better than both GARCH-type methods. The
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DM-test results on comparing GARCHX and GAX-NoVaS for forecasting short
real-world data are tabularized in Table 5, which reveals the significant advantage of
GAX-NoVaS for long-horizon predictions, especially for the 20-step-ahead predictions
of Short Austria data.

Table 5: DM-test results on predictions of short datasets.

S-Germany S-Austria S-Switzerland
Prediction steps 1 5 20 1 5 20 1 5 20
GARCHX-Ukraine
GAX-NoVaS-Ukraine 0.616 0.727 0.306 0.578 0.410 0.030 0.549 0.860 0.118

Note: The values in the different rows are one-sided p-values of the DM-test on the
prediction error of GAX-NoVaS and GARCHX. For the DM-test here, the alternative
hypothesis is that the former method GAX-NoVaS is more accurate than the latter one
GARCHX.

5.2.2 Long data

We continue our real data analysis with long datasets (2nd January, 2006 to 10th
August, 2023). We also apply more exogenous variables. Similar to the analysis
procedure for short data, we present MSPE ratios and corresponding DM-test results
of GARCHX and GAX-NoVaS in Tables 6 and 7. Generally speaking, the GAX-NoVaS
method still dominates the other two GARCH-type methods, and this superiority is
verified to be significant by the DM-test.

Table 6: MSPE ratios of different methods on three long datasets.

L-Germany L-Austria L-Switzerland
Prediction steps 1 5 20 1 5 20 1 5 20
GA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GA-NoVaS 0.990 0.922 0.518 1.062 1.041 0.715 1.010 0.786 0.128
GAX-GPRD 1.010 1.024 0.998 0.999 0.990 0.964 1.003 0.994 0.797
GAX-NoVaS-GPRD 1.000 0.953 0.557 1.076 1.121 0.831 1.005 0.799 0.133
GAX-Inflation 1.003 1.016 0.974 0.996 0.965 0.858
GAX-NoVaS-Inflation 1.001 0.949 0.551 1.010 0.801 0.131
GAX-Trend 0.987 0.979 1.062 0.982 0.912 0.654 0.996 0.937 0.594
GAX-NoVaS-Trend 0.998 0.949 0.540 1.077 1.169 0.866 1.019 0.828 0.138

Note: “L” represents “long”. To simplify the presentation, we compute the ratio of MSPE of
different methods, i.e., we divide all MSPE for each prediction horizon and model by the
MSPE of the GARCH (benchmark) method.
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Table 7: DM-test results on predictions of long datasets.

L-Germany L-Austria L-Switzerland
Prediction steps 1 5 20 1 5 20 1 5 20
GARCHX-GPRD
GAX-NoVaS-GPRD 0.427 0.306 0.012 0.950 0.957 0.068 0.516 0.055 0.008
GARCHX-Inflation
GAX-NoVaS-Inflation 0.484 0.298 0.007 0.595 0.082 0.029
GARCHX-Trend
GAX-NoVaS-Trend 0.606 0.420 0.017 0.995 1.000 1.000 0.659 0.122 0.027

Note: The values in the different rows are one-sided p-values of the DM-test on the
prediction error of GAX-NoVaS and GARCHX. For the DM-test here, the alternative
hypothesis is that the former method GAX-NoVaS is more accurate than the latter one
GARCHX.

6 Conclusion
We extend the current NoVaS prediction method to the realm of prediction with
exogenous variables. We provide the theoretical foundation to guarantee the feasibility
of applying Model-free prediction. Inspired by the GARCHX model, we propose a
specifically designed Bootstrap-based method namely GAX-NoVaS prediction. The
dominance of GAX-NoVaS on the classical GARCH-type methods is verified by
simulation and empirical datasets. Also, such an advantage is not only exhibited by
the MSPE metric but we also show some statistical significance through the parlance
of classical DM tests.

We should mention that going far beyond GAX-NoVaS method might have limi-
tations if the model becomes increasingly complex. Recall that the great performance
of the GAX-NoVaS method relies on a successful transformation, the satisfied trans-
formation may not be achievable if the underlying time series is very complicated.
However, there is a growing literature on forecasting using more non-parametric neural
network based models. It will be an interesting future work that combines the idea of
model-free prediction with the state-of-the-art machine learning method, such as Deep
neural network (DNN), convolutional neural network (CNN) or LSTM etc. Finally, in
the field of binary/categorical/count data INGARCH models have recently garnered
significant attention both from theoretical and applied researchers. One could poten-
tially also think of extending the NoVaS method based on INGARCHX-type model to
integrate the exogenous variables into prediction and challenge the existing methods.
Beyond these extensions inspired by different prior model structures, performing
NoVaS prediction with mixed frequency covariates is also appealing. In short, our
paper remains the first paper to propose the idea of transformation-based forecasting
focused on GARCHX-type models but the scope of extending this to several directions
is ample.

19



Appendices
A The GARCHX(p,q,1)-NoVaS transforma-

tion function
Here, we give the formula to perform NoVaS transformation based on the GARCHX(p,q,1)
model. This is the extension of the GARCHX(1,1,1) presented in the main text; p
and q represent the order lag order of Y 2

t and σ2
t terms, respectively. Moreover, we

consider the situation in which s number exogenous variables exist in the context of
making predictions. This general GARCHX model can be defined as follows:

Yt = σtWt,

σ2
t = a+

p∑
i=1

aiY
2
t−i +

q∑
j=1

bjσ
2
t−1 +

s∑
k=1

ckXk,t−1.
(23)

To initiate the corresponding transformation function, we rely on the expressions of
σ2
t−i for i = 1, . . . ,∞, i.e., we have

σ2
t−1 = a+

p∑
i=1

aiY
2
t−1−i +

q∑
j=1

bjσ
2
t−1−j +

s∑
k=1

ckXk,t−2;

σ2
t−2 = a+

p∑
i=1

aiY
2
t−2−i +

q∑
j=1

bjσ
2
t−2−j +

s∑
k=1

ckXk,t−3;

...

(24)

Plug all terms in Eq. (24) into Eq. (23) iteratively, we can get:

Yt = Wt

√√√√a+

p∑
i=1

aiY 2
t−i +

q∑
j=1

bjσ2
t−1 +

s∑
k=1

ckXk,t−1

= Wt

a+

p∑
i=1

aiY
2
t−i + b1

a+

p∑
i=1

aiY
2
t−1−i +

q∑
j=1

bjσ
2
t−1−j +

s∑
k=1

ckXk,t−2


= +b2

a+

p∑
i=1

aiY
2
t−2−i +

q∑
j=1

bjσ
2
t−2−j +

s∑
k=1

ckXk,t−3

+ · · ·+
s∑

k=1

ckXk,t−1

 1
2

= Wt

I(a) +

∞∑
i=1

I(Y 2
t−i) +

s∑
k=1

∞∑
j=1

I(Xk,t−j)

 1
2

(25)

To simplify the expression of Eq. (25), we first consider the part I(a) involved in
Eq. (25). It is not hard to find that all terms including a consist of a geometric series,
i.e.,

I(a) =

∞∑
i=0

a0(b1 + · · ·+ bq)
i =

a0
1− (b1 + · · ·+ bq)

, (26)
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since we have the condition that b1+ · · ·+ bq < 1 to satisfy the stationary requirement
of the time series. Then, for terms

∑∞
i=1 I(Y

2
t−i), it can be simplied as:

∞∑
i=1

I(Y 2
t−i) =

∞∑
i=1

ΞiY
2
t−i; (27)

where Ξi is the coefficient of Y 2
t−i which can be defined as follows:

Ξi =
∑

l1,...,lq ,j∈{1,...,p}
s.t.,

∑q
v=1 v·lv+j=i

(
aj ·Nlv ̸=0;v=1...,q · bl11 b

l2
2 · · · blqq

)
;

where Nlv ̸=0;v=1...,q is the number of non-zero terms of lv for v = 1, . . . , q. For example,
it is easy to see that:

I(Y 2
t−1) = a1Y

2
t−1;

I(Y 2
t−2) = (a1b1 + a2)Y

2
t−2

I(Y 2
t−3) = (a1b

2
1 + a1b2 + a2b1 + a3)Y

2
t−3

I(Y 2
t−4) = (a1b

3
1 + a1b1b2 + a1b2b1 + a2b

2
1 + a2b2 + a3b1 + a4)Y

2
t−3

Similarly, we have
s∑

k=1

∞∑
j=1

I(Xk,t−j) =
s∑

k=1

∞∑
i=1

Λk,iX
2
k,t−i; (28)

where
Λk,i =

∑
l1,...,lq

s.t.,
∑q

v=1 v·lv=i−1

(
ck ·Nlv ̸=0;v=1...,q · bl11 b

l2
2 · · · blqq

)
.

Combine all pieces in Eqs. (26) to (28), we can get

Yt = Wt

(
a0

1− (b1 + · · ·+ bq)
+

∞∑
i=1

ΞiY
2
t−i +

s∑
k=1

∞∑
i=1

Λk,iX
2
k,t−i

) 1
2

. (29)

Since
∑p

i=1 ai+
∑q

j=1 bj is required to be less than 1, we can truncate the two infinity
sums in Eq. (29) to order r which is an appropriately large constant, i.e., we can
approximate Eq. (29) by a truncated summation as follows:

Yt ≈ Wt

(
a0

1− (b1 + · · ·+ bq)
+

r∑
i=1

ΞiY
2
t−i +

s∑
k=1

r∑
i=1

Λk,iX
2
k,t−i

) 1
2

. (30)

Then, Eq. (30) can be thought of as a starting point to build the transformation
function for the NoVaS prediction purposes. We can develop GARCHX(p,q,l) with s
number of exogenous variables with a similar simplification procedure.
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