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Abstract—With the advent of Internet-of-Things (IoT),
Malware has been exponentially proliferating across a
plethora of platforms including PC, mobile, and other
embedded devices. Software-based solutions, such as Anti-
Virus Software (AVS), are ineffective against modern Mal-
ware and incur an abundance of computational overhead.
This has motivated researchers to develop Hardware-
assisted Malware Detection techniques utilizing Hardware
Performance Counters (HPCs). However, traditional HPC-
based Malware detection does not account for the temporal
order of the data. Consequently, false positives, i.e., benign
application being classified as Malware, become a major
predicament. Furthermore, some devices are extremely
limited in their hardware profiling capabilities, resulting in
a limited feature space. To address these issues, we propose
employing HPC data in conjunction with time series-
based classifiers. Additionally, we introduce a Sequential
Time Series-based Detection (SEQ-TSD) framework for
identifying Malware. The proposed methodology uses only
a single HPC, thereby reducing the profiling overhead. Our
experimental results prove that the proposed framework
can bolster the performance using only a single HPC to
detect Malware with up to 95% accuracy, while incur-
ring only a 5.56% false positive rate. Furthermore, we
demonstrate that combining multiple HPCs in conjunction
with SEQ-TSD boosts the average detection accuracy up
to 97.91%.

Index Terms—Hardware Performance Counters, Time
Series Classification, Malware Detection.

I. INTRODUCTION

The widespread proliferation of computing devices
across the PC and mobile spectrum has engendered a
ubiquitous production and dissemination of Malware.
Malware can be of various types, e.g., Trojans, Worms,
Viruses, and Botnets, with objectives ranging from leak-
ing sensitive information to denial of service. Tradition-
ally, Anti-Virus Software (AVS) has been employed for
identifying these malicious applications to ensure sys-
tem security. Typically, AVS functions by executing the
Malware in a virtual machine to monitor program behav-
ior and track Application Programming Interface (API)
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usage [1]. Subsequently, a benign/Malware classification
is produced by matching the encountered behavior with
known data. Attackers and AVS have an ongoing cat-
and-mouse game, as attackers design malevolent pro-
grams to evade AVS detection, but AVS bolsters its
system to address novel subversion attempts. This ever
lasting scrimmage results in AVS incurring a plethora of
computational bandwidth [2]. This has led researchers to
explore alternatives to AVS for Malware detection.
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Figure 1. Overview of Hardware-assisted Malware Detection.

One promising substitute for AVS is a Hardware-
assisted Malware Detector (HMD). This solution uti-
lizes hardware features as the root-of-trust, which are
harder to compromise by an adversary [3]. Recently,
a collaboration between Microsoft and Intel has devel-
oped a HMD known as Threat Detection Technology
(TDT). This helps endpoint security solutions harness
CPU telemetry and hardware acceleration for identifying
threats and anomalous activities. More specifically, it
utilizes a combination of CPU telemetry and Machine
Learning (ML) heuristics to detect specific behavior
such as cryptojacking and ransomware detection [4].
Consequently, Intel’s TDT is one of the first CPU-
based malware behavior-monitoring techniques that goes
beyond signature and file-based methods.

One of the most popular hardware features used in
HMDs is the Hardware Performance Counter (HPC).
HPCs monitor low-level microarchitectural events such
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as CPU-cycles, Cache-misses, and Branch-misses. HPCs
can be used in conjunction with ML classifiers to create
robust HMDs [3]. Figure 1 shows how HMDs are used to
differentiate between benign and malicious applications.

Traditional HPC-based Malware detection techniques
are not without pitfalls. Existing HMDs have no regard
for the temporal order of HPC data, i.e., the data is
scrambled with no recognition of the sequential at-
tributes. Consequently, HPC-based Malware detection
suffers from a high number of false positives, i.e., benign
programs being labeled Malware [5]. Disregarding the
transient sequence of HPCs induces these false positive
as Malware and benign applications can share similar
behaviors [6]. Furthermore, HPC-based Malware detec-
tion is dependent on the existence of hardware features
in the processor or controller that operates the system to
be protected. Some embedded devices have a minimal
amount of hardware profiling capabilities, and the lack of
available features culminates in poor model performance.
Therefore, it is imperative to reduce the feature size, i.e.,
the number of HPCs to be monitored.

To address these challenges, we propose respecting
the transient order of the HPCs by utilizing Time
Series-based Classifiers (TSCs) for Time Series Detec-
tion (TSD). We motivate TSD by first showing that
the HPCs show significant autocorrelation. We build
a formal statistical hypothesis test which corroborates
with our intuition that time-series dependence should not
be ignored, leading us to develop a time-series based
methodology. Our experimental results demonstrate the
performance improvement when utilizing TSCs trained
on a single HPC and multiple HPCs. This bolsters our
initial conjecture that the temporal attributes actually
encapsulate better classifying information rather than
single observations. Finally, we propose sequential time
series detection (SEQ-TSD) employing a single HPC for
devices with limited availability of hardware resources.

To the best of our knowledge, this is the first work that
exploits TSCs in conjunction with ensemble properties
for Malware detection. Specifically, our contributions
are:

o We demonstrate autocorrelation of HPCs by provid-
ing a formal statistical test to show the existence
of autoregressive coefficients through the Durbin-
Watson statistic to motivate the need for time series-
based classification,

e We assess the impact of classification capabilities
and performance metrics furnished by TSCs when
utilizing a single HPC and multiple HPCs,

e We design SEQ-TSD, incorporating multiple TSCs

for accurate Malware detection utilizing a single
HPC for devices with limited feature space, and,

o We evaluate combining multiple HPCs in conjunc-
tion with our proposed SEQ-TSD for unconstrained
devices.

The rest of the paper is organized as follows. Sec-
tion II presents the background on HPCs and our mo-
tivation for time series-based classification. Section III
describes prior research on HPC and time series-based
Malware detection. Section IV describes our proposed
methodology, and Section V presents the experimental
results. Finally, Section VI concludes the paper and gives
directions for our future works.

II. BACKGROUND AND MOTIVATION

A. Hardware Performance Counters

Hardware Performance Counters (HPCs) are spe-
cial purpose registers that are found in most modern
processors [3], [7]. They track low-level microarchi-
tectural events including LLC-store-misses, LI-dcache-
stores, Ref-cycles, etc. HPCs were originally developed
for performance tuning and software optimization as they
enable profiling an application. The quantity of avail-
able HPCs is dependent on the employed processor. A
Raspberry Pi 3 supports 20 HPCs, but an Intel i5-4210U
has 28 HPCs. However, only a finite number of HPCs
can be concurrently monitored, typically a maximum of
four depending on the processor architecture [3], [7],
[8]. Prior research has shown that an application’s HPC
trace can be employed in conjunction with ML models
for Malware detection [3], [8], [9].

B. Challenges of HPC-based Malware Detection

One major issue with HPC-based HMDs is the large
false positive rate [S]. A HMD approach that labels a be-
nign program as Malware is disastrous, since inhibiting
users from utilizing required applications would not see
wide-scale utilization. A challenge with traditional HPC-
based Malware detection is the utilization of scrambled
HPC data. Therefore, Malware that incorporates benign
commands would culminate in current HMDs incurring a
plethora of false positives as a single sample count is not
optimal for determining a program’s classification [6].
As an example, the PNSCAN Malware employs the
benign ping command. Scrambled data is insufficient for
distinguishing between a benign program with the ping
command and the pernicious PNSCAN Malware, as there
would be analogous samples between the two.

HMDs are also reliant on hardware features exist-
ing in the processor or controller that regulates the
system to be secured. While HPCs are integrated in



most modern processors, there are still a plethora of
devices that do not incorporate them. As an example,
Texas Instruments’ Solar Micro Inverter, which utilizes
a TMS320F28035 32-bit micro-controller, has extremely
limited profiling capabilities. Only a single feature can be
profiled through the development environment’s debug
server scripting tool. Consequently, the utilization of a
single feature would be insufficient for traditional HMDs
to furnish high performance. To address these challenges,
we develop SEQ-TSD that provides high accuracy and
maintains a low false positive rate while only employing
a single HPC.

C. Motivation for Time Series-based Malware Detection

In this subsection, we show significant autocorrelation
for the traces of HPCs Branch-instructions, Branch-
misses, Cache-misses, and LLC-load-misses which were
collected from an ARM Cortex A53 processor. We col-
lected HPC data from Malware procured from Virusshare
[10], and our employed benign applications consists of
the MiBench and Phoronix benchmark [11]. We provide
a thorough explanation of our experimental framework in
Section V. We utilized the festcorr and IMTest libraries
in R to furnish a statistical hypothesis test for the exis-
tence of Autoregressive coefficients through the Durbin-
Watson (DW) statistic [12]. These findings bolster a solid
statistical motivation to select classifiers that respect the
time-series structure instead of TMD that scrambles it.

We propose a formal hypothesis test to validate exis-
tence of auto-correlation across the HPCs. For a station-
ary time-series y;, auto-correlation at lag h > 0 can be
defined simply by:

(1

This definition is valid for any stationary time-series,
with the understanding that if the observed process has
a trend and a stationary error component, this would
be computed after one regresses the trend part out. For
simplicity, we restrict ourselves to a very simple model:
Mean + Autoregressive (1) (AR(1)) error structure. The
Auto Correlation Function (ACF) plots we presented
in Figure 2(a) suggests such AR(1) phenomenon. We
describe what an AR(1) error process looks like in the
following detailed model description. The counts y; for
a fixed HPC is modelled as follows:

p(h) = Corr(ys, Ys+n)

2

where u; stands for an independent white noise process
and p stands for possible auto-correlation at lag one.
Such an error process e; is called an AR process with lag

Yt = U+ e, e = pep—1 + Uy

one (AR (1)) since e; is regressed on e;_1, its own lagged
value. We will formally test the following hypothesis:

3)

We first compute the residuals é; from our data as é; =
y; — Y. The Durbin-Watson statistic [12], [13] for the
residual reads:
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Figure 2. ACF Functions and DW Test Results for Different
HPCs. Branch-instructions (BI), Branch-misses (BM), LLC-load-
misses (LLM), Cache-misses (CM)

We use Figure 2(b) to plot the test statistic values
and pvalues for all possible programs and HPCs in our
dataset. These show the DW test statistic values are pre-
dominantly below two, which denotes significant positive
correlation. Moreover, the pvalues for both malwares
and benign dataset are mostly zero, which essentially



rejects the hypothesis proposed in Equation 3 for any
pre-specified level for most of these programs. These
results lay the foundation of the main motivation for
exploring TSCs in this paper.

We note that one could also formally test for other
correlations by computing the p(h) for the series as
follows:

2>

(h)
7(0)

and then formally test Hy : p(h) = 0 versus H;
p(h) # 0. For brevity we do not present results on
higher lags individually. Instead, we present a result for
simultaneously testing whether the first m lags are 0 or
not denoted as:

Hy:p(l)=---=p(m)=0vs. H : p(i) #0  (6)

for some 1 < ¢ < m. The employed cumulative Ljung-
Box (LB) statistic test is defined as:

plh) =
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LB=(T+2)T Y. ;(ﬁ)k and t;, = VTp(k) (7)
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where t; can be used to test an individual lag k. Addi-
tionally, the restcorr package provides a set of robust Q
statistical tests, whose details we exclude for brevity but
can be explored in [14], for evaluating the conditions in
Equation 6. Figure 3 presents the LB and robust tests
with the corresponding cumulative tests for evaluating
the simultaneous hypothesis. We only used one instance
of one HPC from each class, but the results uniformly
showed the existence of a significant correlation for both
individual and cumulative tests. We also compiled a
pvalue histogram similar to 2(b) for the cumulative tests
with m = 10 and m = 15 which we omit for brevity,
as they furnished similar results. Consequently, these
results bolster our conjecture that the temporal order is
important.
ITI. RELATED WORK
A. HPC-based Malware Detection

Malware, a portmanteau for malicious software, is any
application that intrudes on a system. They exhibit a
spectrum of behaviors from spying on sensitive infor-
mation to inducing a device shutdown. To overcome
the challenges that AVS incurs, HPC-based Malware
detection has been proposed.

HPC-based Malware detection was first proposed
in [15]. This was further improved to incorporate ML
classifiers along with HPC data for distinguishing be-
tween malicious and benign programs [3]. NumChecker
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Figure 3. Robust and Cumulative Tests for Branch-misses (BM)
Malware ( (a) and (b)) and for LLC-load-misses (LLM) Benign ((c)
and (d)).

was developed to utilize HPC values monitored using
virtual machines for measuring system call events to
identify malignant kernel control-flow alterations [8].
ConFirm was proposed for detecting firmware modifi-
cations through a HPC-based comparison scheme [16].
Furthermore, a two-stage ML-based classification tech-
nique was presented wherein feature selection is uti-
lized to determine the best HPCs to be used in a bi-
stage classifier for determining malicious software [17].
Several researchers have proposed techniques to secure
pregnable systems from malicious applications using
HPCs [9], [18]-[22].

B. Time Series-based Detection

In the realm of time series-based detection, prior
works in various fields have exploited the sequential tem-
poral order. In the medical field, time series classification
has been utilized for determining a patient’s reaction
to an interferon- treatment for multiple sclerosis [23].
The finance industry has also taken advantage of time
series data, as various stochastic models trained on
temporal variations of a stock price have been utilized to
predict short-term movements in the market [24]. With
respect to Malware detection, an entropy time series-
based approach was developed for detecting Malware
from portable executable files, where a shapelet TSC
was utilized to extract discriminative features from the
entropy signals [25]. A multivariate time-series analysis
for Android Malware detection was produced by utilizing
an autoregressive moving average model, where the
data is compared for detecting malicious codes [26].
Prior research has utilized background network noise in
conjunction with a non-stationary autoregressive model
for intrusion detection in network traffic [27]. Krish-
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Figure 4. Overview of the Proposed SEQ-TSD.

namurthy et al. proposed an anomaly detection tech-
nique for securing cyber-physical systems that utilized
an iterating interval for extracting features from multiple
HPCs [28]. However, they did not use a statistical time
series-based model, as the pre-processed features were
used to train a Support Vector Machine (SVM) classifier.
Furthermore, the scope of their work is limited to multi-
HPC utilization for anomaly detection in programmable
logic controllers rather than Malware detection. To the
best of our knowledge, this is the first work that em-
ploys bare-bone HPC data in conjunction with TSCs for
Malware detection utilizing a single HPC.

IV. METHODOLOGY

This section contains a chronological development
of our proposed time series-based Malware detection
methodology (TSD) for improving accuracy, reducing
false positives, and minimizing feature overhead.

A. Time Series-based Classification

Time series classification considers data consisting
of both (i) time points at which they are observed,
and (ii) observations at those time points notionally
represented as x(t1), x(f2),....x(t7) for observations at
t1, to,...tr [29].

In this paper, we utilize the Time Series Forest
(TSF) for all Time Series Detection (TSD) experiments.
Prior research has shown it is computationally efficient
and furnishes better performance compared to other
TSCs [30]. TSF is an interval-based classifier that utilizes
information from various intervals of a series [31]. This
model functions by taking input data, splitting into
intervals, extracting features including slope, standard
deviation, and mean from the intervals, and training the
model on these features [32]. The interval features of
mean (f;), standard deviation (f2), and slope (f3) for
given intervals t; and {2 and values at specific times v;
are defined as follows:
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where B is the least squares regression line [30]. More-
over, the interval-based properties of the TSF classifier
enable robustness as the temporal features calculated
over the interval features can capture the transient char-
acteristics of a program.

B. Combining HPCs

While TSD exhibits advantageous properties by ac-
counting for the temporal HPC order, we additionally
explore employing multiple HPCs towards an improved
performance. When analyzing different time series seg-
ments of an entire HPC series, these units are less
in number compared to traditional Malware detection
samples, where the data is scrambled. Scrambled data
considers each unit separately rather than as a single
series. However, time series segment samples contain
more classification information since the trace is longer.
Consequently, it is natural to explore how the utilization
of more than one HPC can improve upon the accuracy as
additional time series segments are incorporated. Since
HPC data has a positive correlation when utilized in
unison, employing them together provides an improved
performance. Multi-feature utilization incorporates more
information for the TSC to furnish improved predictions.

C. Sequential Time Series Framework

Malware that incorporates benign commands would
culminate in current HMDs incurring a plethora of false
positives. Since HMDs furnish a classification on indi-
vidual samples, Malware with benign behaviors would
incur similar HPC values to benign data. Furthermore,
embedded devices that lack thorough profiling capa-
bilities are unable to provide many hardware features.
To address these issues, we propose Sequential Time



Series Detection (SEQ-TSD) for Malware detection, that
utilizes a single HPC while maintaining a minimal false
positive rate. We utilize time series classifiers in our
proposed framework, so the temporal order of the HPC
data is respected. Therefore, for Malware like PNSCAN
which employs the benign ping command [6], the time
series HPC traces would be different between the two,
thereby lowering the amount of incurred false positives.

Figure 4 depicts the proposed SEQ-TSD when four
classifiers are utilized. It should be noted that any num-
ber of classifiers can be utilized, albeit with a difference
in performance. Each classifier in our framework utilizes
a different time series length following an ascending
order. Algorithm 1 provides an overview of the opera-
tional process of SEQ-TSD. The proposed methodology
functions with the first time series classifier predicting
the incoming testing data. If the confidence probability
exceeds a unique predefined threshold, the prediction is
taken. Otherwise, the next classifier will predict on that
data. Similarly, the prediction is taken or the testing data
is moved to the next classifier. When the last classifier is
reached, if the model’s required threshold is not met, a
majority prediction vote is taken based on the confidence
probabilities of all the classifiers.

By utilizing predefined thresholds for each classifier,
the false positive rate is lowered. As an example, let us
consider that HPCs are collected every one millisecond,
and the time series lengths of the classifiers in Figure 4
are 5, 10, 15, and 20, respectively. For obvious malicious
time series HPC traces, the first classifier would be
able to identify them with a high confidence probability.
Consequently, we specifically set the initial classifiers
in our framework to utilize high thresholds to ensure
that only these samples get classified. For samples that
don’t meet this threshold, they will propagate through
the framework to classifiers employing longer time series
lengths. The longer HPC traces provide more informa-
tion, thereby enabling these models’ decisions to have
better confidence probabilities. In the case that none
of the models’ predictions are taken, the employment
of a majority vote exploits ensemble advantages, where
a single wrong model prediction does not subvert the
accuracy.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

For our experiments in this paper, we collected HPC
data from two different processors using the linux com-
mand perf stat. In this work, we have retrieved four HPC
measures per perf stat command every one millisecond

Algorithm 1 Sequential Time Series Detection Applica-
tion

Input: HPCs of Malware and Benign Applications, C
Number of Classifiers to be Utilized in SEQ-TSD
Output: SEQ-TSD Accuracy

1: application(){

2: #define int pass, fail, array inputX , predf/

3: inputf( = Read HPC Trace

4: while inputX do

5: predY, threshold, =
Classifiery .predict(inputX)

6: if threshold, >= Classifier,.threshold
then

7: if predY, passed then

8: {pass++}

9: else

10: {fail++}

11: predf/ < empty Array

12: else if n == C then

13: {Majority_Vote(predY)}

14: predY empty Array

15: else if n < C' then

16: {n++}

17: {inputX = Get_Trace(n)}

18: output SEQ-TSD_accuracy = (pass / (pass + fail))
19: end
20: }

from the target processor. First, we collected HPCs from
an Intel i5-4210U processor utilizing x86 architecture
for 100 benign and 100 malicious programs. Next, we
employed a Raspberry Pi 3 Model B, which utilizes
an ARM Cortex-A53 processor, to collect HPCs for
300 benign and 300 Malware. The benign programs
include various sorting and computational algorithms, in
addition to the MiBench and Phoronix benchmark [11].
These benchmarks represent real-life applications that
a regular user would use. We obtained the processor-
specific Malware from Virusshare [10].

For all Traditional Malware Detection (TMD) exper-
iments, the Random Forest (RF) classifier is employed.
Prior research has shown that RF models consistently
outperform alternative ML solutions [5], [33]. There-
fore, we used this classifier for our experiments. This
analysis can be extended to other classifiers as well,
albeit with a difference in classification accuracy. For
time series lengths greater than one (a sample consist-
ing of consecutive HPC data), the Time Series Forest



(TSF) model was employed. We utilized the Sktime
and Scikit learn libraries in Python for building the
ML models. Both classifiers incorporate an 80:20 spilt
with 80% of the data used for training and 20% for
testing. To corroborate the advantages of time series
detection (TSD), we encompass a wide range of HPCs.
We specifically profile the HPCs Branch-instructions,
Bus-cycles, Cache-misses, and CPU-cycles for the ARM
Malware Dataset (AMD), and Branch-misses, Ref-cycles,
Li-dcache-stores, and LLC-store-misses for the x86 Mal-
ware Dataset (XMD). Other HPCs could be utilized,
albeit with a variation in performance.
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Figure 5. Accuracy of Varying Time Series Length Classification
for (a) ARM Malware Dataset (AMD) and (b) x86 Malware Dataset
(XMD).
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Figure 6. Precision of Varying Time Series Length Classification
for (a) ARM Malware Dataset (AMD) and (b) x86 Malware Dataset
(XMD).

B. Time Series vs. Traditional Malware Detection

To demonstrate the advantages of time series-based
classification for bolstering performance and minimizing
the false positive rate, we evaluated both the AMD and
the XMD using different time series lengths for only a
single HPC. Figures 5(a) and 5(b) present our furnished
experimental results in terms of classification accuracy.
When the time series length is one, which is essentially
TMD, the classification accuracy for AMD dataset is
60.89% for Branch-instructions, 58.91% for Bus-cycles,
60.85% for Cache-misses, and 57.33% for CPU-cycles
with the average classification accuracy being 59.49%.
For the XMD, the classification accuracy is 65.07% for
Branch-misses, 70.32% for Ref-cycles, 75.17% for LlI-
dcache-stores, and 73.82% for LLC-store-misses with an
average of 71.09% accuracy.

For AMD and XMD, utilizing a time series length of
five showed significant improvement in each individual
HPC’s performance. For AMD, we observed an average
accuracy increase of 16.21% for a mean absolute accu-
racy of 75.7%. Similarly, for XMD, the average accuracy
improvement was 7.46% culminating in a maximum
accuracy of 78.56%. We extended this experiment to
include longer time series traces of lengths 10 and 15.
We observed that an increasing trace length engenders
an increase in classification accuracy. For AMD, we
obtained an average improvement of 26.09% and 27.34%
for time series lengths of 10 and 15, respectively. For
XMD, the corresponding enhancements in accuracy are
15.28% and 17.96%. We obtained a maximum accuracy
of 88.61% and 90.93% for HPCs Bus-cycles (AMD)
and LLC-store-misses (XMD), respectively, with sample
length 15.

While the aforementioned results highlight the detec-
tion capabilities of TSD, any AVS is concerned with
the false positive rate as well. A major predicament of
TMD is the high false positive rate, as explained in Sec-
tion II-B. Figure 6 shows the precision of the TMD and
the TSD with varying time series lengths. The precision
indicates the percentage of samples correctly identified
as malicious; therefore, a high precision equates to a
lower false positive rate.

Similar to Figure 5, we observed an increment in
precision as the time series length increased. Initially,
the average precision was 61.12% and 70.28% for AMD
and XMD, for a single HPC, respectively, which cor-
roborates the issue of the high number of false positives
incurred in TMD. When utilizing a time series length
of five, the overall precision for AMD was increased to
78.08%, and XMD improved to 80.86%. These results
highlight the benefits of respecting the temporal order of
the data as a small time series length was able to bolster
the precision significantly. Our best precision results
were obtained when employing a time series length of
15. The overall precision was 89.08% for AMD and
88.8% for XMD, thereby considerably reducing the false
positive rate and improving confidence in the classifier.

Our experimental results show that when compared
to TMD, TSD can furnish higher Malware classification
accuracy and precision utilizing only a single HPC.
Moreover, both metrics improve as the time series length
increases. This is because the samples in TSD contain
more temporal information. On the other hand, TMD in-
corporates scrambled data resulting in a lower precision,
as Malware and benign applications will have analogous
HPC values. Therefore, utilizing time series HPC traces



enables developing robust models furnishing improved
performance with minimal false positive rates as justified
by our results in Figures 5 and 6.

W Traditional 1 Time Series W Traditional 1 Time Series

Accuracy %
ssess83ssd
Accuracy %
B

o
BM+RC BM+ BM RC+ LDS+
LD

+  RC+
BI+BC BI+CM BI+CC BC+CM BC+CC CM+CC S LSM  LDS  LSM  LSM

(a) (b)

Figure 7. Accuracy of HPC Combinations for Traditional and Time
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Figure 8. Performance Comparison between Single and Combina-
tional Traditional and Time Series Traces. For each X HPC + Y
HPC pair, X is represented in #1 columns, and Y is presented in #2
columns. Branch-instructions (BI), Bus-cycles (BC), Cache-misses
(CM), CPU-cycles (CC), Branch-misses (BM, Ref-cycles (RC), L1-
dcache-stores (LDS), LLC-store-misses (LSM)
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Figure 9. Precision of HPC Combinations for Traditional and Time
Series Traces. Branch-instructions (BI), Bus-cycles (BC), Cache-
misses (CM), CPU-cycles (CC), Branch-misses (BM, Ref-cycles
(RC), L1-dcache-stores (LDS), LLC-store-misses (LSM)

C. Time Series Detection by Combining HPCs

In this experiment, we explore the combination of
HPCs, i.e., utilizing two HPCs for the time series-based
model. Combining HPC traces is beneficial, as multi-
feature utilization enables extracting additional informa-
tion for better classification performance. As explained
in Section II-A, most processors allow monitoring up
to four HPCs concurrently. We utilized the same HPCs
from Figure 5 and evaluated the different combinations
in groups of two HPCs for TMD and TSD. For TSD,
we employed a sample length of five for the AMD and
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Figure 10. Traditional Malware Detection using 4 HPCs vs. Time
Series Detection using 2 HPCs. Branch-instructions (BI), Bus-cycles
(BC), Cache-misses (CM), CPU-cycles (CC), Branch-misses (BM,
Ref-cycles (RC), L1-dcache-stores (LDS), LLC-store-misses (LSM)

XMD. We constrain ourselves to utilize different HPCs
per combination without repetitions.

From our results in Figures 7(a) and 7(b), combining
HPCs bolstered the TMD accuracy in both datasets.
When utilizing only one HPC, the average HPC accuracy
for the AMD was 59.49%, but combining HPCs raised
the average to 71.21%. Similarly, the XMD saw an
improvement from an average HPC accuracy of 71.09%
to 80.67%. Subsequently, we repeated our experiments
for TSD. From Figures 5(a) and 5(b), the average time
series HPC accuracy for length five was 75.71% and
78.56% for AMD and XMD, respectively. However,
when analyzing the combinations of HPCs, these values
increased to 93.22% and 95.11%.

Figure 8 shows a performance comparison of the
individual accuracies of the utilized HPCs and the com-
binational results for TMD and TSD. Initially, the TMD
accuracy of Branch-misses was 58.91% and 60.85%
for Cache-misses. The utilization of these two HPCs
furnished 72.16% accuracy. However, using a time series
length of five, the individual accuracies were 77.04%
and 72.62% for Branch-misses and Cache-misses, re-
spectively. However, the combination of these features
when using a TSC furnished a 99.97% accuracy. This is
a 27.81% improvement over TMD, which corroborates
the advantageous properties of TSD.

Additionally, we analyzed the precision of the various
pairs for TMD and TSD, as shown in Figure 9. The over-
all precision for combinational TMD pairs was 72.22%
and 80.64% for AMD and XMD, respectively. However,
the average precision of the time series pairs was 93.97%
for AMD and 95.67% for XMD, demonstrating an
improvement of 15-20%. Therefore, even for multiple
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HPCs, the time series analysis can significantly improve
the false positive rate.

To conclude our experiments for combining HPCs,
we evaluated TMD utilizing four features versus TSD
employing two, as shown in Figure 10. We utilized the
same set of four HPCs from Section V-B for AMD
and XMD. The accuracy and precision was 85.6% and
84.95% for AMD, and 89.27% and 88.79% for XMD.
Since we can collect up to four HPCs concurrently, our
results show the best performance that can be achieved
with TMD. However, both accuracy and precision of
TMD are still significantly less than the performance
furnished from TSD, which had near perfect accuracy
and precision employing only two HPCs. Consequently,
these experimental results substantiate the advantages of
multi-feature utilization and demonstrate the benefits of
employing TSD.

D. Malware Detection for Constrained Devices

To corroborate the advantages of time series-based
classification for devices with limited profiling capabil-
ities, we analyzed the performance of TMD and TSD
when utilizing different numbers of HPCs. Figure 11
shows the results for TMD using one and four HPCs, and
TSD using a single HPC at varying time series lengths.
We utilized the HPC Branch-instruction from AMD
and LI-dcache-stores from XMD to demonstrate the
performance improvement when different techniques are
employed. For Branch-instructions, the TMD accuracy
and precision was 60.89% and 62.32%, respectively.
Furthermore, TMD’s best performance is achieved when
employing the four HPCs from Figure 10 concurrently.
This improved the model’s accuracy and precision to
85.6% and 84.95%, respectively. However, utilizing a

time series length of 15 with Branch-instructions was
sufficient for TSD to furnish a higher accuracy and pre-
cision of 85.97% and 88.46%, respectively. We obtained
similar results for LI-dcache-stores. Consequently, TSD
using TSCs provides better performance with less incor-
porated features. TMD is heavily reliant on the existence
of hardware features and their profiling capabilities in
processors and controllers as explained in Section II-B.
The limited feature space in some devices can inhibit
them from exploiting HMDs for ensuring system se-
curity. TSD provides a robust solution for constrained
devices, thereby enabling them to incorporate HMDs for
comprehensive Malware detection.
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Figure 12. Accuracy Comparison between TMD, TSD, and SEQ-
TSD.
ES Evaluating Sequential Time Series Framework

In this section, we analyze the proposed SEQ-TSD,
explained in Section IV-C, that utilizes a single HPC.
We incorporated five TSFs into our framework, utilizing
varying time series lengths of 5, 15, 25, 35, and 45.
These sample lengths were chosen as they enable quick
detection but permit sampling for longer periods to ad-
dress more complex Malware. We built two frameworks,
one each for AMD and XMD. For each SEQ-TSD, we
evaluated using the HPCs employed in Section V-B, and
include a performance comparison with TMD and TSD.



Our experimental results are presented in Figure 12.
Previously, the average HPC accuracy furnished for the
TSD of length five was 75.71% and 78.56% for AMD
and XMD, respectively. However, our proposed method
was able to boost this average accuracy by 14.7% and
13.94% to 90.41% and 92.5% for AMD and XMD,
respectively. Achieving this performance with a single
HPC is critical because this confirms the effectiveness
of our presented framework for Malware detection with
minimal feature overhead. In devices with limited hard-
ware features, TMD would face a high false positive rate.
However, our proposed methodology enables providing
accurate detection by exploiting advantageous time series
classifier and ensemble properties.
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Figure 13. Precision Comparison between TMD, TSD, and SEQ-
TSD.

To further substantiate our claims of our proposed
technique, we analyzed the precision of TMD, TSD, and
SEQ-TSD. In Figure 13, the average precision of TMD
for AMD and XMD was 61.12% and 70.28%. These
precision values are not ideal for Malware detection, as
the number of false positives would be high. For TSD,
the average precision values of AMD and XMD were
78.08% and 80.86%. This is an improvement but the
number of false positives would still be significant as
roughly 22% of benign applications were erroneously
identified as Malware. On the other hand, the proposed
SEQ-TSD had an average precision of 91.83% and
92.64% for AMD and XMD, respectively. Consequently,
the SEQ-TSD had an average false positive rate of
7.76%, which is a significant improvement over TMD.

Our technique was successful in bolstering the pre-
cision, thereby lowering the amount of false positives
which are a major detriment in TMD. In Figure 13,
our best result was obtained when employing HPC LI-
dcache-stores which had an accuracy of 95% and a
precision of 94.44%. Since the fundamental goal of our
proposed method is to provide improved detection using
a single HPC and minimize the false positive rate, the
sequential time series capabilities of our framework are
verified.

To conclude our experiments, we utilized the com-
binational pairs from Section V-C for multi-feature uti-
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Figure 14. SEQ-TSD utilizing Combinational HPCs. Branch-
instructions (BI), Bus-cycles (BC), Cache-misses (CM), CPU-cycles
(CC), Branch-misses (BM, Ref-cycles (RC), L1-dcache-stores (LDS),
LLC-store-misses (LSM)

lization in our SEQ-TSD as shown in Figure 14. The

average accuracy and precision for AMD was 97.36%
and 95.83%. For XMD, we obtained an overall accuracy
of 97.5% and a precision of 97.91%. When analyzing the
average time series performance metrics from Figures 7
and 9, the sequential model was able to improve the
accuracy and precision by 4.14% and 2.7% for AMD and
2.39% and 2.23% for XMD. Moreover, when contrasting
the furnished results with average measurement metrics
of Figure 12, we observed an improvement of 7.09%
accuracy and 6.08% precision for AMD. For XMD, we
obtained a 5% and 5.27% increase in accuracy and pre-
cision, respectively. We conclude that utilizing multiple
HPCs in conjunction with our proposed SEQ-TSD fur-
nishes the best overall accuracy and precision. However,
for low resource devices with minimal hardware profiling
capabilities, SEQ-TSD still provides favorable Malware
detection with a low false positive rate when employing
only a single HPC.

BI+BC BI+CM

VI. CONCLUSION AND FUTURE WORK

While HPC-based Malware Detection has improved
system security by addressing the challenges of AVS, the
high false positive rate and profiling limitations of some
devices remain a detriment. In this paper, we proposed
utilizing TSCs to ensure the temporal sequence of the
HPCs is respected. Our experiment results substantiate
the advantageous properties of TSD over traditional
TMD. Furthermore, we presented SEQ-TSD that uses
a single HPC for Malware detection. Our experiment
results show that our proposed technique is able to fur-
nish a 95% accuracy with a minimal false positive rate of
5.56% when employing just a single HPC. Consequently,
our methodology is suitable for embedded devices with
minimal hardware registers. Additionally, we evaluated
the ability of combining HPCs in conjunction with
our SEQ-TSD, where we obtained an average 97.91%
detection accuracy. In the future, we plan to extend
our TSD to microarchitectural attacks such as Spectre,
Meltdown, ZombielLLoad, and Rowhammer.
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