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Abstract

This paper proposes a test for testing the equality of two high-dimensional covariance matrices in the two-sample set
up. This test is based on the maximum of the absolute differences between the entries of the multiplier bootstrap
Jackknifed estimators of the two population covariance matrices. The paper also contains an extension of the central
limit theorem for one-sample non-degenerate U statistics to the two sample non-degenerate U statistics. This extension
is used to derive the asymptotic distributions of the sequence of the proposed test statistics under the null and some
local alternative hypotheses. These results are obtained under some weak conditions on the moments of the random
vectors and the tails of the marginal distributions. The correlation structures of the random vectors can be arbitrary,
the two sample sizes need not be equal and the multivariate dimension is allowed to grow exponentially with the two
sample sizes. The test is shown to be consistent against a class of shrinking nonparametric alternatives. A finite sample
simulation study reveals some superiority of this test compared to some of the existing tests.
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1. Introduction

The problem of testing the equality of the two covariance matrices in the two sample multivariate set up is a clas-
sical problem in statistical inference. It has been well studied in the low-dimensional setting where the multivariate
dimension p is fixed and smaller than the sample sizes, see, e.g., Chapter 10, Anderson [1] and the references therein.

In the context of high dimensional data where the number of components p either grows polynomially or even
exponentially with increasing sample sizes, this problem has been addressed only in the last decade or so. The tests
proposed by Schott [12] and Srivastava and Yanighara [13] are valid for multivariate normal distributions only. A U-
statistic test based on an unbiased estimator of the Frobenius norm of the difference of the two population covariance
matrices was proposed by Li and Chen [11]. Chen and He [10] proposed another test based on a U-statistic that
focuses on the super diagonal elements of the covariance matrices. Cai, Liu and Xia [2] proposed a test based on the
maximum of the standardized differences between the entries of the two estimates of the two population covariance
matrices. Both of these tests do not require the assumption of Gaussianity of the underlying populations. Further
investigation by Cai et al. [2] revealed that the Li and Chen [11] test fails to distinguish between the null and the
alternative hypotheses when the difference between the two population covariance matrices is sparse, i.e., when the
number of non-zero elements in this difference matrix is small. On the other hand, the Cai et al. [2] test works well
only when the difference matrix is sparse.
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Although Cai et al. [2] showed that under certain regularity conditions their test enjoys some optimality in terms
of the asymptotic power, it has been pointed out by Fan, Liao and Yao [9] that the convergence of the null distribution
of Cai et al. [2] test statistic to Gumbel requires large sample sizes. They also suggested some power-enhancement
techniques to achieve the desired power for the test statistic of Cai et al. [2]. Chang, Zhou, Zhou and Wang [3]
investigated the finite sample performance of a bootstrap version of the Cai et al. [2] test. The technique involves using
multiplier bootstrap approximation result for random vectors after vectorizing the covariance matrices. Their bootstrap
method is inapplicable when the two populations means are unknown and unequal because then the sample covariance
matrices can no longer be expressed as sums of independent vectors. Moreover, they established consistency of their
test under some restrictive conditions like sparsity and other correlational structures.

The need for U statistics based testing approach for covariance matrices can be motivated by noting the fact that
the high dimensional central limit theorem fails because the sample covariance matrix can no longer be written as a
vectorized sum of independent high dimensional vectors.

In this paper we propose a test for testing the equality of the two population covariance matrices in the high
dimensional set up when the two populations means are unknown, under some mild assumptions on the moments and
tails of the underlying distributions. The proposed test is based on the maximum of the absolute differences between the
entries of the Jackknifed estimators of the two population covariance matrices. We actually use a multiplier bootstrap
version of this test statistic. The proposed multiplier bootstrap procedure makes the size and power computation a
lot faster. Moreover, the absence of distributional and correlational assumptions makes it applicable more broadly,
compared to the above mentioned tests. The proposed test is shown to be consistent against a large class of shrinking
alternatives and is argued to be constant rate-optimal against such alternatives. These results are obtained using the
seminal works of Chernozhukov, Chetverikov and Kato [5], [6], [7] and Chen [4].

The rest of the article is organized as follows. Section 3 describes the testing problem, the proposed test statistic
and the large sample Gaussian approximation of a class of two sample U statistics in the high dimensional set up
along with the needed assumptions. This approximation in turn is used to derive the limiting null distribution of
the proposed test statistic in Section 4. It is also used to prove the consistency of the test against a sequence of
general nonparametric alternatives in Section 5. Findings of a finite sample study reported in Section 6 exhibits some
superiority of the proposed test compared to some of the currently popular tests in terms of the empirical level and
power. Section 8 contains the proofs of theorems and lemmas.

2. Notations

We shall use the following notation and conventions in this paper. The symbol := stands for ‘definition’. For a
positive integer p, Rp denotes the p dimensional Euclidean space. R := R1. For x ∈ Rp, xT denotes its transpose
and ∥x∥ its Euclidean norm and ∥x∥∞ denotes its maximum norm. For any two vectors x = (x1, · · · , xp)T ∈ Rp and
y = (y1, · · · , yp)T ∈ Rp, write x ≤ y if x j ≤ y j for all j = 1, · · · , p. For any x = (x1, · · · , xp)T ∈ Rp and a ∈ R,
x + a := (x1 + a, · · · , xp + a)T . For any a, b ∈ R, a ∨ b := max{a, b} and a ∧ b := min{a, b}. For any two sequences
ad,m,n, bd,m,n, d ∧ m ∧ n ≥ 1, of positive numbers, write am,n,d ≲ bm,n,d if for some universal constant C > 0, not
depending on m, n, d, ad,m,n ≤ Cbd,m,n, for all sufficiently large d ∧m ∧ n. We write ad,m,n ∼ bd,m,n if ad,m,n ≲ bd,m,n and
bd,m,n ≲ ad,m,n.

For a positive integer q and a random vector (r.v.) Z = (Z1, · · · ,Zq)T with finite expectation, ∥Z∥1 :=
∑p

j=1 E
(
|Z j|

)
and Z ∼D G means that the distribution function (d.f.) of Z is G. For any matrix A = ((ai j)), ∥A∥∞ := maxi, j |ai j|.
For any p × p symmetric matrix A, vec(A) denotes the d := p(p + 1)/2-dimensional vector consisting of all of the
upper-diagonal entries of A. For any function f : R → R, ∥ f ∥∞ := supz∈R | f (z)|. For a smooth function g : Rp → R,
we adopt indices to represent the partial derivatives for brevity. For example, δ jδkδlg = g jkl, where δ j denotes the
partial derivative with respect to the jth coordinate. Let ψα(x) := exp(xα) − 1, x > 0, α > 0. For any random variable
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X, define

∥X∥ψα := inf
{
λ > 0 : E

{
ψα(|X|/λ)

}
≤ 1

}
. (2.1)

The entity ∥X∥ψα with α ∈ [1,∞), is called the Orlicz norm while for 0 < α < 1, it is called Orlicz quasi-norm. Also
let, ARe denote the class of hyper-rectangles in Rp, i.e.,

ARe :=
{ d∏

j=1

[a j, b j] : −∞ ≤ a j ≤ b j ≤ ∞, j = 1, 2, . . . , d
}
.

3. Gaussian approximation result for U statistics

This section contains the description of the testing problem, the proposed test and the Gaussian approximation results
along with the needed assumptions for a large class of the two sample U statistics.

Let F j, j = 1, 2 be possibly two different d.f.’s on Rp. Let µ j and Σ j, j = 1, 2 denote their mean vectors and
covariance matrices, respectively. Let Xm represent the random sample X1, · · · , Xm from F1 and Yn denote the random
sample Y1, · · · ,Yn from F2. We wish to test H0 : Σ1 = Σ2 versus the alternatives Halt : Σ1 , Σ2.

To describe the proposed test, let

VX
m :=

1
m(m − 1)

∑
1≤i, j≤m

vec
(
(Xi − X j)(Xi − X j)T )

2
and VY

n :=
1

n(n − 1)

∑
1≤i, j≤n

vec
(
(Yi − Y j)(Yi − Y j)T )

2
,

be the sample covariance matrices for the Xm and Yn samples, respectively. Let

Tm,n :=
√

m(VX
m − VY

n )
2

. (3.1)

Both VX
m ,V

Y
n are d := p(p + 1)/2 dimensional U statistics. The proposed test rejects H0 whenever ∥Tm,n∥∞ is large. To

implement this test in the large samples, we need to know its asymptotic null distribution. Towards that goal, we shall
first analyze some asymptotic properties of a general class of two sample U statistics in the high dimensional set up.

Let h̃ be a kernel function from Rp×Rp 7→ Rp×p that is symmetric under permutations, i.e., h̃(x1, x2) = h̃(x2, x1), for
all x1, x2 ∈ Rp. Thus h̃ is a p×p symmetric matrix. Let vec(h) denote the vector representation of h̃, i.e., vec(h̃) is the d-
dimensional vector consisting of all the upper-diagonal entries of h̃. Assume

∥∥∥vec(h̃(X1, X2))
∥∥∥

1+
∥∥∥vec(h̃(Y1,Y2))

∥∥∥
1 < ∞.

Let δm,n be a sequence of real numbers and define

UX
m :=

1
m(m − 1)

∑
1≤i, j≤m

vec
(
h̃(Xi, X j)

)
, UY

n :=
1

n(n − 1)

∑
1≤i, j≤n

vec
(
h̃(Yi,Y j)

)
,

ΩX := E
(
vec

(
h̃(X1, X2)

))
, ΩY := E

(
vec

(
h̃(Y1,Y2)

))
,

WX
m :=

√
m
(
UX

m −Ω
X)

2
, WY

n :=
√

n
(
UY

n −Ω
Y )

2
, Wm,n := WX

m + δm,nWY
n .

Note that if h̃(x1, x2) ≡ (x1 − x2)(x1 − x2)T /2 and δm,n = −(m/n)1/2, then UX
m ≡ VX

m , UY
n ≡ VY

n , ΩX ≡ Σ1 and
ΩY ≡ Σ2. Moreover, under H0, ΩX = ΩY and Wm,n = Tm,n. We further define the linear projection terms of UX

m and
UY

n , respectively, to be

g(x) := E
(
vec

(
h̃(X1, X2)

)∣∣∣X1 = x
)
−ΩX , x ∈ Rp,

ℓ(y) := E
(
vec

(
h̃(Y1,Y2)

)∣∣∣Y1 = y
)
−ΩY , y ∈ Rp.

The d × d covariance matrices of g(X) and ℓ(Y) are, respectively, defined as

ΓX := E
(
g(X)g(X)T

)
, ΓY := E

(
ℓ(Y)ℓ(Y)T

)
. (3.2)
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Let vec
(
h(x1, x2)

)
:= vec

(
h̃(x1, x2)

)
− ΩX and vec

(
h(y1, y2)

)
:= vec

(
h̃(y1, y2)

)
− ΩY denote the centered version of the

kernels h̃(x1, x2) and h̃(y1, y2)), respectively. Further, for x j, y j ∈ Rp, j = 1, 2, let

f (x1, x2) := vec
(
h(x1, x2)

)
− g(x1) − g(x2), q(y1, y2) := vec

(
h(y1, y2)

)
− ℓ(y1) − ℓ(y2).

A kernel vec(h) : Rp ×Rp 7→ Rd is said to be non-degenerate if Var
(
ga(X)

)
> 0, for all a = 1, 2, · · · , d. It is said to

be completely degenerate if P
(
g(X) = 0

)
= 1 or equivalently,

E
[
vec(h(x1, X2))

]
= E

[
vec(h(X1, x2))

]
= E

[
vec(h(X1, X2))

]
= 0, ∀x1, x2 ∈ Rp.

To state the result about the Gaussian approximation of U statistics we need the following additional notation and
assumptions. Let

Lm,n :=
1
√

m

n∑
i=1

g(Xi) +
δm,n
√

n

n∑
j=1

ℓ(Y j), (3.3)

Rm,n :=
1

2
√

m(m − 1)

∑
1≤i, j≤m

f (Xi, X j) +
δm,n

2
√

n(n − 1)

∑
1≤i, j≤n

q(Yi,Y j).

Then,

Wm,n = Lm,n + Rm,n. (3.4)

Note that, Rm,n is a degenerate U statistic while Lm,n is non-degenerate. It is reasonable to expect that the distribution
of Wm,n would be well approximated by that of Lm,n.

Let TG1
m and TG2

n be two independent r.v.’s having Nd(0,ΓX), Nd(0,ΓY ) distribution, respectively, and define

ρ∗∗m,n := sup
A∈ARe

∣∣∣∣P( √m(UX
m −Ω

X)
2

+ δm,n

√
n(UY

n −Ω
Y )

2
∈ A

)
− P

(
TG1

m + δm,nTG2
n ∈ A

)∣∣∣∣
= sup

A∈ARe

∣∣∣∣P(
WX

m + δm,nWY
n ∈ A

)
− P

(
TG1

m + δm,nTG2
n ∈ A

)∣∣∣∣.
To proceed further we state the needed assumptions, where, for any measurable function f from Rp × Rp → Rd,

fa denotes its ath coordinate, a = 1(1)d and ∥ · ∥ψ1 is as in (2.1).

(a) There exists constants 0 < b < ∞ and δ2 > δ1 > 0 such that δ1 < |δm,n| < δ2 and inf1≤a≤d E
[
g2

a(X)+δ2
m,nℓ

2
a(Y)

]
> b,

∀m ∧ n ≥ 2.

(b) There exists a sequence of positive constants Bl
m,n, l = 1, 2 such that the following holds with with ξ j = X j, j =

1, 2 and ξ j = Y j, j = 1, 2.

max
1≤a≤d

E
[∣∣∣{vec(h(ξ1, ξ2))

}
a

∣∣∣2+l]
≤ Bl

m,n, l = 1, 2,∀m ∧ n ≥ 2.

(c) There exists a sequence of positive constants Bm,n such that the following holds with ξ j = X j, j = 1, 2 and
ξ j = Y j, j = 1, 2,

max
1≤a≤d

∥
{
vec(h(ξ1, ξ2))

}
a∥ψ1 ≤ Bm,n, ∀m ∧ n ≥ 1.

(d) B2
m,n log(md)7 ≤ Km and B2

m,n log(nd)7 ≤ Kn, for some constant K > 0 and for all m ∧ n ≥ 2.

We are now ready to state the following theorem which provides an approximation of the error bound estimate
between the probability of interest and its Gaussian counterpart. Its proof is deferred to Section 8.
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Theorem 3.1. Under the above set up and assumptions (a)–(d),

ρ∗∗m,n ≲
(B2

m,n log7(md)
m

)1/6
+

(B2
m,n log7(nd)

n

)1/6
. (3.5)

Remark 1. The above assumptions (a)-(e) have roots in the works of Chernozhukov et al. [7] and Chen [4], which
deal with the one sample set up. These conditions are the two sample adaptations of their conditions.

Assumption (a) specifies the restriction on the sequence of constants δm,n to be bounded away from zero and
infinity. It also ensures the non-degeneracy of the kernel vec(h(ξ1, ξ2)) with ξ j = X j, j = 1, 2 and ξ j = Y j, j = 1, 2.
Assumption (b) imposes a condition on the third and fourth order moments of the kernel vec(h(ξ1, ξ2)) with ξ j = X j, j =
1, 2 and ξ j = Y j, j = 1, 2. Li and Chen [11], Cai et al. [2] and Chang et al. [3] assumed the third order moments to be
bounded whereas we allow them to diverge to infinity at a rate specified in condition (d). The assumption (c) requires
the tail of the kernel to decay exponentially. This assumption is quite common and has been used in all the literatures
cited above.

Li and Chen [11] considered some structural assumptions on the traces of the two covariance matrices and Cai et
al. [2] imposed some structural assumptions like correlation and sparsity among the components of Xm and Yn. Schott
[12], Srivastava and Yanighara [13] assumed the Gaussianity of Xm and Yn.

The above assumptions (a)–(d) are either the same or weaker than those appearing in the above references. They
are weaker in the sense that no specific distributional assumption nor additional correlational assumption nor any
uniformly bounded moment conditions are needed for the validity of the asymptotic results in this paper about the
proposed test.

Although Theorem 3.1 acts as a foundational stone towards the Gaussian approximation of the distribution of
WX

m + δm,nWY
n , but because the limiting distribution is unknown, this theorem is of little use in implementing any

test based on WX
m + δm,nWY

n for the large sample sizes. To circumvent this problem we are proposing a bootstrap
approximation in Theorem 3.2 in the next section, which acts as a crucial step towards bridging this gap.

Instead of applying re-weighted multiplier bootstrap to estimate the unknown covariance matrices we employ the
jackknifed version of multiplier bootstrap approximation with jackknifed estimators of the covariance matrices. A
reason for choosing this strategy is that the i.i.d re-weighted bootstrap or naive multiplier bootstrap techniques are
known to have slower rates of consistency than the jackknifed counterpart, see, e.g., Section 3 in Chen [4].

Let e1, e2, · · · , em+n be i.i.d. N(0, 1) r.v.’s that are independent of Xm,Yn,TG1
m and TG2

n . Define the jackknife ver-
sions of WX

m and WY
n , respectively, as

WeX
m :=

1
√

m

m∑
i=1

[ 1
m − 1

m∑
j,i=1

vec
(
h̃(Xi, X j)

)
− UX

m

]
ei, WeY

n :=
1
√

n

n∑
i=1

[ 1
n − 1

n∑
j,i=1

vec
(
h̃(Yi,Y j)

)
− UY

n

]
ei+m.

Define the jackknife estimators of the corresponding covariance matrices of WX
m and WY

n as

Γ̂JK
m :=

1
(m − 1)(m − 2)2

m∑
i=1

∑
j,i

∑
k,i

{
vec

(
h̃(Xi, X j)

)
− UX

m

}{
vec

(
h̃(Xi, Xk)

)
− UX

m

}T
,

Γ̂JK
n :=

1
(n − 1)(n − 2)2

n∑
i=1

∑
j,i

∑
k,i

{
vec

(
h̃(Yi,Y j)) − UY

n

}{
vec

(
h̃(Yi,Yk)) − UY

n

}T
.

Let

Γ̃JK
m :=

(m − 2)2

m(m − 1)
Γ̂JK

m , Γ̃JK
n :=

(n − 2)2

n(n − 1)
Γ̂JK

n , and ∆̂m,n :=
∥∥∥(Γ̃JK

m − Γ
X) + δ2

m,n(Γ̃JK
n − Γ

Y )
∥∥∥
∞
. (3.6)

For any two random vectors ξ, ζ, the notation ξ|ζ denotes the conditional distribution of ξ, given ζ. Note that, WeX
m |X

m

isNd
(
0, Γ̃JK

m
)

and WeY
n |Y

n isNd
(
0, Γ̃JK

n
)
. We are ready to state the following lemma which plays a crucial role towards

obtaining the bootstrap approximation result. Its proof appears in Section 8.
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Lemma 3.1. Let ZX ,ZY be two independent r.v.’s such that ZX |Xm ∼D Nd(0, Γ̃JK
m ) and ZY |Yn ∼D Nd(0, Γ̃JK

n ). Then, for
some constant 0 < C < ∞ and every sequence of real numbers ∆̄m,n > 0, on the event {∆̂m,n ≤ ∆̄m,n},

sup
A∈ARe

∣∣∣∣P(
ZX + δm,nZY ∈ A|Xm,Yn

)
− P

(
TG1

m + δm,nTG2
n ∈ A

)∣∣∣∣ ≤ C(∆̄m,n)1/2 log d.

To proceed further, let Pe denote the conditional distribution of e := {e1, e2, · · · , em+n}, given Xm,Yn and define

ρJK
m,n := sup

A∈ARe

∣∣∣Pe(WeX
m + δm,nWeY

n ∈ A) − P(TG1
m + δm,nTG2

n ∈ A)
∣∣∣.

Lemma 3.1 applied with ZX = WeX
m , ZY = WeY

n , yields a preliminary upper bound for ρJK
m,n, which is instrumental

in obtaining an improved rate of bootstrap approximation as is evidenced by the next theorem, under the following
additional assumption.

(e) There exists a sequence of constant γm,n ∈ (0, e−1) such that for all sufficiently large d ∧ m ∧ n,

m−1B2
m,n log5(md) log2(1/γm,n) ≤ 1, n−1B2

m,n log5(nd) log2(1/γm,n) ≤ 1. (3.7)

We are ready to state the following theorem.

Theorem 3.2. Under the above setup and assumptions (a)–(c) and (e), the following holds. For a γm,n < 1/56, with
probability at least 1 − 56γm,n,

ρJK
m,n ≲

(B2
m,n log5(md) log2(1/γm,n)

m

)1/4
+

(B2
m,n log5(nd) log2(1/γm,n)

n

)1/4
.

The entity ρJK
m,n provides an upper bound to the error of approximation of the bootstrap distribution of the sequence

of test statistics WeX
m + δm,nWeY

n by the Gaussian counterpart. Theorem 3.2 provides a theoretical guarantee towards
the Gaussian approximation term and its jackknife covariance multiplier bootstrap counterpart. It shows that the rate

of bootstrap approximation has improved from the rate
(

log5(nd)
n

)1/6
given in Chen [4] to

(
log5(nd)

n

)1/4
.

Remark 2. One can choose a sequence γm,n such that
∑

m,n γm,n < ∞. Then, by the Borel-Cantelli Lemma, the
bootstrap convergence result holds almost surely. For example, if γm,n =

(
m(log m)

)−2 and m = n, then for m ≥ 11,
γm,n < 1/56. Then, the choice of Bm,n = Cn1/6, for some C > 0 and p = en1/10

will yield the condition (e).

4. Test Procedure

In this section, we shall describe the multiplier bootstrap distribution of the test statistic
∥∥∥Tm,n∥∞ of (3.1). This is

facilitated by Theorems 3.1 and 3.2. The proposed test rejects H0 whenever ∥Tm,n∥∞ is large. To implement the test in

the large samples, we propose to use multiplier bootstrap version of the Tm,n given by T JK
m,n = WeX

m −

√
m
n

WeY
n , where

WeX
m :=

√
m
(

1
m

m∑
i=1

[ 1
m − 1

m∑
j,i=1

(vec((Xi − X j)(Xi − X j)T )
2

− UX
m

)]
ei

)
,

WeY
n :=

√
n
(

1
n

n∑
i=1

[ 1
n − 1

n∑
j,i=1

(vec((Yi − Y j)(Yi − Y j)T )
2

− UY
n

)]
ei+m

)
.

Let

cB(α) = inf
{

t ∈ R : Pe
(∥∥∥∥∥∥WeX

m −

√
m
n

WeY
n

∥∥∥∥∥∥
∞

≤ t
)
≥ 1 − α

}
, 0 < α < 1.

Corollary 4.1 below show that the test that rejects H0 whenever ∥Tm,n∥∞ > cB(α) is of the asymptotic size α.

From now onwards, for the sake of brevity, let h(ξ1, ξ2) :=
vec

(
(ξ1 − ξ2)(ξ1 − ξ2)T )

2
, ξ1, ξ2 ∈ Rd. The following

theorem along with the corollary provides the guarantee of the asymptotic level of the above mentioned test, under the
following assumptions.
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(a′) For some universal constants 0 < c1 < c2 < 1, m
m+n ∈ (c1, c2),∀m ∧ n ≥ 2.

(b′) There exists a constant b > 0 such that E[g2
a(X) + δ2

m,nℓ
2
a(Y)] ≥ b, for all 1 ≤ a ≤ d.

(c′) There exists a sequence of constants Bm,n ≥ 1 such that for l = 1, 2,

max
1≤a≤d

E
[
|
(
vec(h(X1, X2)

)
)a

∣∣∣2+l]
≤ Bl

m,n, max
1≤a≤d

E
[∣∣∣(vec(h(Y1,Y2)

)
)a

∣∣∣2+l]
≤ Bl

m,n,

(d′) max1≤a≤d

∥∥∥(vec(h(X1, X2)
)
)a

∥∥∥
ψ1
≤ Bm,n, max1≤a≤d

∥∥∥(vec(h(Y1,Y2)
)
)a

∥∥∥
ψ1
≤ Bm,n,

(e′) max
(

B2
m,n log7(dm)

m
,

B2
m,n log7(dn)

n

)
→ 0, as m ∧ n→ ∞.

For brevity, let D = Σ1 − Σ2. The Kolmogorov distance between the two distributions of suitably centered Tm,n and
T JK

m,n is defined to be

KD
(
Tm,n,T JK

m,n

)
= sup

t≥0

∣∣∣∣∣P(∥∥∥∥ √m(VX
m − VY

n ) −
√

m vec(D)
2

∥∥∥∥
∞
≤ t

)
− Pe

(∥∥∥∥WeX
m −

√
m
n

WeY
n

∥∥∥∥
∞
≤ t

)∣∣∣∣∣.
We are ready to state the following theorem.

Theorem 4.1. Suppose the conditions (a′)–(e′) hold. Then for any non-negative definite matrices Σ1 and Σ2 of real
numbers, KD

(
Tm,n,T JK

m,n
)
→ 0, almost surely.

Remark 3. The above conditions (a′)–(e′) are analogous to the assumptions (a)–(e) suitable for the h of the theorem.
Condition (a′) specifies that the ratio of the sample sizes can reside in any open interval. Condition (b′) ensures the
non-degeneracy of the sample observations. This condition is less restrictive than the minimum eigen-value condition
considered in Li and Chen [11], Cai et al. [2] and Chang et al.[3]. Condition (c′) allows the bounds on the third and
fourth order moments to grow with the sample sizes m, n, unlike as in Cai et al. [2], Li and Chen [11] and Chang et
al. [3]. In these papers the moments appearing in (c′) are assumed to be bounded from the above by a fixed constant,
for all sample sizes. Condition (d′) allows the sub-exponential tails to grow freely with the sample sizes, which is also
advantageous than the analogous conditions in Cai et al. [2] and Chang et al. [3]. The condition (e′) specifies the
ultra-high dimensional regime of the test.

On a similar note, in Cai et al. [2], for the convergence of the null distribution of their test statistic to an extreme
Type-I distribution or to a normal distribution as in Li and Chen [11], they assumed the sparsity or weak correlation
structure among the individual components of the observed random vectors and the corresponding covariance matrices.
The jackknifed multiplier bootstrap test proposed in this paper if free of any such correlational assumptions.

The proposed test rejects H0 : Σ1 = Σ2 versus Halt : Σ1 , Σ2, at the significance level α ∈ (0, 1), whenever
φα = 1, where φα =I(∥Tm,n∥∞ > cB(α)). The following corollary is an immediate consequence of Theorem 4.1 and the
definition of cB(α).

Corollary 4.1. Under the conditions of Theorem 4.1 and under H0,

P
(∥∥∥∥ √m(VX

m − VY
n )

2

∥∥∥∥
∞
≥ cB(α)

)
→ α. (4.1)

An immediate consequence of this corollary is the formulation of the following confidence region for vec(Σ1 −Σ2)
of the asymptotic confidence level (1 − α):

CR1−α :=
{

vec(Σ1 − Σ2) :

∥∥∥∥∥∥Tm,n −

√
mvec(Σ1 − Σ2)

2

∥∥∥∥∥∥
∞

≤ cB(α)
}
.

A computing procedure for cB(α). The multiplier bootstrapped version of the critical value cB(α) is quite advan-
tageous in terms of faster computation. A procedure for computing is as follows.
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Step 1: Generate N sets of size m + n i.i.d. N(0, 1) r.v.’s. Denote them by e∗1, · · · , e
∗
N . Treat e∗j as a copy of e =

{e1, e2, · · · , em+n}, 1 ≤ j ≤ N.

Step 2: Keeping Xm and Yn fixed, using the vectors e∗j’s of Step 1, compute the bootstrapped version of the test
statistic ∥Tm,n∥∞ N times, viz., calculate ∥T JK

m,n∥∞ N times, jth time with e replaced by e∗j , 1 ≤ j ≤ N. Denote
these N values by {T JK

mn1,T
JK
mn2, · · · ,T

JK
mnN}.

Step 3: The (1 − α)th quantile of {T JK
mn1,T

JK
mn2, · · · ,T

JK
mnN} would be treated as an approximate value for cB(α).

A general criticism of the maximum norm-based statistic of Cai et al. [2] is that the convergence of the null
distribution to Gumbel requires relatively large sample sizes, which in turn poses some computational challenges in
terms of size and power when the sample sizes are moderate to small. Fan et al. [9] suggested power enhancement
techniques in this context. In contrast, the above multiplier bootstrap method makes the power computation a lot faster
even without this power enhancement technique.

5. Consistency

In this section, we show that the proposed jackknifed multiplier bootstrap based test is consistent against a sequence
of shrinking nonparametric alternatives. The power function of the test is

PHalt (φα = 1) = P
(∥∥∥∥∥∥
√

m(VX
m − VY

n )
2

∥∥∥∥∥∥
∞

≥ cB(α)|Halt

)
.

This power function is an abstract quantity because the respective covariance matrices ΓX and ΓY of VX
m and VY

n are
unknown in practice. To circumvent this problem we define jackknifed multiplier bootstrap based power function

P∗Halt

(
φα = 1

)
:= Pe∗

(∥∥∥∥∥∥We∗X
m −

√
m
n

We∗Y
n +

√
m(vec(Σ1 − Σ2))

2

∥∥∥∥∥∥
∞

≥ cB(α)|Halt

)
,

where Pe∗ (.) denotes the conditional distribution of e∗, given all the other r.v.’s. Before exploring the asymptotic
theoretical aspects of the power function we shall describe the multiplier bootstrap procedure in the context of approx-
imating the true power function as follows.

Step 1: Generate {e∗1, e
∗
2, · · · , e

∗
m+n} independent of e which has been used previously to calculate cB(α).

Step 2: Use the cB(α) from Step 1 to compute the bootstrap power function for the proposed test by computing:

Pe∗
(∥∥∥∥∥∥We∗X

m −

√
m
n

We∗Y
n +

√
m(vec(Σ1 − Σ2))

2

∥∥∥∥∥∥
∞

≥ cB(α)
)
.

The following theorem establishes consistency of the proposed test by approximating the true power function
PHalt

(
φα = 1

)
, by its jackknifed multiplier bootstrap counterpart P∗Halt

(
φα = 1

)
. Its proof also appears in Section 8.

RecallD := Σ1 − Σ2. Let C > 0 be a constant and define the sequence of alternatives

Mm,n,d =
{
D ∈ Rp×p : ∥vec(D)/2∥∞ ≥ C

(
Bm,n log(md)/m

)1/2
}
.

Theorem 5.1. Suppose the conditions for Theorem 4.1 hold. Then, for allD ∈ Mm,n,d,

P
(∥∥∥∥∥∥
√

m(VX
m − VY

n )
2

∥∥∥∥∥∥
∞

≥ cB(α)
)
→ 1, as n ∧ m ∧ d → ∞

Remark 4. Cai et al. [2] and Chang et al. [3] obtained similar consistency results for their test statistics under a class
of sparse alternatives. The above theorem generalizes their result in the sense that it is valid for general alternatives
where Bm,n possibly diverges to infinity. This can be understood by noting that the class Mm,n,d is constructed in a

manner such that Σ1 and Σ2 are separated by a lower bound K
(√ Bm,n log(md)

m

)
. Theorem 4 in Cai et al. [2] obtained a

similar bound treating Bm,n as a constant and their separation parameter was bounded from below by C
(√

log d
m

)
for

some universal constant C > 0 under the class of sparse alternatives.
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6. Simulation studies

In this section, we report the findings of a finite sample study that compares the empirical level and power of the
proposed test with those of the popular four tests for testing the equality of the two high dimensional covariance
matrices.

We chose the following four competitors to contrast with the performance of the proposed test (CKK test hence-
forth): They are the tests of Chang et al. [3], Cai et al. [2], Schott [12] and Li and Chen [11] denoted by CZZW, CLX,
Sc and LC test, respectively. These tests are currently popular in the existing literature for comparing the covariance
matrices in the high-dimensional set up. The CZZW test has similar flavor to ours as they derive their critical values
using multiplier bootstrap without jackknifing. The CLX test uses the critical values obtained from its asymptotic
Gumbel distribution. The Sc and LC tests are based on the Frobenius norm or the vectorized l2 norm. These tests use
critical values obtained from their respective asymptotic normal distributions.

The finite sample performances of the five tests are compared for the following choices of the two covariance
matrices, where 1 denotes the p × 1 vector of 1’s. For Σ1 we used the two models M1 and M2, where

M1: Σ1,M1 = 0.1Ip×p + 0.911T , M2: Σ1,M2 =
((
ρ
|i− j|ρ2

1

))
i j

with ρ1 = 0.99, ρ2 = 0.5.

The covariance matrix Σ2 is either Σ1 under H0 or some small perturbation from Σ1 under H1, to be made precise
below.

For the two sample sizes and the dimension, we choose n = 60,m = 60, p = 100. In our case, d = (100× 101)/2 =
5050, which falls under the ultra-high dimensional regime. For the distributions of the two samples, we used the
following three choices.

• D1: (X0)i j, (Y0)i j
iid
∼ N(0, 1) and X = Σ1/2

1 X0, Y = Σ1/2
2 Y0.

• D2: (X0)i j, (Y0)i j
iid
∼ t10 and X = Σ1/2

1 X0,Y = Σ
1/2
2 Y0.

• D3: (X0)i j, (Y0)i j
iid
∼ χ2

10 − 10 and X = Σ1/2
1 X0,Y = Σ

1/2
2 Y0.

To assess the sensitivity of these tests to the variances in the base distributions, we chose the variances of the base
distributions in D1, D2 and D3 to be 1, 1.25 and 20, respectively. For the evaluation of the empirical sizes of the
tests, we chose Σ1 = Σ2 = Σ1,M1(or Σ1,M2). For the evaluation of the empirical powers, we chose to explore alternative
hypothesis from both the light of how sparse the difference is and how large the signal is. Thus for each of the setup
combinations, we generated Σ2 by perturbing Σ1 as follows, where 0 < β < 1, v j is the jth component of a vector
v ∈ Rp and for any x ∈ R, [x] is its integer part:

Σ2 := Σ1 + δvvT , with v j
iid
∼ Unif(−1, 1), for 1 ≤ j ≤ [βp] and v j = 0, for [βp] < j ≤ p.

The variable β is the sparsity parameter with smaller values indicating the larger sparsity and the larger values
correspond to the dense scenarios while δ measures the distance of the alternative from the null. Larger the value of δ
farther is the alternative from the null.

In the simulation, we chose β = 0.2, 0.4, 0.6, 0.8, 1 and δ = 0, 0.2, 0.4, 0.6, 0.8, 1. The entries in Tables 1 and 2
below for δ = 0 (δ > 0) represent the empirical levels (the empirical powers) of these tests. These entries are based
500 iterations. For the CKK and CZZW tests, in each empirical iteration a bootstrap sample of size 1000 was used.
The nominal level of significance used in the simulation is 0.05.

We now discuss the findings of the simulation reported in Tables 1 and 2, which pertain to the two models M1
and M2, respectively. The empirical level of the CKK test is somewhat conservative for the distribution (D3) and
model M1 and somewhat liberal for the distribution (D2) and the model M2. In all other chosen cases of the sparsity
parameter values β, distributions and models, it is close to the nominal level of 0.05. In contrast, other than the CZZW
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test, the empirical levels of all other tests are quite far off. The CLX test fails to reject almost everywhere whereas the
Sc and LC tests tend to be liberal, i.e., their empirical level is significantly higher than the nominal level of 0.05, almost
everywhere. The CZZW test is the most competitive with the CKK test in terms of the closeness of the empirical level
to the nominal level 0.05 in this simulation.

As far as the empirical power is concerned, we observe that for every chosen value of β, the empirical power of
all tests, except that of the Sc test, increases with the increasing chosen δ values for all distributions (D1)–(D3) and
models M1 and M2.

The empirical power of the CKK test is much higher than that of CLX, Sc and LC tests. Remaining consistent
with the low empirical level, the CLX test has the lowest empirical power for every setting. For the Sc and LC tests,
one sees that despite starting with relatively higher empirical levels, their empirical powers do not scale properly as
δ increases and remain below those of the CZZW and CKK tests, uniformly for all chosen distributions (D1)–(D3),
sparsity levels β, distance δ from the null and the models M1 and M2.

Coming to the CZZW test, the empirical power of the CKK test is larger than that of the CZZW test for all choices
of the distributions (D1)–(D3), sparsity parameter β and models M1 and M2, when δ = 0.4, 0.6, 0.8, 1. For δ = 0.2,
this continues to be the case for (D2) while for (D1) and (D3), the empirical power of the CZZW test is at least as
large as that of the CKK test, for all the choices of β and the models M1 and M2.

Finally, the empirical levels and powers of all the tests used in this study appear to be robust against the chosen
three distribution models (D1)–(D3). The tails or the variances of the underlying distributions do not appear to have
any effect on the empirical levels and powers of these tests in this simulation study.

7. Discussion

This paper proposes a test for testing the equality of the two population covariance matrices in a ultra-high di-
mensional regime, where the dimension is generally much larger than the sample sizes. The proposed test is based
on the maximum of the absolute differences between the entries of the multiplier bootstrap Jackknifed estimators of
the two population covariance matrices. The paper contains the proof of the asymptotic normality of the test statistic
under the null hypothesis and the consistency of the sequence of the proposed tests against a sequence of shrinking
alternatives. A finite sample simulation exhibits some superiority of the proposed test in terms of the empirical level
and power, compared to the currently popular four tests. Several further works can be considered following the spirit
of the current paper. Sometimes researchers are interested in testing the equality of correlation matrices via Kendall’s
tau for two populations see for instance Zhou, Han, Zhang and Liu [16]. The methodology proposed in this paper can
be extended to those situations, which we leave for future research.

8. Some Useful Auxillary Lemmas

Before stating the next lemma we need some definitions. For any functions f , q from Rp × Rp to Rp × Rp, define

VX
m =

1
m(m − 1)

∑
1≤i, j≤m

f (Xi, X j), VY
n =

1
n(n − 1)

∑
1≤i, j≤n

q(Yi,Y j),

MX = max
1≤i, j≤m

max
1≤a≤d

∣∣∣ fa(Xi, X j)
∣∣∣, MY = max

1≤i, j≤n
max
1≤a≤d

∣∣∣qa(Yi,Y j)
∣∣∣,

DX
r = max

1≤a≤d

(
E| fa(X1, X2)|r

) 1
r
, DY

r = max
1≤a≤d

(
E|qa(Y1,Y2)|r

) 1
r
, r > 0.

The following lemma will provide a bound for Rm,n. The claim (8.1) of this lemma is Theorem 5.1 of Chen [4]
while (8.2) follows from (8.1) by applying it to each of the two samples.
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D1 D2 D3
β 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
CKK
δ = 0 0.04 0.046 0.04 0.042 0.05 0.042 0.05 0.062 0.05 0.04 0.036 0.03 0.042 0.042 0.044
δ = 0.2 0.06 0.08 0.09 0.096 0.096 0.072 0.094 0.112 0.1 0.096 0.062 0.074 0.076 0.086 0.080
δ = 0.4 0.17 0.242 0.24 0.286 0.268 0.188 0.246 0.244 0.28 0.244 0.158 0.226 0.244 0.224 0.232
δ = 0.6 0.402 0.514 0.53 0.518 0.53 0.386 0.47 0.448 0.564 0.528 0.372 0.46 0.474 0.508 0.516
δ = 0.8 0.648 0.774 0.786 0.790 0.778 0.616 0.722 0.722 0.796 0.774 0.634 0.726 0.752 0.766 0.774
δ = 1 0.830 0.898 0.918 0.926 0.918 0.776 0.882 0.886 0.914 0.924 0.812 0.872 0.906 0.904 0.916
CZZW
δ = 0 0.082 0.052 0.058 0.07 0.048 0.056 0.044 0.058 0.044 0.058 0.054 0.062 0.06 0.05 0.048
δ = 0.2 0.076 0.092 0.092 0.092 0.128 0.076 0.076 0.088 0.096 0.11 0.072 0.092 0.094 0.112 0.114
δ = 0.4 0.18 0.214 0.216 0.27 0.3 0.176 0.204 0.242 0.272 0.286 0.132 0.188 0.236 0.276 0.262
δ = 0.6 0.35 0.422 0.504 0.528 0.544 0.324 0.412 0.486 0.478 0.496 0.318 0.458 0.514 0.544 0.546
δ = 0.8 0.532 0.648 0.702 0.726 0.772 0.548 0.64 0.72 0.752 0.758 0.51 0.682 0.708 0.802 0.754
δ = 1 0.694 0.848 0.882 0.904 0.932 0.726 0.836 0.9 0.906 0.924 0.724 0.816 0.876 0.916 0.904
CLX
δ = 0 0 0 0 0 0 0 0 0.002 0 0 0 0 0.002 0.002 0.002
δ = 0.2 0.002 0.002 0.004 0.002 0 0.002 0 0.004 0.004 0 0.004 0.004 0.002 0 0.002
δ = 0.4 0 0.01 0.016 0.012 0.014 0.002 0.008 0.014 0.016 0.02 0.002 0.006 0.014 0.01 0.012
δ = 0.6 0.022 0.024 0.04 0.062 0.062 0.018 0.04 0.04 0.04 0.064 0.016 0.038 0.048 0.072 0.05
δ = 0.8 0.044 0.102 0.104 0.124 0.166 0.068 0.094 0.078 0.096 0.14 0.058 0.114 0.124 0.138 0.132
δ = 1 0.1 0.17 0.236 0.29 0.32 0.1 0.176 0.224 0.224 0.306 0.128 0.166 0.218 0.254 0.27
Sc
δ = 0 0.126 0.074 0.078 0.082 0.064 0.088 0.07 0.09 0.078 0.084 0.086 0.096 0.08 0.07 0.088
δ = 0.2 0.094 0.1 0.08 0.074 0.09 0.104 0.078 0.082 0.076 0.088 0.084 0.108 0.1 0.082 0.088
δ = 0.4 0.112 0.094 0.078 0.088 0.09 0.09 0.072 0.086 0.08 0.092 0.074 0.068 0.086 0.088 0.096
δ = 0.6 0.114 0.1 0.108 0.106 0.148 0.07 0.088 0.09 0.078 0.134 0.08 0.096 0.106 0.134 0.118
δ = 0.8 0.096 0.102 0.11 0.158 0.256 0.112 0.094 0.078 0.13 0.246 0.1 0.098 0.094 0.168 0.23
δ = 1 0.08 0.092 0.152 0.232 0.434 0.068 0.114 0.158 0.216 0.478 0.09 0.114 0.15 0.264 0.388
LC
δ = 0 0.156 0.1 0.092 0.106 0.072 0.1 0.094 0.108 0.09 0.102 0.104 0.112 0.098 0.098 0.114
δ = 0.2 0.116 0.112 0.096 0.096 0.108 0.118 0.088 0.096 0.09 0.102 0.11 0.124 0.118 0.112 0.104
δ = 0.4 0.128 0.12 0.104 0.1 0.122 0.116 0.09 0.102 0.106 0.114 0.094 0.086 0.106 0.11 0.11
δ = 0.6 0.14 0.118 0.132 0.13 0.18 0.1 0.112 0.118 0.096 0.166 0.1 0.118 0.138 0.172 0.152
δ = 0.8 0.114 0.112 0.146 0.18 0.33 0.132 0.106 0.1 0.166 0.298 0.12 0.132 0.126 0.212 0.29
δ = 1 0.104 0.128 0.188 0.298 0.518 0.088 0.136 0.196 0.268 0.554 0.102 0.144 0.184 0.31 0.47

Table 1: Empirical level and power of 5 tests, for n = 60,m = 60, p = 100 and model M1
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D1 D2 D3
β 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
CKK
δ = 0 0.048 0.038 0.042 0.046 0.048 0.052 0.052 0.058 0.06 0.05 0.048 0.04 0.046 0.05 0.042
δ = 0.2 0.086 0.102 0.104 0.102 0.114 0.092 0.136 0.138 0.126 0.132 0.092 0.098 0.098 0.098 0.098
δ = 0.4 0.23 0.32 0.292 0.316 0.326 0.252 0.316 0.29 0.342 0.326 0.234 0.3 0.286 0.298 0.298
δ = 0.6 0.476 0.574 0.554 0.594 0.59 0.47 0.532 0.54 0.624 0.574 0.502 0.544 0.588 0.592 0.6
δ = 0.8 0.712 0.816 0.816 0.828 0.824 0.69 0.798 0.782 0.84 0.814 0.716 0.776 0.824 0.816 0.828
δ = 1 0.858 0.906 0.942 0.942 0.93 0.852 0.918 0.916 0.958 0.936 0.878 0.9 0.946 0.94 0.946
CZZW
δ = 0 0.04 0.056 0.038 0.056 0.054 0.05 0.048 0.066 0.05 0.058 0.056 0.052 0.046 0.048 0.066
δ = 0.2 0.096 0.122 0.112 0.126 0.118 0.098 0.08 0.11 0.116 0.12 0.078 0.072 0.102 0.13 0.128
δ = 0.4 0.198 0.24 0.268 0.316 0.322 0.196 0.224 0.284 0.312 0.298 0.19 0.268 0.292 0.322 0.326
δ = 0.6 0.394 0.52 0.532 0.582 0.582 0.364 0.482 0.574 0.598 0.596 0.388 0.488 0.558 0.556 0.56
δ = 0.8 0.62 0.73 0.798 0.8 0.816 0.612 0.734 0.806 0.792 0.828 0.638 0.714 0.77 0.796 0.826
δ = 1 0.794 0.874 0.916 0.932 0.908 0.818 0.888 0.922 0.918 0.904 0.812 0.906 0.924 0.932 0.928
CLX
δ = 0 0 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0
δ = 0.2 0 0 0 0 0 0 0 0 0 0 0 0.002 0.002 0 0.002
δ = 0.4 0.004 0 0.014 0.016 0.006 0.002 0.002 0 0.004 0.006 0.006 0.006 0.004 0.004 0.004
δ = 0.6 0.006 0.008 0.018 0.032 0.036 0.014 0.016 0.032 0.034 0.036 0.014 0.022 0.034 0.028 0.04
δ = 0.8 0.03 0.044 0.07 0.088 0.122 0.036 0.066 0.08 0.076 0.092 0.046 0.058 0.082 0.088 0.088
δ = 1 0.084 0.128 0.13 0.216 0.208 0.106 0.108 0.198 0.176 0.21 0.068 0.13 0.15 0.198 0.194
Sc
δ = 0 0.068 0.098 0.082 0.088 0.092 0.068 0.076 0.098 0.082 0.096 0.08 0.074 0.074 0.082 0.088
δ = 0.2 0.108 0.092 0.08 0.09 0.078 0.088 0.088 0.086 0.08 0.084 0.078 0.076 0.078 0.078 0.078
δ = 0.4 0.088 0.086 0.106 0.096 0.11 0.076 0.068 0.086 0.098 0.102 0.086 0.11 0.1 0.098 0.102
δ = 0.6 0.08 0.1 0.096 0.086 0.134 0.064 0.092 0.084 0.156 0.152 0.08 0.108 0.102 0.098 0.13
δ = 0.8 0.078 0.072 0.126 0.138 0.214 0.09 0.108 0.128 0.134 0.234 0.082 0.094 0.11 0.156 0.198
δ = 1 0.074 0.118 0.11 0.232 0.358 0.088 0.092 0.154 0.188 0.362 0.098 0.092 0.114 0.23 0.36
LC
δ = 0 0.09 0.118 0.09 0.11 0.12 0.082 0.098 0.12 0.104 0.104 0.104 0.094 0.096 0.106 0.106
δ = 0.2 0.124 0.106 0.094 0.106 0.098 0.118 0.104 0.106 0.088 0.106 0.09 0.082 0.104 0.104 0.1
δ = 0.4 0.108 0.096 0.122 0.124 0.13 0.1 0.1 0.114 0.134 0.118 0.102 0.136 0.116 0.132 0.122
δ = 0.6 0.098 0.112 0.11 0.122 0.176 0.09 0.112 0.102 0.174 0.17 0.11 0.136 0.126 0.116 0.158
δ = 0.8 0.092 0.094 0.15 0.184 0.26 0.114 0.132 0.152 0.166 0.284 0.102 0.108 0.134 0.196 0.244
δ = 1 0.09 0.146 0.146 0.298 0.438 0.12 0.126 0.186 0.266 0.434 0.116 0.122 0.152 0.276 0.456

Table 2: Empirical level and power of 5 tests, for n = 60,m = 60, p = 100 and model M2
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Lemma 8.1. Let Xm = (X1, · · · , Xm) and Yn = (Y1, · · · ,Yn) be two independent random samples from F1, F2, respec-
tively. Let f , q : Rp × Rp 7→ Rd be measurable symmetric functions such that E

∣∣∣ fa(X1, X2)
∣∣∣ + E

∣∣∣qa(Y1,Y2)
∣∣∣ < ∞. If

2 ≤ d ≤ exp
(
b(m ∨ n)

)
, for some constant b > 0, then ∃ a constant 0 < CX < ∞ such that

E
∥∥∥VX

m

∥∥∥
∞
≤ CX(1 +

√
b)

[( log(d)
m

) 3
2
∥MX∥4 +

log(d)
m

DX
2 +

( log(d)
m

) 5
4 DX

4

]
. (8.1)

Consequently, with C = max{CX ,CY } > 0, we obtain that

E
[∥∥∥VX

m − δm,nV
Y
n

∥∥∥
∞

]
(8.2)

≤ K(1 +
√

b)

( log d
m

) 3
2

∥MX∥4 +
log(d)

m
DX

2 +

(
log(d)

m

) 5
4

DX
4


+ δm,n

( log(d)
n

) 3
2

∥MY∥4 +
log(d)

n
DY

2 +

(
log(d)

n

) 5
4

DY
4

 .
To proceed further we need more notation. For r > 0 and any sequences of real numbers ϕm, ϕn ≥ 1, define

DX
g,r = max

1≤a≤d
E|ga(X − µX)|r, DY

ℓ,r = max
1≤a≤d

E|ℓa(Y − µY )|r,

MX
g,r(ϕm) = E

[
max
1≤a≤d

∣∣∣ga(X − µX)
∣∣∣r I

(
max
1≤a≤d

∣∣∣ga(X − µX)
∣∣∣ > √

n
4ϕm log d

)]
,

MY
ℓ,r(ϕn) = E

[
max
1≤a≤d

∣∣∣ℓa(Y − µY )|r I
(

max
1≤a≤d

∣∣∣ℓa(Y − µY )
∣∣∣ > √

n
4ϕn log d

)]
,

MG1
r (ϕm) = E

[
max
1≤a≤d

|TG1
ma |

r I
(

max
1≤a≤d

|TG1
ma | >

√
n

4ϕm log d

)]
, MG2

r (ϕn) = E
[

max
1≤a≤d

|TG2
na |

q I
(

max
1≤a≤d

|TG2
na | >

√
n

4ϕn log d

)]
,

MX
r (ϕm) = MX

g,r(ϕm) + MG1
r (ϕm), MY

r (ϕn) = MY
ℓ,r(ϕn) + MG2

r (ϕn),

MX
h,r = E

[
max

1≤i, j≤m
max
1≤a≤d

∣∣∣∣(vec(h(Xi, X j))
)
a

∣∣∣∣r], MY
h,r = E

[
max

1≤i, j≤m
max
1≤a≤d

∣∣∣∣(vec(h(Yi,Y j))
)
a

∣∣∣∣r].
We are ready to state the following lemma. Recall b appears in condition (a).

Lemma 8.2. Suppose condition (a) holds and log(d) ≤ b̄(m ∨ n), for some constant b̄ > 0. Then, for some constants
Ci := Ci(b, b̄) > 0, i = 1, 2 and for any two sequences D̄X

g,3 and D̄Y
ℓ,3 of real numbers satisfying DX

g,3 ≤ D̄X
g,3 and

DY
ℓ,3 ≤ D̄Y

ℓ,3,

ρ∗∗m,n ≤ C3

[  (D̄X
g,3)2 log7 d

m


1
6

+
MX

3 (ϕm)

D̄X
g,3

+

 (D̄Y
ℓ,3)2|δm,n|

6 log7 d

n


1
6

+
MY

3 (ϕn)

D̄Y
ℓ,3

(8.3)

+ ϕ∗
( log3/2 d

m
(MX

h,4)1/4 +
log(d)
m1/2 (DX

2 )1/2 +
log5/4 d

m3/4 (DX
4 )1/4

+
log3/2 d

m
(MY

h,4)1/4 +
log(d)
m1/2 (DY

2 )1/2 +
log5/4 d

m3/4 (DY
4 )1/4

)]
.

where, C3 = max{C1,C2}, ϕ∗ := (max ϕm, ϕn), with

ϕm = C1

 (D̄X
g,3)2 log4 d

m


−1/6

, ϕn = C

 (D̄Y
ℓ,3)2 log4 d

n

−1/6

. (8.4)

Proof. This lemma is analogous to Proposition 5.3 of Chen [4]. We provide details to clearly address the additional
changes needed in the proof of Proposition 5.3 to prove the stated lemma. Fix a y ∈ Rp and define

Fβ(w) =
1
β

log
( d∑

j=1

exp
(
β(w j − y j)

))
, β ∈ R,w ∈ Rp.

13



We shall often use this function with β = ϕ log(d), where ϕ ≥ 1. In this case,

0 ≤ Fβ(w) − max
1≤ j≤d

(w j − y j) ≤
log(d)
β
= ϕ−1, ∀w ∈ Rd, ϕ ≥ 1.

Next, let u0 : R → [0, 1] be a function such that u0(t) = 1, if t < 0, u0(t) = 0, if t > 1 and u0(t), t ∈ [0, 1], is five times
continuously differentiable with bounded derivatives. Let

u(t) := u0(ϕt), Ψ(w) = u(ϕFβ(w)), t ∈ R, ϕ ≥ 1,w ∈ Rp.

Note that, Ψ(w) : Rd → [0, 1]. For the later use, we note that when β = ϕ log(d),

I(t ≤ 0) ≤ u(t) ≤ I(t ≤ ϕ−1), t ∈ R.

Let G1i,H1i, 1 ≤ i ≤ m be i.i.d. Nd(0,ΓX) r.v.’s and G2 j,H2 j, 1 ≤ j ≤ n be i.i.d. Nd(0,ΓY ) r.v.’s, independent of
G1i,H1i, 1 ≤ i ≤ m, where ΓX = Cov(g(X)), ΓY := Cov(ℓ(Y)). Let

Z∗i (t) :=
1
√

m

[√
t
{√

vg(Xi) +
√

1 − vG1i

}
+
√

1 − tH1i

]
, 1 ≤ i ≤ m,

Z∗∗j (t) :=
1
√

n
δm,n

[√
t
{√

vℓ(Y j) +
√

1 − vG2 j

}
+
√

1 − tH2 j

]
, 1 ≤ j ≤ n,

Z∗(t) :=
m∑

i=1

Zi(t), Z∗∗(t) :=
n∑

j=1

Z∗∗j (t), Z(t) = Z∗(t) + Z∗∗(t), v, t ∈ [0, 1].

Let

Im,n := Ψ
(√

v
1
√

m

n∑
i=1

g(Xi) +
√

1 − v
1
√

m

n∑
i=1

G1i +
√

vδm,n
1
√

n

n∑
j=1

ℓ(Y j)

+
√

1 − vδm,n
1
√

n

n∑
j=1

G2 j

)
− Ψ

( 1
√

m

n∑
i=1

H1i + δm,n
1
√

n

n∑
j=1

H2 j

)
= Ψ

(
Z(1)

)
− Ψ

(
Z(0)

)
.

Recall (8.4). From Xue and Yao [15], (Lemma 2, eqn 99) we obtain∣∣∣E[Im,n(v)]
∣∣∣ ≲ C1(b)

{ϕ2
m log2 d
√

m

[
ϕmDX

g,3ρ
1
m,n + DX

g,3

√
log(d) + ϕmMX

3 (ϕm)
]

+
ϕ2

n log2 d
√

n
|δm,n|

3
(
ϕ2DY

ℓ,3ρ
1
m,n + DY

ℓ,3

√
log(d) + ϕnMY

3 (ϕn)
) }
.

To proceed further, define

ρ1
m,n := sup

v∈[0,1]
sup
y∈Rd

∣∣∣∣∣P(√
v
{ 1
√

m

n∑
i=1

g(Xi) + δm,n
1
√

n

n∑
j=1

ℓ(Y j)
}

+
√

1 − v
{ 1
√

m

m∑
i=1

G1i + δm,n
1
√

n

n∑
j=1

G2 j

}
≤ y

)
− P

( 1
√

m

n∑
i=1

G1i + δm,n
1
√

n

n∑
j=1

G2 j ≤ y
)∣∣∣∣∣.

Note that

ρ1
m,n = sup

v∈[0,1]
sup
y∈Rd

∣∣∣∣P(
Z(1) ≤ y

)
− P

(
Z(0) ≤ y

)∣∣∣∣.
14



Recall from (3.3) and (3.4) that Wm,n − Lm,n = Rm,n. Write Rm,n = (Rm,n,1, · · · ,Rm,n,d)T . By the Mean Value
Theorem,

Ψ(Wm,n) − Ψ(Lm,n) =
d∑

a=1

∂aΨ(ξ)Rm,n,a =

d∑
a=1

u′(Fβ(ξ))ηa(ξ)Rm,n,a

where ηa(w) = ∂Fβ(w)/∂wa is defined to be the first order partial derivative of Fβ(w) w.r.t wa and η := (η1, · · · , ηd)T is
a d×1 random vector on the line segment joining Lm,n and Tm,n. Following the arguments in Xue and Yao [15], we can
verify that ηa(w) ≥ 0,

∑d
a=1 ηa(w) = 1, for any w ∈ Rd and there is a constat K1(ϕ∗) such that supt∈R |u

′(t)| ≤ K1(ϕ∗),
where ϕ∗ = max{ϕm, ϕn}. Therefore, with |Rm,n|∞ = max1≤a≤d |Rm,n,a|, we obtain that∣∣∣∣E[Ψ(Tm,n) − Ψ(Lm,n)]

∣∣∣∣ ≤ K1ϕ
∗E|Rm,n|∞.

Proceeding as in Xue and Yao [15] (Eqn (99)) with ϕ = min{ϕm, ϕn}, we conclude that

P
(
Z(1) ≤ y − ϕ−1

)
≤ P

(
Z(0) ≤ y − ϕ−1

)
+C(b)ϕ−1

√
log(d) + |E[Im,n]| + K1ϕ

∗E
(
|Rm,n|∞

)
,

P
(
Z(0) ≤ y + ϕ−1

)
≥ P

(
Z(1) ≤ y + ϕ−1

)
+C(b)ϕ−1

√
log(d) + |E[Im,n]| + K1ϕ

∗E
(
|Rm,n|∞

)
.

Combining these bounds with the previous equations, we conclude that

ρ1
m,n ≤ K1ϕ

∗E|Rm,n|∞ +C(b)ϕ−1 log
1
2 d

+C1(b)
[ (ϕm)2 log2 d

√
m

(
ϕmDX

g,3ρ
1
m,n + DX

g,3

√
log(d) + ϕmMX

3 (ϕm)
)

+
|δm,n|

3ϕ2
n log2 d
√

n

(
ϕnDY

ℓ,3ρ
1
m,n + DY

ℓ,3

√
log(d) + ϕnMY

3 (ϕn)
)]
.

By similar arguments as used in Lemma 4 of Xue and Yao [15] and choosing ϕX
m, ϕ

Y
n ≥ 1 we conclude that for any two

sequence of real numbers (D̄X
g,3)2, (D̄Y

ℓ,3)2 such that (D̄X
g,3)2 ≥ DX

g,3 and (D̄Y
ℓ,3)2 ≥ DY

ℓ,3, ρ1
m,n is bounded from the above

by C3(b) multiplied byϕE|Rm,n|∞ +

 (D̄X
g,3)2 log7 d

m


1
6

+
MX

3 (ϕm)

D̄X
g,3

+

 (D̄Y
ℓ,3)2|δm,n|

6 log7 d

n


1
6

+
MY

3 (ϕn)

D̄Y
g,3

 .
By similar arguments as used in Chen [4], Lemma A.1 and Jensen’s inequality, there exist universal positive constants
K2,K3 such that the following inequalities hold.

E
[

max
1≤a≤d

max
1≤i, j≤m

f 4
a (Xi, X j)

]
≤ K2E

[
max
1≤a≤d

max
1≤i, j≤n

(
vec(h(Xi, X j))

)4
a

]
,

E
[

max
1≤a≤d

max
1≤i, j≤m

q4
a(Yi,Y j)

]
≤ K3E

[
max
1≤a≤d

max
1≤i, j≤n

(
vec(h(Yi,Y j))

)4
a

]
.

By Lemma 8.1, we obtain that

E
[∥∥∥Rm,n

∥∥∥
∞

]
≤ K3(b̄

1
2 + 1)

[ log3/2 d
m

(MX
h,4)1/4 +

log(d)
m1/2 (DX

2 )1/2 +
log5/4 d

m3/4 (DX
4 )1/4

+
|δm,n| log3/2 d

m
(MY

h,4)1/4 +
log(d)
m1/2 (DY

2 )1/2 +
log5/4 d

m3/4 (DY
4 )1/4

]
.

Finally by using Xue and Yao [15] Lemma 3 and Lemma 4, we conclude the proof of this lemma, since

ρ∗∗m,n ≤ C3

[  (D̄X
g,3)2 log7 d

m


1
6

+
MX

3 (ϕm)

D̄X
g,3

+

 (D̄Y
ℓ,3)2|δm,n|

6 log7 d

n


1
6

+
MY

3 (ϕn)

D̄Y
g,3

+ ϕ∗
( log3/2 d

m
(MX

h,4)1/4 +
log(d)
m1/2 (DX

2 )1/2 +
log5/4 d

m3/4 (DX
4 )1/4

+
log3/2 d

m
(MY

h,4)1/4 +
log(d)
m1/2 (DY

2 )1/2 +
log5/4 d

m3/4 (DY
4 )1/4

)]
.
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Appendix

This section contains the proof of theorems and lemmas. In the proofs below, C denotes a large enough finite
positive constant, not depending on m, n, d and that may be different in different context.
Proof of Theorem 3.1. This theorem is a two sample version of the Theorem 2.1 of Chen [4]. Some detailed
calculations are still needed so we provide the proof for the sake of completeness. The objective of the proof is to
quantify the bounds obtained in (8.3) in terms of d,m and n. First, we obtain explicit rates for each summand of the
upper bound of (8.3). Then, these rates are combined to obtain an overall rate bound for ρ∗∗m,n.

Recall ga(x) = E
[(

vec(h(ξ, ξ2))
)
a

∣∣∣ξ = x
]
, x ∈ R. For any random vectors ξ, ξ1, ξ2, let

Dξ
2 := max

1≤a≤d
E
∣∣∣(vec(h(ξ1, ξ2))

)
a

∣∣∣2, Dξ
g,3 := max

1≤a≤d
E
∣∣∣ga(ξ)

∣∣∣3, Dξ
4 := max

1≤a≤d
E
∣∣∣(vec(h(ξ1, ξ2))

)
a

∣∣∣4.
The Jensen’s inequality and the assumption (b) yield that

Dξ
2 = max

1≤a≤d
E
∣∣∣(vec(h(ξ1, ξ2))

)
a

∣∣∣2 ≤ max
1≤a≤d

(
E
∣∣∣(vec(h(ξ1, ξ2))

)
a

∣∣∣3) 2
3 ≤ B

2
3
m,n.

To analyse Dξ
g,3, assumption (b) implies that

E
∣∣∣ga(ξ)

∣∣∣3 ≤ E
(
E
[∣∣∣(vec(h(ξ1, ξ2))

)
a

∣∣∣3∣∣∣ξ1
])
= E

[∣∣∣(vec(h(ξ1, ξ2))
)
a

∣∣∣3] ≤ Bm,n, ∀ 1 ≤ a ≤ d,

Dξ
g,3 ≤ Bm,n.

Again, by the condition (b), we readily obtain Dξ
4 ≤ B2

m,n.

Next, consider Mξ
h,4. Using a property of Orlicz norm, see Van der Vaart and Wellner [14] (pg-96), we obtain

Mξ
h,4 = E

[
max

1≤i, j≤n
max
1≤a≤d

∣∣∣(vec(h(ξi, ξ j))
)
a

∣∣∣4] ≤ C
∥∥∥ max

1≤i, j≤n
max
1≤a≤d

(
vec(h(ξi, ξ j))

)
a

∥∥∥4
ψ1
.

This bound, Lemma 2.2.2 of Van der Vaart and Wellner [14] and (c) together yield that

Mξ
h,4 ≤ C log4(md)

[
max

1≤i, j≤n
max
1≤a≤d

∥∥∥(vec(h(ξi, ξ j))
)
a

∥∥∥
ψ1

]4
≤ C log4(md)B4

m,n. (8.5)

We are now ready to obtain the overall rates for the upper bound of ρ∗∗m,n of (8.3). Recall ϕm from (8.4) and take

Bm,n = D̄ξ
g,3. Let ϖξ

m,n :=
(B2

m,n log7(md)
m

)1/6
, if ξ = X and ϖξ

m,n :=
(B2

m,n log7(nd)
n

)1/6
, if ξ = Y .

By (8.5) and the definitions of the entities involved,

ϕm(log d)
3
2 (Mξ

h,4)
1
4

m
≤ C

( (D̄ξ
g,3)2 log4 d

m

)−1/6( log d
m

) 3
2 (Mξ

h,4)
1
4

≤ C
(B2

m,n(log(md))7

m

) 1
6
( log(md)

m

) 4
6
≤ Cϖξ

m,n,

ϕm
log(d)
√

m
D1/2

2 ≤
(D2

g,3 log4 d

m

)−1/6 log(d)
√

m
B1/3

m,n

≤
(B2

m,n(log(nd))7

n

)1/6( 1
B2

m,n log5(dm)

)1/6
≤ Cϖξ

m,n,

ϕm
log5/4 d

n3/4 D1/4
4 ≤ C

(D2
g,3 log4 d

m

)−1/6 log5/4 d
m3/4 B1/2

m,n

≤
(B2

m,n(log(nd))7

n

)1/6 ( log(d)
m

)7/12 ( 1
B2

m,n

)1/12
≤ Cϖξ

m,n.
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Next, we shall obtain a bound for Mξ
3(ϕm). By Lemma C.1 of Chernozhukov et al. [7], applied with Bm,n = D̄ξ

g,3, we
obtain that for some universal constant c∗ > 0,

Mξ
3(ϕm) ≲

( √
m

ϕm log(d)
+ Bm,n log(d)

)3
+ exp

[
−

√
m(

4c∗ϕmBm,n(log(d))2
) ].

Since ϕm ≥ 2,
√

m
ϕm log(d)

≲
√

m
log(d) ≲

√
m and Bm,n log(d) ≲

√
m together yield that

( √
m

4c1ϕmBm,n(log(d))2

)
≳

(
(Bm,n)2(log7(dm))

m

)−1/3

log(dm) ≳ c∗ log(dm).

Combine these bounds to obtain that Mξ
g,3(ϕm) ≲ m3/2(md)−c∗ ≲ m−1/2. Similar arguments yield that MG1

3 (ϕm) ≲ m−1/2.

The last two facts used with ξ = X in turn yield that

MX
3 (ϕm) = MX

g,3(ϕm) + MG1
3 (ϕm) ≲ m−1/2.

Finally we have that,

( (D̄X
g,3)2 log7 d

m

)1/6
+

MX
3 (ϕm)

D̄X
g,3

≤
(B2

m,n log7 d
m

)1/6
+

1
√

mBm,n
≲

(B2
m,n log7(md)

m

)1/6
.

Similar calculations as the above used with ξ = Y and the assumption (a) yield that

( (D̄Y
g,3)2(log7 d)|δm,n|

6

n

)1/6
+

MY
3 (ϕn)

D̄Y
g,3

≤
(B2

m,n(log7 d)|δm,n|
6

n

)1/6
+

1
√

nBm,n
≲

(B2
m,n log7(nd)

n

)1/6
.

The above bounds combined with (8.3) readily yield the bound (3.5), thereby completing the proof of Theorem 3.1.

Proof of Lemma 3.1. The proof is an immediate consequence of Theorem 5.1, Chernozhukov et al. [8] applied with
Z = TG1

m + δm,nTG2
n ∼ Nd(0,ΓX + δ2

m,nΓ
Y ) and V =

(
ZX

1 + δm,nZY
2
)∣∣∣(Xm,Yn) ∼ Nd(0, Γ̃JK

m + δ
2
m,nΓ̃

JK
n ).

Proof of Theorem 3.2. Throughout the proof below, m, n, d are large enough so that log(md) > 1, log(nd) > 1. Recall
the definition of ∆̂m,,n from (3.6). By Lemma 3.1, for any sequence of constants ∆̄m,n > 0, on the event {∆̂m,n ≤ ∆̄m,n},
ρJK

m,n ≲ (∆̄m,n)1/2 log d.
The goal here is to find a real sequence ∆̄m,n such that P(∆̂m,n ≥ ∆̄m,n) ≤ γm,n, and then obtain a bound for the upper

bound (∆̄m,n)1/2 log d. Towards this goal, we shall first bound obtain a rate bound for ∆̂m,n.
For the sake of brevity, let m1 := m(m − 1)2. To bound ∆̂m,n, rewrite Γ̃JK

m as,

Γ̃JK
m =

1
m1

m∑
i=1

∑
j,i

∑
k,i

{
vec

(
h̃(Xi, X j)

)
− UX

m

}{
vec

(
h̃(Xi, Xk)

)
− UX

m

}T

,

=
1

m1

m∑
i=1

∑
j,i

∑
k,i

{
vec

(
h(Xi, X j)

)
− (UX

m − Σ
X)

}{
vec

(
h(Xi, Xk)

)
− (UX

m − Σ
X)

}T

,

=
1

m1

(
1 −

1
m

)  ∑
1≤i, j≤m

{
vec(h(Xi, X j))}{vec(h(Xi, X j))

}T
+

∑
1≤i, j,k≤m

{
vec(h(Xi, X j))

}{
vec(h(Xi, Xk))

}T


−

1
m1

1
m

 ∑
1≤i, j,l≤m

{
vec(h(Xi, X j))

}{
vec(h(Xl, X j))

}T
+

∑
1≤i, j≤m

{
vec(h(Xi, X j))

}{
vec(h(Xi, X j))

}T

+
∑

1≤i, j,k≤m

{
vec(h(Xi, X j))

}{
vec(h(X j, Xk))

}T
+

∑
1≤i, j,l≤m

{
vec(h(Xi, X j))

}{
vec(h(Xi, Xl))

}T

+
∑

1≤i, j,l,k≤m

{
vec(h(Xi, X j))

}{
vec(h(Xl, Xk))

}T

 ,
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= Γ̃JK
m1 − Γ̃

JK
m2 , (say).

Thus to obtain a bound for ∥Γ̃JK
m − Γ

X∥∞, it suffices to obtain bounds for ∥Γ̃JK
m2∥∞ and ∥Γ̃JK

m1 − Γ
X∥∞.

Define the approximation rates

ϖBX
m (γm,n) :=

(B2
m,n log5(md) log2(1/γm,n)

m

)1/4
, ϖBY

n (γm,n) :=
(B2

m,n log5(nd) log2(1/γm,n)
n

)1/4
. (8.6)

Rate bound for Γ̃JK
m2 . We begin with the decomposition

Γ̃JK
m2 =

(m − 2)(m − 3)
m(m − 1)

Γ̃JK
m,2,4 +

3(m − 2)
m(m − 1)

Γ̃JK
m,2,3 +

1
m(m − 1)

Γ̃JK
m,2,2, (8.7)

where

Γ̃JK
m,2,4 :=

(m − 4)!
m!

∑
1≤i, j,k,l≤m

{
vec(h(Xi, X j))

}{
vec(h(Xk, Xl))

}T
,

Γ̃JK
m,2,3 :=

(m − 3)!
m!

∑
1≤i, j,k≤m

{
vec(h(Xi, X j))

}{
vec(h(Xi, Xk))

}T
,

Γ̃JK
m,2,2 :=

(m − 2)!
m!

∑
1≤i, j≤n

{
vec(h(Xi, X j))

}{
vec(h(Xi, X j))

}T
.

Consider the first term on the right hand side (r.h.s.) of (8.7). Let H(x1, x2, x3, x4) = vec(h(x1, x2))vec(h(x3, x4))T .
Then,

Γ̃JK
m,2,4 =

(m − 4)!
m!

∑
1≤i, j,k,l≤m

H(Xi, X j, Xk, Xl).

Note that, Γ̃JK
m,2,4 is a U statistics of order four and E[Γ̃JK

m,2,4] = 0. Let r = [m/4] and define

ZX
m,2,4 := r∥Γ̃JK

m,2,4∥∞, MX
m,2,4 = max

0≤i≤r−1
max
1≤a≤d

∣∣∣∣Ha

(
X4i+1, X4i+2, X4i+3, X4i+4

)∣∣∣∣,
(
ς̄X

m,2,4
)2 := max

a

r−1∑
i=0

E
[
H2

a

(
X4i+1, X4i+2, X4i+3, X4i+4

)]
,

Z̄X
m,2,4 := max

a

∣∣∣∣ r−1∑
i=0

[
H̄a(X4i+1, X4i+2, X4i+3, X4i+4) − EH̄a

]∣∣∣∣,
H̄a

((
X
)4
1

)
:= Ha

((
X
)4
1
)
I
(

max
a

∣∣∣∣Ha
(
(X)4

1
)∣∣∣∣ ≤ τ)), τ ≥ 0,

where a := (a1, a2)T , a1, a2 = 1, · · · , d.
By Lemma (E.1) of Chen [4] applied with α = 1

2 , η = 1, δ = 1
2 and τ = E[MX

m,2,4],

P
(
ZX

m,2,4 ≥ E[Z̄X
m,2,4] + t

)
≤ exp

(
−

t2

3(ς̄X
m,2,4)2

)
+ 3 exp

[
−

( t
C∥MX

m,2,4∥ψ 1
2

)1/2]
, ∀ t > 0.

Moreover,

E[Z̄X
m,2,4] ≤ C

{
(log(d)1/2

[
max

a

r−1∑
i=0

[
E
(
H̄a

(
X4i+1, X4i+2, X4i+3, X4i+4

)
− EH̄a

)2
] 1

2

+ (log(d))[E
[

max
i,a

∣∣∣∣∣H̄a(X4i+1, X4i+2, X4i+3, X4i+4) − E[H̄a]
∣∣∣∣∣2]1/2}

,

≤ C{(log(d))1/2ς̄X
m,2,4
+ (log(d))∥MX

m,2,4∥ψ1/2 .
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By the Cauchy-Schwarz inequality inequality and Condition (b),

E
[
H2

a(X4i+1, X4i+2, X4i+3, X4i+4)
]
≤

[
E
{
vec

(
h(X4i+1, X4i+2)

)}4

a1

] 1
2
[
E
{
vec

(
h(X4i+3, X4i+4)

)}4

a2

] 1
2
≤ B2

m,n.

Therefore,
ς̄X

m,2,4 ≤
√

rBm,n ≤
√

mBm,n.

By Condition (b) and Lemma 2.2.2 of Van der Waart and Wellner [14],

∥MX
m,2,4∥ψ1/2 ≤ C log2(rd) max

i,a

∥∥∥∥{vec
(
h
(
X4i+1, X4i+2

))}
a

∥∥∥∥2

ψ1/2
≤ CB2

m,n log(md)2.

This bound together with condition (e) yield the following facts.

EZ̄X
m,2,4 ≤ C

{
(mB2

m,n log(d))1/2 + B2
n(log(d)) log(md)2

}
≤ 2C

(
mB2

m,n log(md)
)1/2

,

P
(
∥Γ̃JK

m,2,4∥∞ ≥ C(m−1B2
m,n log(md))1/2 + t)

)
≤ exp

(
−

(mt)2

C3mB2
m,n

)
+ 3 exp

[
−

( mt

CB2
m,n log2(md)

)1/2
]
,

≤ exp
(
−

(mt)2

C3mB2
m,n

)
+ 3 exp

[
−

( √
mt

CBm,n log(md)

)]
.

Let

t = C

√
B2

m,n log(md) log2( 1
γm,n

)

m
. (8.8)

Apply the above bound with this t to obtain that

P
(
∥Γ̃JK

m,2,4∥∞ ≥ 2t
)
≤ exp

(
−C log(md) log2 ( 1

γm,n

))
+ 3 exp

(
−Cn1/4 log

1
2
(
1/γm,n

)
log−

3
4 (md)B−

1
2

m,n

)
. (8.9)

Since 0 < γm,n < e−1, log(1/γm,n) > 1 and log(md) > 1. This fact and (e) reduces (8.9) to

P
(
∥Γ̃JK

m,2,4∥∞ ≥ 2t
)
≤ 4γC

m,n ≤ 4γm,n. (8.10)

Therefore,

P

∥Γ̃JK
m,2,4∥

1/2
∞ ≥ C

B2
m,n log(md) log2( 1

γm,n
)

m


1/4 ≤ 4γm,n

which implies that,

P
(
∥Γ̃JK

m,2,4∥
1/2
∞ log(md) ≥ CϖBX

m (γm,n)
)
≤ 4γm,n, (8.11)

where ϖBX
m is defined as in (8.6). In the rest of this proof, the t is as in (8.8), unless specified otherwise and arguing as

for (8.10), for the other terms in (8.7), to obtain the following bounds.

P
( (m − 2)
m(m − 1)

∥Γ̃JK
m,2,3∥∞ ≥ 2t

)
≤ 4γm,n and P

( 1
m(m − 1)

∥Γ̃JK
m,2,2∥∞ ≥ 2t

)
≤ 4γm,n. (8.12)

Combine (8.11) and (8.12) with (8.7) we obtain that

P
(
∥Γ̃JK

m2∥
1/2
∞ log(md) ≥ CϖBX

m (γm,n)
)
≤ 12γm,n. (8.13)
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Rate bound for Γ̃JK
m1 − Γ

X . Towards this goal, let

Γ̃JK
m,1,2 :=

(m − 2)!
m!

∑
1≤i, j≤n

{
vec(h(Xi, X j))

}{
vec(h(Xi, X j))

}T
,

Γ̃JK
m,1,3 :=

(m − 3)!
m!

∑
1≤i, j,k≤m

{
vec(h(Xi, X j))

}{
vec(h(Xi, Xk))

}T
.

Then, we have the decomposition

Γ̃JK
m1 =

1
m
Γ̃JK

m,1,2 +
(m − 2)

m
Γ̃JK

m,1,3.

Write ΓX = E
[{

vec(h(X1, X2))
}{

vec(h(X1, X3))
}T

]
and define

ΓX
1,2 := E

[{
vec(h(X1, X2))

}{
vec(h(X1, X2))

}T
]
.

The entities Γ̃JK
m,1,3 − Γ

X and ΓJK
m,1,2 − Γ

X
1,2 are U statistics of degree three and two respectively. By using arguments

similar to those used for Γ̃JK
m,2,4 for U statistics of degree three and two, we obtain that

P
((
∥Γ̃JK

m,1,3 − Γ
X∥∞log2(md)

)1/2
≥ CϖBX

m (γm,n)
)
≤ 4γm,n, (8.14)

P
((
∥Γ̃JK

m,1,2 − Γ
X
1,2∥∞log2(md)

)1/2
≥ CϖBX

m (γm,n)
)
≤ 4γm,n.

By the Cauchy-Schwarz and Lyapounov’s inequalities and condition (b), ∥ΓX
1,2∥∞ ≤ B2/3

m,n, from which we obtain

that m−1∥ΓX
1,2∥∞ ≤ t/2. Hence, by the triangle inequality, ∥Γ̃JK

m,1,2∥∞ ≤ ∥Γ̃
JK
m,1,2 − Γ

X
1,2∥∞ + ∥Γ

X
1,2∥∞,

{
m−1∥Γ̃JK

m,1,2∥∞ ≥
3t
2

}
⊆{

m−1∥Γ̃JK
m,1,2 − Γ

X
1,2∥∞ ≥ t

}
, and by (8.14),

P
(
m−1∥Γ̃JK

m,1,2∥∞ ≥
3t
2

)
≤ P

(
m−1∥Γ̃JK

m,1,2 − Γ
X
1,2∥∞ ≥ t

)
≤ 4γm,n.

Finally by (8.13) and (8.14),

P
(
∥Γ̃JK

m − Γ
X∥1/2∞ log(md) ≥ CϖBX

1 (γm,n)
)
≤ 28γm,n.

Similarly for Y1
n we have the decomposition Γ̃JK

n = Γ̃
JK
n1 − Γ̃

JK
n2 . Recall the definition of ΓY from (3.2). By using the

similar arguments as above,

P
(
∥Γ̃JK

n − Γ
Y∥1/2∞ log(nd) ≥ CϖBY

n (γm,n)
)
≤ 28γm,n.

Now choose

∆̄m,n = C


√

B2
m,n log(md) log2( 1

γm,n
)

m
+

√
B2

m,n log(nd) log2( 1
γm,n

)

n

 .
Combining all the previous inequalities with this choice of ∆̄m,n, it readily follows that

P
(
∆̂m,n ≤ ∆̄m,n

)
= P

(
∥Γ̃JK

m − Γ
X + δ2

m,n(Γ̃JK
n − Γ

Y )∥∞ ≤ ∆̄m,n

)
= 1 − P

(
∥Γ̃JK

m − Γ
X + δ2

m,n(Γ̃JK
n − Γ

Y∥∞ > ∆̄m,n

)
≥ 1 −

{
P
(
∥Γ̃JK

m − Γ
X∥1/2∞ log(md) ≥

C
2
ϖBX

1 (γm,n)
)

+ P
(
∥Γ̃JK

n − Γ
Y∥1/2∞ log(nd) ≥

C
2
ϖBY

1 (γm,n)
)}

≥ 1 −
(
28γm,n + 28γm,n

)
= 1 − 56γm,n.
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Thus the final conclusion follows from Lemma 3.1, by setting WeX
m |X

m
1 = ZX

1 |X
m and WeY

n |Y
n
1 = ZY

2 |Y
n.

This also completes the proof of Theorem 3.2.
Proof of Theorem 4.1. The proof uses the results of the previous section with δm,n = −m1/2n−1/2.
From condition (a′), we readily obtain the bounds{ c1

(1 − c1)

}1/2
= δ1 < |δm,n| < δ2 =

{ c2

(1 − c2)

}1/2
, (8.15)

It follows from assumption (b′) that

min
1≤a≤d

E[g2
a(X) + δ2

m,ng2
a(Y)] ≥ min{1, δ2

1}b. (8.16)

Recall that, TG
m,n = TG1

m + δm,nTG2
n . By combining (8.15), (8.16), (a′), (e′) along with Theorem 3.1 with

ΩX = vec(Σ1),ΩY = vec(Σ2) we obtain that

KD(Tm,n,TG
m,n) ≤ ρ∗∗m,n ≲

(B2
m,n(log7(dm))

m

)1/6
, (8.17)

where

KD(Tm,n,TG
m,n) := sup

t≥0

∣∣∣∣P(∥∥∥∥√m(Uξ
m − UY

n ) −
√

m vec(Σ1 − Σ2)
∥∥∥∥
∞
≤ 2t

)
− P

(
∥TG1

m + δm,nTG2
n ∥∞ ≤ t

)∣∣∣∣.
Choose γm,n in condition (e) of Theorem 3.2 to be γm,n = 1

/(
m(log m)2). From (a′) and (e′) it can be easily verified

that

B2
m,n log5(dm) log2(1/γm,n)

m
∼

B2
m,n log5(dn) log2(1/γm,n)

n
→ 0, as m, n→ ∞. (8.18)

Combining (8.15), (8.16), (8.18) and Theorem 3.2 we conclude that,

KD(T JK
m,n,T

G
m,n) ≤ ρJK

m,n ≲

{
B2

m,n log5(dm) log2(1/γm,n)
m

}1/4

,

where

KD
(
TG

m,n,T
JK
m,n

)
= sup

t≥0

∣∣∣∣∣Pe
(
∥WeX

m + δm,nWeY
n ∥∞ ≤ t

)
− P

(
∥TG1

m + δm,nTG2
n ∥∞ ≤ t

)∣∣∣∣∣.
The claim of the theorem follows from the triangle inequality and (e′), since

KD(Tm,n,T JK
m,n) ≤ KD(Tm,n,TG

m,n) + KD(TG
m,n,T

JK
m,n).

This concludes the proof.
Proof of Corollary 4.1. The proof is an immediate consequence of Theorem 4.1 with the definition of cB(α).
Proof of Theorem 5.1. In the proof below, C and c∗ are positive and large enough universal constants, not depending
on m, n, d, whose values keep changing depending on the context. We shall approximate the power function of the test
with its bootstrap counterpart and prove the consistency of the proposed test. RecallD := Σ1 − Σ2. Under Halt,

P
(∥∥∥∥ √m(UX

m − UY
n )

2

∥∥∥∥
∞
≥ cB(α)

)
≥ Pe∗

(∥∥∥We∗X
m −

√
m
n

We∗Y
n

∥∥∥
∞
≤

∥∥∥ √mvec(D)
2

∥∥∥
∞
− cB(α)

)
− sup

t≥0

∣∣∣∣P(∥∥∥∥ √m(UX
m − UY

n ) −
√

mvec(D)
2

∥∥∥∥
∞
≤ t

)
− Pe∗

(∥∥∥∥We∗X
m −

√
m
n

We∗Y
n

∥∥∥∥
∞
≤ t

)∣∣∣∣.
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By arguing as in Theorem 4.1, we obtain that with probability tending to one, under Halt,

sup
t≥0

∣∣∣∣P(∥∥∥∥ √m(UX
m − UY

n ) −
√

mvec(D)
2

∥∥∥∥
∞
≤ t

)
− Pe∗

(∥∥∥∥We∗X
m −

√
m
n

We∗Y
n

∥∥∥∥
∞
≤ t

)∣∣∣∣ ≲ {B2
m,n log7(dm)/m}1/6. (8.19)

Next, we shall prove the consistency of the proposed test. Let ηa, a = 1, 2, · · · , d denote unit basis vectors in Rd.
Then, for any t > 0,

Pe∗
(
∥We∗X

m −

√
m
n

We∗Y
n ∥∞ ≥ t

)
≤

d∑
a=1

Pe∗
(
|T e∗X

ma −

√
m
n

T e∗Y
na | ≥ t

)
≤ 2d exp

[
−

t2

2 max1≤a≤d{ηT
a (Γ̃JK

m +
m
n Γ̃

JK
n )ηa}

]
.

The last bound follows from Hoeffding’s inequality for Gaussian variables. Now setting the above bound equal to α
by plugging in t = cB(α), for large enough m, we obtain that

cB(α) ≤
[
2 log(2d/α) max

1≤a≤d

{
ηT

a (Γ̃JK
m +

m
n
Γ̃JK

n )ηa

}]1/2
≤

[
4 log(dn) max

1≤a≤d

{
ηT

a (Γ̃JK
m +

m
n
Γ̃JK

n )ηa

}]
.

But,

max
1≤a≤d

{
ηT

a (Γ̃JK
m +

m
n
Γ̃JK

n )ηa

}
=

∥∥∥∥Γ̃JK
m +

m
n
Γ̃JK

n

∥∥∥∥
∞
≤

∥∥∥∥∥Γ̃JK
m − Γ

X +
m
n

(Γ̃JK
n − Γ

Y )
∥∥∥∥∥
∞

+

∥∥∥∥∥ΓX +
m
n
ΓY

∥∥∥∥∥
∞

.

From the bounds of ∆̂m,n in Theorem 3.2 with δm,n =
√

m/n and γm,n = 1/(dm), it follows with probability tending
to one that

∥Γ̃JK
m − Γ

X +
m
n

(Γ̃JK
n − Γ

Y )∥∞ ≲

√
B2

m,n log3(md)
m

.

For the term, ∥ΓX + m
n Γ

Y∥∞, we note that, m/n ≤ c∗ by the condition (a′) and using Holder’s inequality and (c), it
follows that

∥ΓX +
m
n
ΓY∥∞ ≤ C

[
max

1≤a1≤d

{
E(vec(h(X1, X2))a1 )2

}1/2
max

1≤a2≤d

{
E(vec(h(X1, X3)a2 )2

}1/2

+ c∗ max
1≤a1≤d

{
E(vec(h(Y1,Y2)a1 )2

}1/2
max

1≤a2≤d

{
E(vec(h(Y1,Y3)a2 )2

}1/2
]

≤ B2/3
m,n ≤ Bm,n.

Therefore, with probability tending to one, we obtain that,

cB(α) ≤ 4 log(dn) max
1≤a≤d
{ηT

a (Γ̃JK
m +

m
n
Γ̃JK

n )ηa} ≤ (8CBm,n log(dn))1/2.

Upon choosing the constant C in (f′) to be K =
√

8C, we obtain that∥∥∥√mvec(D)/2
∥∥∥
∞
− cB(α) ≥

{
8CBm,n log(dm)

}1/2
.

Therefore, we conclude that as m ∧ n→ ∞ and d → ∞, with probability tending to one,

Pe∗
(
∥We∗X

m −

√
m
n

We∗Y
n +

√
mvec(D)

2
∥∞ ≥ cB(α)

)
≥ Pe∗

(
∥We∗X

m −

√
m
n

We∗Y
n ∥∞ ≤ ∥

√
mvec(D)

2
∥∞ − cB(α)

)
≥ Pe∗

(
∥We∗X

m −

√
m
n

We∗Y
n ∥∞ ≤ {8CBm,n log(dm)}1/2

)
= 1 − Pe∗

(
∥We∗X

m −

√
m
n

We∗Y
n ∥∞ ≥ {8CBm,n log(dm)}1/2

)
≥ 1 − 2d exp

(
− 4CBm,n log(dm)/Bm,n

)
≥ 1 −

2
m
→ 1 as m,n,d→ ∞.

This bound together with (8.19) completes the proof.
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