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Abstract

In this work, we demonstrate provable guarantees on the training of a sin-
gle ReLU gate in hitherto unexplored regimes. We give a simple iterative
stochastic algorithm that can train a ReLU gate in the realizable setting in
linear time while using significantly milder conditions on the data distribu-
tion than previous such results.

Leveraging certain additional moment assumptions, we also show a first-of-
its-kind approximate recovery of the true label generating parameters under
an (online) data-poisoning attack on the true labels, while training a ReLU
gate by the same algorithm. Our guarantee is shown to be nearly optimal
in the worst case and its accuracy of recovering the true weight degrades
gracefully with increasing probability of attack and its magnitude.

For both the realizable and the non-realizable cases as outlined above, our
analysis allows for mini-batching and computes how the convergence time
scales with the mini-batch size. We corroborate our theorems with simu-
lation results which also bring to light a striking similarity in trajectories
between our algorithm and the popular S.G.D. algorithm - for which similar
guarantees as here are still unknown.
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1. Introduction

Over the last few years, there has been a surge of activity in using neural
networks for complex artificial intelligence tasks. Human world champions
of classic hard board games have famously been defeated by neural net-based
approaches, the [1, 2, 3, 4]. At the core of many of these successes lie the
ability of various heuristics to be able to solve the learning theory question
of function optimization/risk minimization,

min
N∈N

Ez∈D[`(N, z)] (1)

where ` is some lower-bounded non-negative function, members of N are
continuous piecewise linear functions representable by some chosen neural
net architecture and we only have sample access to the distribution D. This
reduces to the empirical risk minimization question when this D is a uniform
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distribution on a finite set of points. But as of today, we have little or
no mathematical guarantees about these heuristics which seemingly very
efficiently solve the many useful instances of these optimization problems.

To the best of our knowledge about the state-of-the-art in deep-learning
theory, any of these two optimization problems is typically provably solvable
in poly-time for nets with more than 1 neuron in either of the following two
mutually exclusive scenarios : (a) the nets in the class N are of constant size
and the data comes as tuples z = (x,y) with y being the noise corrupted
output at input x for a net (of a known architecture that which would be
common to the class N ). And (b) the nets in N would be asymptotically
large and the data comes as tuples z = (x,y) with no explicit functional
relationship between x and y (but there could be geometric or statistical
assumptions about the x and y).

The simplifications that happen for infinitely large networks have been dis-
cussed since [5] and this theme has had a recent resurgence in works like
[6, 7]. Eventually this led to an explosion of literature in getting linear time
training of various kinds of neural nets when their width is a high degree
polynomial in training set size and inverse accuracy (a somewhat unrealistic
regime), [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. The
essential proximity of this regime to kernel methods have been thought of
separately in works like [24, 25].

On the other hand we note that in the fully agnostic setting training even a
single ReLU gate can be SPN-hard as shown in [26]. Hence its an interesting
mathematical question to isolate general conditions when the convergence
speed can be fast for a single ReLU gate.

To the best of our knowledge, for training a single neuron to ε−accuracy,
existing results until this work were restricted to a sample complexity of
O(poly(1/ε)) for (Stochastic) Gradient Descent ((S.)G.D.) even with realiz-
able data. And any improvements to this had been known to happen only
for the case of the marginal distribution on the input being Gaussian. We
refer the interested readers to [27] for a comprehensive summary of these
results - against many of which we will compare our results. In this paper,
we break this barrier and improve the sample-complexity of training a sin-
gle ReLU gate to O(log(1/ε)) for realizable data and without tying ourselves
to any specific distribution. We emphasize that not only are we able to
achieve this only by slightly tweaking the popular S.G.D. algorithm itself
but also that our algorithm has guarantees in cases where we make the data
non-realizable by allowing for a data-poisoning attack. Our distributional

3



assumptions are mild and reminiscent of the subspace eigenvalue conditions
from [28]. Moreover, through thorough experiments, we will show that our
modified S.G.D. has strikingly similar convergence features as the traditional
S.G.D. We summarize the technical details of our results in the following
subsection.

1.1. A summary of our results

To make progress with provable training of a single gate we draw inspiration
from the different avatars of iterative stochastic non-gradient algorithms
analyzed in the past, [29, 30, 31, 32, 33, 34, 35]. We shall organize our
contributions in this paper under four groups as follows.

Firstly, in the short Section 2 we start with a quick re-analysis of a known
algorithm called the GLM-Tron [32] but under more general conditions than
the previous proofs about it. We show how well it can do (empirical) risk
minimization on any Lipschitz gate with Lipschitz constant < 2 in the noisily
realizable setting while no assumptions are being made on the distribution
of the noise beyond their boundedness - hence the noise can be adversarial .
We also point out how the result can be improved under certain benign
assumptions on the noise.

Secondly, in Section 3, we exclusively focus on training the ReLU gate,
Rn 3 x 7→ max{0,w>x} ∈ R for w ∈ Rn being its weight. We note that
for this gate, the corresponding empirical or the population risk is neither
convex nor smooth w.r.t. how it depends on the weights. And yet we show
a very simple iterative stochastic algorithm which can provably recover in
linear time the underlying parameter w∗ of the ReLU gate when the data
being sampled is exactly realizable of the form (x,max{0,w>∗ x}). That is
w.h.p. in log

(
1
ε

)
iterations we get ε close to w∗ while starting from any

arbitrary initial point. (We recall that linear time convergence i.e getting
ε close to the global minima in O(log(1

ε )) time is a hallmark of specialized
optimization methods adapted for smooth strongly convex objectives like
[36]). To achieve this we use a mild distributional condition which essentially
captures the intuition that enough of our samples are such that w>∗ x > 0. To
the best of our knowledge, this is the first example of nearly distribution-free
training of a ReLU gate in linear time.

Note that, in Section 3 we are using a stochastic algorithm while solving a
regression problem specific to a ReLU gate and are exploiting the structure
of the ReLU gate (and mild distributional assumptions) to directly achieve
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parameter recovery. The results in Section 2 also apply to a ReLU gate as a
special case but in contrast, therein we used full-batch iterative updates to
gain other advantages, namely of being able to handle more general gates
while having essentially no distributional assumptions on the training data.

Thirdly, by making a slightly stronger distributional assumption, in Case
(II) of the Theorem 3.1 in Section 3 we also encompass the case when dur-
ing training the oracle behaves adversarially i.e it tosses a biased coin and
decides whether or not to additively distort the true labels by a bounded
perturbation. Additionally, we also allow for the bias of the adversary’s coin
to be data-dependent. This is a “data-poisoning” attack since the adversary
corrupts the training data in an online fashion. In this case, we show that
the accuracy of the algorithm in recovering w∗ is not only worst-case near
optimal but is such that the accuracy degrades gracefully as the probability
of the adversary’s attack or the magnitude of the distortion increases.

To the best of our knowledge, this is the first guarantee on training a ReLU
gate while under any kind of an adversarial attack. Also in both these cases
above we allow for mini-batching in the algorithm and keep track of how
the mini-batch size affects the convergence time.

Lastly, in Section 3.1 we give an experimental demonstration of the per-
formance of our algorithm. We do a side-by-side comparison on a ReLU
gate between S.G.D. and our modified S.G.D., under various setting which
fall under the ambit of Theorem 3.1. In particular we track how the dis-
tance to the original optima (w∗) changes with time for the various settings
that we consider. Seen from this perspective we emphasize that while guar-
antees like Case (II) of Theorem 3.1 still remain unknown for S.G.D., our
algorithm’s behaviour in experiments closely resembles that of S.G.D. under
similar settings. Thus our experiments encourage the conjecture that maybe
our modification keeps unchanged the stochastic process induced by S.G.D.
on a ReLU gate. We leave it for future work to investigate this possibility
and to try generalizing this for larger nets.

1.2. Comparison to concurrent literature

Firstly, we note that the result in [35] includes as a special case learning a
ReLU gate under realizable settings as a special case of their result but only
under the assumption of the distribution being symmetric. Specific to the
marginal distribution on the data being Gaussian, works like [37, 38] had
solved the same problem using gradient-based methods.
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A notable recent progress with understanding the behaviour of (stochastic)
gradient descent on a ReLU gate was achieved in [27]. Their Theorem
D.1 (b) is solving the same question as our Theorem 3.1 Case (I). But our
algorithm, in this special case, not only accounts for the effect of mini-
batching on the convergence time but also converges exponentially faster
than what is guaranteed in [27].

Also significantly in contrast to these previous results cited above, our The-
orem 3.1 Case (II) encompasses the situation of a probabilistic adversary
causing distortions to the true labels. To the best of our knowledge this is
the first work to analyze training of a ReLU gate in any kind of adversarial
setup - in particular a data-poisoning attack on the training data (labels).
We also allow for the adversary to decide to attack or not using a biased
coin toss whose bias is allowed to be data-dependent.

Lastly, unlike any of these previous results, we keep track of the subtleties
of using mini-batches and how the mini-batch size affects the convergence
time.

In [39], the authors had given algorithms for learning of a ReLU gate in the
non-realizable setting for certain nice marginal distributions on the data.
We note that such results about risk minimization are incomparable to our
goal in Theorem 3.1 Case (II) of recovering the generating weights (the w∗
therein) as closely as possible under adversarial corruption of the training
labels. But this result of ours can be seen as a natural regression analogue of
the recent result in [40] about learning half-space indicators under a Massart
noise.

2. Re-analyzing the GLM-Tron

In this section we shall take a relook at the GLM-Tron algorithm (given
below) from [32] and show that it converges on certain Lipschitz gates with
no distributional assumption on the data.

Algorithm 1 GLM-Tron

1: Input: {(xi, yi)}i=1,...,m and an activation function σ : R→ R
2: w1 = 0
3: for t = 1, . . . do

4: wt+1 := wt + 1
m

∑m
i=1

(
yi − σ(〈wt,xi〉)

)
xi
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First, we state the following crucial lemma,

Lemma 2.1. Assume that for all i = 1, . . . , S ‖xi‖ ≤ 1 and in Algorithm 1,
σ is a L−Lipschitz non-decreasing function. Suppose the vector w and the
scalar W are s.t at iteration t, we have ‖wt−w‖ ≤W and we define η > 0

s.t ‖ 1
S

∑S
i=1

(
yi − σ(〈w,xi〉)

)
xi‖ ≤ η. Then it follows that,

‖wt+1 −w‖2 ≤ ‖wt −w‖2 −
( 2

L
− 1
)
L̃S(ht) +

(
η2 + 2ηW (L+ 1)

)
where we have defined,

L̃S(ht) := 1
S

∑S
i=1

(
ht(xi)−σ(〈w,xi〉)

)2
= 1

S

∑S
i=1

(
σ(〈wt, xi〉)−σ(〈w,xi〉)

)2

We give the proof of the above lemma in Appendix A.1. The above Algo-
rithm 1 was introduced in [32] for bounded activations. Here we show the
applicability of that idea for more general activations and also while having
adversarial attacks on the labels. We will see in the following theorem as to
how the above lemma leads to convergence of the effective-E.R.M., L̃S by
GLM-Tron on a single gate.

Theorem 2.2. (GLM-Tron (Algorithm 1) solves the effective-E.R.M.
on a ReLU gate up to noise bound with minimal distributional as-
sumptions.) Assume that for all i = 1, . . . , S ‖xi‖ ≤ 1 and the label of
the ith data point yi is generated as, yi = σ(〈w∗,xi〉) + ξi s.t ∀i, |ξi| ≤ θ for
some θ ≥ 0 and w∗ ∈ Rn. If σ is a L−Lipschitz non-decreasing function for
L < 2 then in at most T = ‖w∗‖

ε GLM-Tron steps we would attain parameter
value wT s.t,

L̃S(hT ) =
1

S

S∑
i=1

(
σ(〈wT , xi〉)−σ(〈w∗,xi〉)

)2
<

L

2− L

(
ε+(θ2+2θ·‖w∗‖·(L+1))

)

The proof of the above theorem is deferred to Appendix A.2.

Remark: Firstly, note that in the realizable setting i.e when θ = 0, the
above theorem is giving an upperbound on the number of steps needed to
solve the ERM on say a ReLU gate to O(ε) accuracy. Secondly, observe
that the above theorem does not force any distributional assumption on the
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ξi beyond the assumption of its boundedness. Thus the noise could as well
have been chosen adversarially up to the constraint on its norm.

If we make some assumptions on the noise being benign then we can get the
following.

Theorem 2.3. (Performance guarantees on the GLM-Tron (Algo-
rithm 1) when solving E.R.M.) Assume that the noise random variables
ξi, i = 1, . . . , S are identically distributed as a centered random variable say
ξ. Then for T = ‖w∗‖

ε , we have the following guarantee for GLM-Tron on
the empirical risk after T iterations (say LS(hT )),

E{(xi,ξi)|i=1,...S}

[
LS(hT )

]
≤ Eξ[ξ2] +

L

2− L

(
ε+ (θ2 + 2θ · ‖w∗‖ · (L+ 1))

)
The proof for the above has been given in Appendix A.3. Here we note a
slight generalization of the above that can be easily read off from the above.

Corollary 2.4. Suppose that the joint distribution of {ξi}i=1,...,S is s.t P
[
|ξi| ≤

θ ∀i ∈ {1, . . . , S}
]
≥ 1−δ Then the guarantee of the above Theorem 2.3 still

holds but now with probability at least 1− δ over the noise distribution.

In the next section we shall continue with the current theme of training a
single neuron and see how a stochastic algorithm can be designed to get
stronger training guarantees specific to a ReLU gate.

3. Learning a ReLU gate in the realizable setting and under a
data-poisoning attack

In this section we consider an adversary executing a data-poisoning attack on
an iterative stochastic learning algorithm (Algorithm 2) . Given a marginal
distribution D on the inputs x, suppose the corresponding true labels are
generated as y = ReLU(w>∗ x) for some unknown w∗ ∈ Rn. We assume
sampling access to D and an adversarial label oracle that on the tth−iterate
gets queried with b inputs {xt1 , . . . ,xtb} drawn uncorrelatedly from D. The
oracle then flips a coin for each minibatch data point with probability of the
coin returning 0 being 1−β(xti) for some fixed function β : Rn → [0, 1]. We
assume that these coin flips are uncorrelated to each other and the mini-
batch sample and if the coin flip gives 1 only then does the adversary do
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a bounded (by a constant θ∗) additive distortion to the true label of the
corresponding data.

To learn the true labeling function Rn 3 y 7→ ReLU(w>∗ y) ∈ R in this
adversarially corrupted realizable setting we try to solve the following opti-

mization problem, minw∈Rn Ex∼D

[(
ReLU(w>x)− y

)2]
In contrast to previous work, we show that the simple algorithm given below
solves this learning problem by leveraging the intuition that if we see enough
labels y = ReLU(w>∗ x) + ξ where y > θ∗, then solving the linear regression
problem on this subset of samples, gives a w̃∗ which is close to w∗. In the
situation, with adversarial corruption (θ∗ > 0) we show in subsection 3.2
that our recovery guarantee is optimal in a certain sense. Additionally in
the realizable case (θ∗ = 0 or β = 0 identically), our setup learns to arbitrary
accuracy the true weight w∗ using much milder distributional constraints
than previous such results that we are aware of.

Algorithm 2
Modified mini-batch SGD for training a ReLU gate with adversarially per-
turbed realizable labels.
1: Input: Sampling access to a distribution D on Rn and a function β :

Rn → [0, 1]
2: Input: Oracle access to labels y ∈ R when queried with some x ∈ Rn
3: Input: An arbitrarily chosen starting point of w1 ∈ Rn
4: for t = 1, . . . do
5: Sample independently st := {xt1 , . . . ,xtb} ∼ D and query the oracle

with this set.
6: The Oracle samples ∀i = 1, . . . , b, αti ∼ {0, 1} with probability {1−
β(xti), β(xti)}

7: The Oracle replies ∀i = 1, . . . , b, yti = αti · ξti + ReLU(w>∗ xti) s.t
|ξti | ≤ θ∗

8: Form the gradient (proxy),

gt := −1

b

b∑
i=1

1{yti>θ∗}(yti −w>t xti)xti

9: wt+1 := wt − ηgt

We note that the choice of gt in Algorithm 2 resembles the stochastic gra-
dient that is commonly used and is known to have great empirical success.
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In a true S.G.D., the indicator occurring in gt would have been 1{w>t xti>0}
for each i

Towards stating our theorems we define the following notation.

Definition 1. Given w∗ ∈ Rn, θ∗ ∈ R+, a distribution D on Rn and a
function β : Rn → [0, 1], we define the following constants associated to
them (assuming they are finite),

ai := Ex∼D

[
1w>∗ x>0‖x‖i

]
, for i = 2, 4

βj := Ex∼D

[
β(x)1w>∗ x>0‖x‖j

]
, for j = 1, 2, 3

λ1(θ∗) := λmin

(
Ex∼D

[
1w>∗ x>2θ∗xx>

])

Theorem 3.1. (Training a ReLU gate with realizable data and a
probabilistic data-poisoning adversary. (Proof in Appendix B))
In Algorithm 2 we will assume that (a) for i 6= j and for all t, the random
variables/data samples xti and xtj are uncorrelated and (b) that the random
variables αti and αtj are mutually uncorrelated and also uncorrelated with
the the mini-batch choice st.

Case I : Realizable setting, θ∗ = 0.

Suppose (a) E
[
‖x‖4

]
and the covariance matrix E

[
xx>

]
exist and (b) w∗ is

s.t a4 exists and E
[
1w>∗ x>0xx>

]
is positive definite - and hence λ1 := λ1(0)

is well defined. Then if λ1 < ∞, one can find a suitable step-size η > 0
and run Algorithm 2 starting from arbitrary w1 ∈ Rn so that ∀ε > 0,

δ ∈ (0, 1), after T = O
(

log ‖w1−w∗‖2
ε2δ

)
iterations we have

P
[
‖wT −w∗‖2 ≤ ε2

]
≥ 1− δ

Case II : With bounded adversarial corruption of the true labels,
θ∗ > 0

Suppose w∗ and θ∗ are such that (a) a2, a4, β1(> 0), β2, β3 exist and (b)
λ1(θ∗) > 0. Then there exists constants b′1, c

′
1, c
′
2, c
′
3 (to be defined below)
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s.t. one can choose η =
b′1
γc′1

and run Algorithm 2 starting from arbitrary

w1 ∈ Rn so that, after T = O

log ‖w1−w∗‖2

ε2δ−θ2∗·
( c′2
c′1

+γ·
c′3
b′1

γ−1

)
 iterations we have

P
[
‖wT −w∗‖2 ≤ ε2

]
≥ 1− δ

where ε > 0 and δ ∈ (0, 1) are s.t.

ε2δ = β2
1 ·

K · θ2
∗

(2λ1(θ∗)− 1
K )

(2)

and K > 0 large enough s.t 2λ1(θ∗) >
1
K , and

b′1 = 2λ1(θ∗)−
1

K
, c′1 =

1 + a4 + (1 + a2
2)(b− 1)

b

c′2 =
1

β1

(
β2

3 + (β2 · a1)2 · (b− 1) + (β2 + (b− 1) · β2
1)
)
, c′3 = K · β2

1

and γ > max

b′21
c′1
,
ε2δ + θ2

∗ ·
c′2
c1

ε2δ − θ2
∗ ·

c′3
b1

 . (3)

Remark 1. We collate the following salient points about the structure of
Theorem 3.1 :

(a) Note that for any fixed δ, the ε error guaranteed by the theorem ap-
proaches 0 as supx β(x) → 0. Thus we have continuous improvement of
the minimum achievable error as the likelihood of the data-poisoning attack
decreases.

(b) ‖wT−w∗‖2 ≤ ε2 =⇒ Ex

[(
ReLU(w>Tx)−ReLU(w>∗ x)

)2]
≤ ε2E

[
‖x‖2

]
and hence Algorithm 2 solves the risk minimization problem for θ = 0 to any
desired accuracy and in linear time.

(c) Note that the above convergence holds starting from an arbitrary initial-
ization w1.

11



(d) In subsection 3.2 we shall see how the above theorem gives a worst-
case near-optimal trade-off between ε (the accuracy ) and δ (the confidence)
that can be achieved when training against a θ∗ (a constant) additive norm
bounded adversary corrupting the true output.

(e) Convergence speed increases with the minibatch size b :

In the Case (I) above i.e when θ∗ = 0, one can read off from the proof

that upon defining b1 = 2λ1 & c1 =
a4+a22(b−1)

b , one can find δ0 so that

c1 >
b21δ0

(1+δ0)2
and upon choosing η = b1/(c1(1 + δ0)) we obtain

T = 1 +

(
log ‖w1−w∗‖2

ε2δ

log 1
α

)

where α = 1− 4λ2
1δ0(

a2
2 +

(a4−a22)
b

)
· (1 + δ0)2

Note that this T is a decreasing function of the batchsize b and hence quan-
tifies the intuition that to achieve a pre-specified level of precision, it takes
lesser time when using larger batch-sizes.

A similar conclusion prevails in the θ∗ > 0 case as well.

(f) The distributional condition is mild :

Corresponding to both the situations, θ∗ = 0 and θ∗ > 0, here we provide
simple examples that satisfy the condition of λ1(θ∗) > 0.

Example 1: Compact multivariate distribution

Suppose n = 2 and x ∼ Unif[−1, 1] × [−1, 1] and suppose w∗ = (−1, 1).
Hence we can define,

d1(θ∗) := E(1−x1+x2>2θ∗x
2
1) = E(1x1+x2>2θ∗x

2
2) =

1

48
(7− 8θ∗ + (2θ∗ − 1)4)

d2(θ∗) := E(1−x1+x2>2θ∗x1x2) =
1

32
− 4θ∗

24
+

4θ2
∗ − 1

16
− (2θ∗ − 1)4

32

+
4θ∗(2θ∗ − 1)

24
− (4θ2

∗ − 1)(2θ∗ − 1)2

16
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Then we have λ1(θ∗) := λmin

(
Ex∼D

[
1−x1+x2>2θ∗xx>

])
= d1(θ∗)− |d2(θ∗)|

Hence ensuring convergence needs, d1(θ∗) > |d2(θ∗)| and this is satisfied for
examples such as : (a) θ∗ = 0, λ1(0) = 1

6 − 0 = 1
6 (b) θ∗ = 1, λ1(1) =

1
16 −

5
96 = 1

96 .

Example 2: Non-compact univariate distribution

Suppose n = 1, x ∼ N (0, 1). Then for any w∗ we have,

0 < λ1(θ∗) = E(1w∗x>2θ∗x
2) ≤

∫ ∞
−∞

x2φ(x)dx = 1

where φ(x) is the standard normal p.d.f. This implies λ1(θ∗) is finite and
positive and thus convergence is ensured.

It is easy to demonstrate further examples in other univariate/multivariate
and compact/non-compact distributions as well and see that the convergence
conditions are not very strong.

3.1. Experimental demonstration of Algorithm 2

For experiments we sample the data xti (Algorithm 2) in i.i.d fashion from
a standard normal distribution in n = 500 dimensions. We instantiate a
data-poisoning attack consistent with the assumptions in Theorem 3.1 in
the following way : at the tth iterate we choose ξti = θ∗1{i mod 2=0} −
θ∗1{i mod 26=0} and αti is 0/1 w.p β ∈ [0, 1] for i = 1, . . . , b.

Then for a chosen value of w∗ and η = 0.01, we plot how the parameter
recovery error ‖wt − w∗‖ (averaged over multiple runs of the algorithm)
varies with t,

• for different values of b, at fixed θ∗ = 2 and β = 0.5 in Figure 1. Here
we can see that larger values of mini-batch help attain lower errors
faster.

• for different values of β, at fixed θ∗ = 2 and b = 16 in Figure 2. Here
we can see that there is a graceful degradation of the best achieved
error with increasing probability of attack.

• for different values of θ∗, at fixed β = 0.5 and b = 16 in Figure 3. Here
we can see that there is a graceful degradation of the best achieved
error with increasing magnitude of the attack.
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We note that all the three observations above are consistent with what we
would have expected from Theorem 3.1.

Figure 1: Performance of Algorithm 2 with changing mini-batch size for n = 500, β = 0.5
and θ∗ = 2

Figure 2: Performance of Algorithm 2 with changing probability of attack for n = 500, θ∗ =
2 and b = 16

We recall that in Algorithm 2 if we redefined gt to, −1
b

∑b
i=1 1{w>t xti>0}(yti−

w>t xti)xti then it would be standard S.G.D. For comparison, we repeat the
last two experiments with this S.G.D. and give the corresponding plots in
Figure 4 and Figure 5.

We notice the striking similarity between the plots in Figures 2 & 4 and
Figures 3 & 5 respectively. This motivates that our algorithm very closely
mimics the behaviour of S.G.D. while similar guarantees as in Theorem 3.1
yet remain elusive for S.G.D..
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Figure 3: Performance of Algorithm 2 with changing θ∗ for n = 500, β = 0.5 and b = 16

Figure 4: Performance of S.G.D. with changing probability of attack for n = 500, θ∗ = 2
and b = 16

Figure 5: Performance of S.G.D. with changing θ∗ for n = 500, β = 0.5 and b = 16
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3.2. Near-optimality of Theorem 3.1

We consider the “worst case” situation of Theorem 3.1 i.e when β = 1
identically and hence the adversary always acts. Now consider another value
for the filter Rr 3 wadv 6= w∗ being chosen by this adversary and suppose
that θ∗ = θadv s.t

θadv ≥ sup
x∈supp(D)

|ReLU(w>advx)− ReLU(w>∗ x)| (4)

It is easy to imagine cases where the supremum in the RHS above ex-
ists like when D is compactly supported. Now in this situation we define

cbound :=
(2λ1(θ∗)− 1

K
)

β2
1 ·K

and hence Theorem 3.1 says that the lowest value of

the parameter error achievable is,

ε2 =
θ?2

δcbound
=⇒ ε2 ≥

θ2
adv

cbound
(5)

Hence proving the optimality of this guarantee is equivalent to showing the
existence of an attack within this θadv bound for which the best accuracy
possible nearly saturates the lowerbound in equation 5.

We note that for the choice of corruption bound θadv, the adversarial or-
acle when queried with x can respond with ξx + ReLU(w>∗ x) where ξx =
ReLU(w>advx) − ReLU(w>∗ x). Hence the data received by the algorithm
can be exactly realized with the filter choice wadv. In that case, the analy-
sis of Theorem 3.1, Case (I) shows that Algorithm 2 will converge in high
probability to wadv. Thus the error incurred is ε ≥ ‖wadv −w∗‖.

An instantiation of the above attack happening is when θadv = r‖wadv−w∗‖
for r = supx∈supp(D)‖x‖. Its easy to imagine cases where D is s.t r defined
above is finite. Further, this choice of θadv is valid since the following holds,
as required by equation 4,

sup
x∈supp(D)

|ReLU(w>advx)− ReLU(w>∗ x)| ≤ r‖wadv −w∗‖ = θadv

Thus the above setup invoked on training a ReLU gate with inputs being
sampled from D as above while the labels are being additively corrupted by
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at most θ∗(= θadv) = r‖wadv − w∗‖ demonstrates a case where the worst

case accuracy guarantee of ε2 ≥ θ2adv
cbound

is optimal up to a constant r2

cbound
.

We note that this argument also implies the worst-case near optimality of
guarantees like equation 5 for any algorithm defending against this attack
which also has the property of recovering the parameters correctly when the
labels are exactly realizable.

4. Conclusion

In this work we have shown provable training of a ReLU gate under mild
distributional conditions and pointed out cases where this happens in linear
time while assuming only certain mild non-degeneracy conditions on the
distribution. Also our results have probed how closely we can recover the
original generating weights when the true training labels are subject to an
(online) data-poisoning attack. And in this particular regime, in Section
3.1, we have given careful experimental evidence as to how our provably
convergent modification of S.G.D. on a ReLU gate (Algorithm 2) seems
to have very similar time dynamics as S.G.D. - while for the later such
guarantees remain unknown.

We believe this raises the interesting question as to whether indeed one can
rigorously show that the stochastic process induced by Algorithm 2, is a
close approximant of true S.G.D. on a ReLU gate. We posit that this is a
fruitful direction for future investigations and might lead to insights about
the dynamics of S.G.D. for nets with a constant number of gates, which has
so far mostly remained out of current mathematical reach.
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A. Proofs of Section 2

A.1. Proof of Lemma 2.1

Proof of Lemma 2.1. We observe that,

‖wt −w‖2 − ‖wt+1 −w‖2 = ‖wt −w‖2 − ‖
(
wt +

1

S

S∑
i=1

(
yi − σ(〈wt,xi〉)

)
xi

)
−w‖2

= − 2

S

S∑
i=1

〈(
yi − σ(〈wt,xi〉)

)
xi,wt −w

〉
− ‖ 1

S

S∑
i=1

(
yi − σ(〈wt,xi〉)

)
xi‖2

=
2

S

S∑
i=1

(
yi − σ(〈wt,xi〉)

)(
〈w,xi〉 − 〈wt,xi〉

)
− ‖ 1

S

S∑
i=1

(
yi − σ(〈wt,xi〉)

)
xi‖2

(A.1)

Analyzing the first term in the RHS above we get,
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2

S

S∑
i=1

(
yi − σ(〈wt,xi〉)

)(
〈w,xi〉 − 〈wt,xi〉

)
=

2

S

S∑
i=1

(
yi − σ(〈w,xi〉) + σ(〈w,xi〉)− σ(〈wt,xi〉)

)(
〈w,xi〉 − 〈wt,xi〉

)
=

2

S

S∑
i=1

〈(
yi − σ(〈w,xi〉)

)
xi,w −wt

〉
+

2

S

S∑
i=1

(
σ(〈w,xi〉)− σ(〈wt,xi〉)

)(
〈xi,w〉 − 〈xi,wt〉

)
≥ −2ηW +

2

S

S∑
i=1

(
σ(〈w,xi〉)− σ(〈wt,xi〉)

)(
〈xi,w〉 − 〈xi,wt〉

)

In the first term above we have invoked the definition of η and W given
in the lemma. Further since we are given that σ is non-decreasing and
L−Lipschitz, we have for the second term in the RHS above,

2

S

S∑
i=1

(
σ(〈w,xi〉)− σ(〈wt,xi〉)

)(
〈xi,w〉 − 〈xi,wt〉

)
≥ 2

SL

S∑
i=1

(
σ(〈w,xi〉)− σ(〈wt,xi〉)

)2
=:

2

L
L̃S(ht)

Thus together we have,

2

S

S∑
i=1

(
yi − σ(〈wt,xi〉)

)(
〈w,xi〉 − 〈wt,xi〉

)
≥ −2ηW +

2

L
L̃S(ht) (A.2)

Now we look at the second term in the RHS of equation A.1 and that gives
us,
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‖ 1

S

S∑
i=1

(
yi − σ(〈wt,xi〉)

)
xi‖2 = ‖ 1

S

S∑
i=1

(
yi − σ(〈w,xi〉) + σ(〈w,xi〉)− σ(〈wt,xi〉)

)
xi‖2

≤ ‖ 1

S

S∑
i=1

(
yi − σ(〈w,xi〉)

)
xi‖2

+ 2‖ 1

S

S∑
i=1

(
yi − σ(〈w,xi〉)

)
xi‖ × ‖

1

S

S∑
i=1

(
σ(〈w,xi〉)− σ(〈wt,xi〉)

)
xi‖

+ ‖ 1

S

S∑
i=1

(
σ(〈w,xi〉)− σ(〈wt,xi〉)

)
xi‖2

≤ η2 + 2η‖ 1

S

S∑
i=1

(
σ(〈w,xi〉)− σ(〈wt,xi〉)

)
xi‖+ ‖ 1

S

S∑
i=1

(
σ(〈w,xi〉)− σ(〈wt,xi〉)

)
xi‖2

(A.3)

Now by Jensen’s inequality we have,

‖ 1

S

S∑
i=1

(
σ(〈w,xi〉)− σ(〈wt,xi〉)

)
xi‖2 ≤

1

S

S∑
i=1

(
σ(〈w,xi〉)− σ(〈wt,xi〉)

)2
= L̃S(ht)

And we have from the definition of L and W ,

‖ 1

S

S∑
i=1

(
σ(〈w,xi〉)− σ(〈wt,xi〉)

)
xi‖ ≤

L

S

S∑
i=1

‖w −wt‖ ≤ L×W

.

Substituting the above two into the RHS of equation A.3 we have,

‖ 1

S

S∑
i=1

(
yi − σ(〈wt,xi〉)

)
xi‖2 ≤ η2 + 2ηLW + L̃S(ht) (A.4)

Now we substitute equations A.2 and A.4 into equation A.1 to get,
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‖wt−w‖2−‖wt+1−w‖2 ≥
(
− 2ηW +

2

L
L̃S(ht)

)
− (η2 + 2ηLW + L̃S(ht))

The above simplifies to the inequality we claimed in the lemma i.e,

‖wt+1 −w‖2 ≤ ‖wt −w‖2 −
( 2

L
− 1
)
L̃S(ht) +

(
η2 + 2ηW (L+ 1)

)

A.2. Proof of Theorem 2.2

Proof of Theorem 2.2. The equation defining the labels in the data-set
i.e yi = σ(〈w∗,xi〉) + ξi, with |ξi| ≤ θ along with our assumption that,

‖xi‖ ≤ 1 implies that , ‖ 1
S

∑S
i=1

(
yi − σ(〈w∗,xi〉)

)
xi‖ ≤ θ. Thus we can

invoke the above Lemma 2.1 between the tth and the (t + 1)th iterate with
w = w∗, η = θ and W = Wt s.t Wt ≥ ‖wt −w‖ = ‖wt −w∗‖ to get,

‖wt+1 −w∗‖2 ≤ ‖wt −w∗‖2 −
[( 2

L
− 1
)
L̃S(ht)− (θ2 + 2θ ·Wt · (L+ 1))

]

Thus, if L̃S(ht) ≥ L
2−L

(
ε + (θ2 + 2θ ·Wt · (L + 1))

)
then, ‖wt+1 −w∗‖2 ≤

‖wt − w∗‖2 − ε. Thus if the above lowerbound on L̃s(ht) holds in the tth

step then at the start of the (t + 1)th step we still satisfy, ‖wt+1 − w‖ <
‖wt − w‖. Since the iterations start with w1 = 0, in the first step we
can choose W1 = ‖w∗‖. Now we proceed via induction : from what was
argued earlier it follows that if till step t we can keep choosing Wt = ‖w∗‖,
then till step t we have reduced the distance to w∗ by O(t · ε) and either

L̃S(ht) <
L

2−L

(
ε + (θ2 + 2θ · ‖w∗‖ · (L + 1))

)
or in the next step we would

have ‖wt+1 −w∗‖2 ≤ ‖wt −w∗‖2 − ε and hence the distance to w∗ would
decrease further by ε.

But the distance to w∗ is lowerbounded by 0 and hence in at most ‖w∗‖ε
steps of the above kind we would have to have attained,

L̃S(hT ) =
1

S

S∑
i=1

(
σ(〈wT ,xi〉)−σ(〈w∗,xi〉)

)2
<

L

2− L

(
ε+(θ2+2θ‖w∗‖(L+1))

)
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And that proves the theorem we wanted.

A.3. Proof of Theorem 2.3

Proof of Theorem 2.3. Let the true empirical risk at the T th−iterate
be defined as,

LS(hT ) =
1

S

S∑
i=1

(
σ(〈wT ,xi〉)− σ(〈w∗,xi〉)− ξi

)2

Then it follows that,

L̃S(hT )− LS(hT ) =
1

S

S∑
i=1

(
σ(〈wT ,xi〉)− σ(〈w∗,xi〉)

)2
− 1

S

S∑
i=1

(
σ(〈wT ,xi〉)− σ(〈w∗,xi〉)− ξi

)2

=
1

S

S∑
i=1

ξi

(
− ξi + 2σ(〈wT ,xi〉)− 2σ(〈w∗,xi〉)

)
= − 1

S

S∑
i=1

ξ2
i +

2

S

S∑
i=1

ξi

(
σ(〈wT ,xi〉)− σ(〈w∗,xi〉)

)

By the assumption of ξi being an unbiased noise the second term vanishes
when we compute,

E{(xi,ξi)|i=1,...S}

[
L̃S(hT )− LS(hT )

]
Thus we are led to,

E{(xi,ξi)|i=1,...S}

[
L̃S(hT )−LS(hT )

]
= − 1

m
E{ξi}i=1,...S

[ m∑
i=1

ξ2
i

]
= − 1

m

m∑
i=1

E{ξi}
[
ξ2
i

]
= −Eξ[ξ2]

For T = ‖w∗‖
ε , we invoke the upperbound on L̃S(hT ) from Theorem 2.2 and

we can combine it with the above to say,

E{(xi,ξi)|i=1,...S}

[
LS(hT )

]
≤ Eξ[ξ2] +

L

2− L

(
ε+ (θ2 + 2θ‖w∗‖(L+ 1))

)
And this proves the theorem we wanted.
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B. Proofs of Section 3

B.1. Proof of Theorem 3.1

Proof of Theorem 3.1. Here we analyze the dynamics of the Algorithm
2.

‖wt+1 −w∗‖2 = ‖wt − ηgt −w∗‖2 = ‖wt −w∗‖2 + η2‖gt‖2 − 2η〈wt −w∗,gt〉

Let the training data sampled till the iterate t be St :=
⋃t
i=1 si. We over-

load the notation to also denote by St, the sigma-algebra generated by
the samples seen and the αs till the t-th iteration. Conditioned on St−1

, wt is determined and gt is random and dependent on the choice of st and
{αti , ξti | i = 1, . . . , b}. We shall denote the collection of random variables
{αti | i = 1, . . . , b} as αt. Then taking conditional expectations w.r.t. St−1

of both sides of the above equation we have,

Est,αt

[
‖wt+1 −w∗‖2

∣∣∣∣St−1

]

= Est,αt

[
‖wt −w∗‖2

∣∣∣∣St−1

]
+ 2

η

b
·

b∑
i=1

Exti ,αti

[〈
wt −w∗,1yti>θ∗

(
yti −w>t xti

)
xti

〉∣∣∣∣St−1

]
︸ ︷︷ ︸

Term 1

+ η2Exti ,αti

[
‖gt‖2

∣∣∣∣St−1

]
︸ ︷︷ ︸

Term 2

(B.1)

Now we simplify the last two terms of the RHS above, starting from the
rightmost,
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Term 2 = η2 · E

[
‖gt‖2 | St−1

]

=
η2

b2

b∑
i,j=1

E

[
1yti>θ∗1ytj>θ∗ · (yti −w>t xti) · (ytj −w>t xtj ) · 〈xti ,xtj 〉

∣∣∣∣St−1

]

=
η2

b2

b∑
i,j=1

E

[
1yti>θ∗1ytj>θ∗〈xti ,xtj 〉 ·

[
αtiαtjξtiξtj

+
(

ReLU(w>∗ xti)−w>t xti
)(

ReLU(w>∗ xtj )−w>t xtj
)

+ αtiξti
(

ReLU(w>∗ xtj )−w>t xtj
)

+ αtjξtj
(

ReLU(w>∗ xti)−w>t xti
)]∣∣∣∣St−1

]

≤ η2

b2

b∑
i,j=1

(
E

[
1yti>θ∗1ytj>θ∗ |〈xti ,xtj 〉|

×
[
αtiαtjθ

2
∗ + |ReLU(w>∗ xti)−w>t xti | · |ReLU(w>∗ xtj )−w>t xtj |

+ θ∗

(
αti

∣∣∣ReLU(w>∗ xtj )−w>t xtj

∣∣∣+ αtj

∣∣∣ReLU(w>∗ xti)−w>t xti

∣∣∣) ]∣∣∣∣St−1

])

As events we have for, k = i, j,1ytk>θ∗ ⊂ 1ReLU(w>∗ xtk )>0 = 1w>∗ xtk>0. Hence
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we can simplify as follows,

Term 2

≤ η2

b2

b∑
i,j=1

{
E

[
1w>∗ xti>01w>∗ xtj>0|〈xti ,xtj 〉|

·
[
αtiαtjθ

2
∗ + |ReLU(w>∗ xti)−w>t xti | · |ReLU(w>∗ xtj )−w>t xtj |

+ θ∗

(
αti

∣∣∣ReLU(w>∗ xtj )−w>t xtj

∣∣∣+ αtj

∣∣∣ReLU(w>∗ xti)−w>t xti

∣∣∣) ]∣∣∣∣St−1

]}

≤ η2

b2

b∑
i,j=1

{
θ2
∗ · E

[
1w>∗ xti>01w>∗ xtj>0|〈xti ,xtj 〉| ·

[
(β(xti)1i=j + β(xti)β(xtj )1i 6=j)

]∣∣∣∣St−1

]

+ 1i 6=j · E

[
1w>∗ xti>0‖xti‖ · |w>∗ xti −w>t xti |

∣∣∣∣St−1

]
× E

[
1w>∗ xtj>0‖xtj‖ · |w>∗ xtj −w>t xtj |

∣∣∣∣St−1

]

+ 1i=j · E

[
1w>∗ xti>0‖xti‖2 · |w>∗ xti −w>t xti |2

∣∣∣∣St−1

]

+ θ∗ · 1i 6=j ·
(
E

[
1w>∗ xti>0 · β(xti) · ‖xti‖|w>∗ xti −w>t xti |

∣∣∣∣St−1

]
· E

[
1w>∗ xtj>0‖xtj‖

∣∣∣∣St−1

]
+ (i↔ j)

)

+ 2θ∗ · 1i=j ·
(
E

[
1w>∗ xti>0 · β(xti) · ‖xti‖2|w>∗ xti −w>t xti |

∣∣∣∣St−1

])}
(B.2)

In the last inequality above we have used the facts that (a) for i 6= j, func-
tions of xti are uncorrelated with functions of xtj and (b) that the random
variables αti and αtj are independent of each other and of the mini-batch
choice st and hence they can be replaced by their respective expectations
β(xti) and β(xtj ). And for the first term we need to note the i = j case
that, E[α2

ti ] = β(xti).

Now we can simplify the first term of the RHS of equation B.2 as,
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θ2
∗ · E

[
1yti>θ∗1ytj>θ∗ |〈xti ,xtj 〉| ·

[
(β(xti)1i=j + β(xti)β(xtj )1i 6=j)

]∣∣∣∣St−1

]

≤θ2
∗ · Exti

[
β(xti)‖xti‖21yti>θ∗

∣∣∣∣St−1

]
1i=j

+ θ2
∗ · Exti

[
β(xti)‖xti‖1yti>θ∗

∣∣∣∣St−1

]
· Extj

[
β(xtj )‖xtj‖1ytj>θ∗

∣∣∣∣St−1

]
1i 6=j

≤θ2
∗ · Exti

[
β(xti)‖xti‖21w>∗ xti>0

∣∣∣∣St−1

]
1i=j

+ θ2
∗ · Exti

[
β(xti)‖xti‖1w>∗ xti>0

∣∣∣∣St−1

]
· Extj

[
β(xtj )‖xtj‖1w>∗ xtj>0

∣∣∣∣St−1

]
1i 6=j

Since xti & xtj are identically distributed, we can invoke the constants,
β1 & β2 and under taking total expectations the above is bounded by
θ2
∗(β21i=j + β2

11i 6=j). Using this we have from taking total expectations
on both sides of equation B.2,

E [Term 2] ≤ η2

b2
· θ2
∗(b · β2 + (b2 − b) · β2

1)

+
η2

b2

b∑
i=1

{
E

[
E

[
1w>∗ xti>0‖xti‖2 · |w>∗ xti −w>t xti |2

∣∣∣∣St−1

]]

+ 2θ∗ ·
(
E

[
E

[
1w>∗ xti>0 · β(xti) · ‖xti‖2|w>∗ xti −w>t xti |

∣∣∣∣St−1

]])}

+
η2

b2

b∑
i,j=1,i 6=j

{
E

[
E

[
1w>∗ xti>0‖xti‖ · |w>∗ xti −w>t xti |

∣∣∣∣St−1

]

× E

[
1w>∗ xtj>0‖xtj‖ · |w>∗ xtj −w>t xtj |

∣∣∣∣St−1

]

+ θ∗ ·
(
E

[
E

[
1w>∗ xti>0 · β(xti) · ‖xti‖|w>∗ xti −w>t xti |

∣∣∣∣St−1

]]
· E

[
1w>∗ xtj>0‖xtj‖

]
+ (i↔ j)

)}

In the last term of the RHS above we have used the fact that conditioned
on St−1 a function of (wt,xti) is uncorrelated with a function of xtj for
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i 6= j. Now we further invoke that for k = i, j, conditioned on St−1, wt is
uncorrelated with any function of xtk to simplify the above as,

E [Term 2] ≤ η2

b2
· θ2
∗(b · β2 + (b2 − b) · β2

1)

+
η2

b2

b∑
i=1

{
E
[
‖w∗ −wt‖2

]
· E

[
1w>∗ xti>0‖xti‖4

]

+ 2θ∗ ·
(
E [‖w∗ −wt‖] · E

[
1w>∗ xti>0 · β(xti) · ‖xti‖3

])}

+
η2

b2

b∑
i,j=1,i 6=j

{
E
[
‖w∗ −wt‖2

]
· E

[
1w>∗ xti>0‖xti‖2

]
× E

[
1w>∗ xtj>0‖xtj‖2

]

+ θ∗ ·
(
E [‖w∗ −wt‖] · E

[
1w>∗ xti>0 · β(xti) · ‖xti‖2

]
· E

[
1w>∗ xtj>0‖xtj‖

]
+ (i↔ j)

)}

≤ η2

b
·

{
a4 ·Xt + 2θ∗ · E [β3 · ‖w∗ −wt‖]

}

+
η2

b2
· (b2 − b) ·

{
a2

2 ·Xt + 2θ∗ · E [β2a1 · ‖w∗ −wt‖]

}
+
η2

b2
· θ2
∗(b · β2 + (b2 − b) · β2

1)

(B.3)

In the last line above we have recalled that xti and xtj are identically dis-
tributed and the definitions of a1, a2, a4, β2 &β3 and have defined Xt :=
E
[
‖w∗ −wt‖2

]
. In the second and the fourth terms of the RHS above we

invoke the inequalities,

2θ∗ · E [β3 · ‖w∗ −wt‖] ≤ (θ∗ · β3)2 +Xt

2θ∗ · E [β2a1 · ‖w∗ −wt‖] ≤ (θ∗ · β2 · a1)2 +Xt

Thus we have,
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E [Term 2] ≤
(
a4 + 1

b
+

(a2
2 + 1)(b2 − b)

b2

)
· η2 ·Xt

+

(
(θ∗ · β3)2

b
+

(θ∗ · β2 · a1)2(b2 − b)
b2

+
θ2
∗(b · β2 + (b2 − b) · β2

1)

b2

)
· η2

(B.4)

Term 1 = 2
η

b
·

b∑
i=1

Exti ,αti

[〈
wt −w∗,1yti>θ∗

(
yti −w>t xti

)
xti

〉∣∣∣∣St−1

]

= 2
η

b
·

b∑
i=1

E

[
1yti>θ∗

(
αtiξti + ReLU(w>∗ xti)−w>t xti

)
× (wt −w∗)

>xti

∣∣∣∣St−1

]
Since |ξti | ≤ θ∗ it follows that yti > θ∗ =⇒ w>∗ xti > 0. Hence,

= 2
η

b
·

b∑
i=1

E

[
1yti>θ∗

(
αtiξti + (w∗ −wt)

>xti

)
× (wt −w∗)

>xti

∣∣∣∣St−1

]

= −2
η

b
·

b∑
i=1

E

[
1yti>θ∗(w∗ −wt)

> · xtix>ti · (w∗ −wt)

∣∣∣∣St−1

]

+ 2
η

b
·

b∑
i=1

E

[
1yti>θ∗ · αtiξti · (wt −w∗)

>xti

∣∣∣∣St−1

]

≤ −2
η

b
·

b∑
i=1

λmin

(
E
[
1yti>θ∗xtix

>
ti

∣∣∣∣St−1

])
‖wt −w∗‖2

+ 2
η

b
· θ∗ ·

b∑
i=1

E

[
β(xti) · 1yti>θ∗ · ‖xti‖

∣∣∣∣St−1

]
· ‖wt −w∗‖

=⇒ E [Term 1] ≤ −2ηλ1(θ∗) ·Xt + 2ηθ∗E [β1 · ‖wt −w∗‖]

≤ −2ηλ1(θ∗) ·Xt + η
(
K(θ∗ · β1)2 +

1

K
Xt

)
1θ∗>0 (B.5)

In the last line above we used the following argument to write the upper-
bound in terms of λ1(θ∗) as given in Definition 1. We observe that for

any i, E

[
1yti>θ∗ · ‖xti‖

∣∣∣∣St−1

]
≤ E

[
1w>∗ xti>0 · ‖xti‖

∣∣∣∣St−1

]
. Also note that

yti < θ∗ =⇒ w>∗ xti < 2θ∗. Hence for any test vector v we have,
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v>
(
E
[ (

1yti>θ∗ − 1w>∗ xti>2θ∗

)
xtix

>
ti

∣∣∣∣St−1

])
v ≥ 0 and that in turn im-

plies,

λmin

(
E
[
1yti>θ∗xtix

>
ti

∣∣∣∣St−1

])
≥ λmin

(
E
[
1w>∗ xti>2θ∗xtix

>
ti

∣∣∣∣St−1

])
= λmin

(
E
[
1w>∗ xti>2θ∗xtix

>
ti

])
Case 1 : θ∗ = 0. Taking total expectations on both sides of equation B.1
and setting θ∗ = 0 in the RHS of equations B.3 and B.5 we have,

Xt+1 ≤
(

1− 2ηλ1 +
η2

b
· (a4 + a2

2(b− 1))
)
Xt (B.6)

The above recursion is of the same form as analyzed in Lemma C.1 with

b1 = 2λ1, c1 =
a4+a22(b−1)

b one can see that c1 > 0 and hence convergence can

be ensured if c1 >
b21δ0

(1+δ0)2
(With η = b1

c1(1+δ0)) for any positive δ0

Thus from Lemma C.1 we have that given any ε > 0, δ ∈ (0, 1), XT ≤ ε2 · δ
for,

T = 1+
log X1

ε2δ

log 1
α

with α =
(

1−2ηλ1+
η2

b
·(a4+a2

2(b−1))
)
, η =

2bλ1

(a4 + a2
2(b− 1))(1 + δ0)

for a suitable δ0 > 0 as mentioned above.

Case 2 : θ∗ > 0. Taking total expectations on both sides of equation B.1
and invoking the RHS of equations B.4 and B.5 we have,

Xt+1 ≤
(

1− 2ηλ1(θ∗) +
η

K
+
η2

b
· ((1 + a4) + (1 + a2

2)(b− 1))
)
Xt

+Kθ2
∗ · η · β2

1 + θ2
∗ ·
η2

b
·
(
β2

3 + (β2 · a1)2 · (b− 1) + (β2 + (b− 1) · β2
1)
)

(B.7)

Now we can invoke Lemma C.2 on the above recursion with the following
identifications for the constants therein,

b1 = 2λ1(θ∗)−
1

K
, c1 =

1 + a4 + (1 + a2
2)(b− 1)

b
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c3 = K1θ
2
∗β

2
1 , c2 =

θ2
∗
β1

(
β2

3 + (β2 · a1)2 · (b− 1) + (β2 + (b− 1) · β2
1)
)

Note that since K is so chosen that 2λ1(θ∗) >
1
K , we have b1 > 0 and hence

the conditions of Lemma C.2

Hence the smallest value of Xt (say ε2 · δ for some ε > 0 and δ ∈ (0, 1)) that

the Lemma C.2 guarantees to be attained, say at XT is c3
b1

=
Kθ2∗β

2
1

(2λ1(θ)−1/K)
for

T = O

(
log

[
X1

ε2δ −
( c2
c1

+γ· c3
b1

γ−1

)
])

when we choose η = b1
γc1

for some γ > max

(
b21
c1
,
ε2δ+

c2
c1

ε2δ− c3
b1

)
. Now we can invoke

Markov inequality to get what we set out to prove,

P
[
‖wT −w∗‖2

]
≤ ε2

]
≥ 1− δ.

C. Two recursion estimates as proof tools

Lemma C.1. Given constants η′, b, c1, c2 > 0 suppose one has a sequence
of real numbers ∆1 = C,∆2, .. s.t,

∆t+1 ≤ (1− η′b1 + η′2c1)∆t + η′2c2

Given any ε′ > 0 in the following two cases we have, ∆T ≤ ε′2

• If c2 = 0, C > 0 and for some δ0 > 0 we have, c1 > b21
δ0

(1+δ0)2
,

η′ = b
(1+δ0))c1

and T = O
(

log C
ε′2

)
• If 0 < c2 ≤ c1, ε

′2 ≤ C, b2c1 ≤
(√

ε′ + 1√
ε′

)2
,

η′ = b
c1
· ε′2

(1+ε′2)
and T = O

(
log

(
ε′2(c1−c2)
Cc1−c2ε′2

)
log

(
1− b2

c1
· ε′2
(1+ε′2)2

)) .
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Proof of Lemma C.1. Suppose we define α = 1−η′b+η′2c1 and β = η′2c2.
Then we have by unrolling the recursion,

∆t ≤ α∆t−1 + β ≤ α(α∆t−1 + β) + β ≤ ... ≤ αt−1∆1 + β
1− αt−1

1− α
.

We recall that ∆1 = C to realize that our lemma gets proven if we can find
T s.t,

αT−1C + β
1− αT−1

1− α
= ε′

2

Thus we need to solve the following for T s.t, αT−1 = ε′2(1−α)−β
C(1−α)−β

Case 1 : β = 0 In this case we see that if η > 0 is s.t α ∈ (0, 1) then,

αT−1 =
ε′2

C
=⇒ T = 1 +

log C
ε′2

log 1
α

But α = η′2c1 − η′b + 1 =
(
η′
√
c1 − b

2
√
c1

)2
+
(

1 − b2

4c1

)
Thus α ∈ (0, 1) is

easily ensured by choosing η′ = b1
(1+δ0)c1

for some δ0 > 0 and c1 > b21
δ0

(1+δ0)2

This gives us the first part of the theorem.

Case 2 : β > 0

This time we are solving,

αT−1 =
ε′2(1− α)− β
C(1− α)− β

(C.1)

Towards showing convergence, we want to set η′ such that αt−1 ∈ (0, 1) for
all t. Since ε′2 < C, it is sufficient to require,

β < ε′2(1− α) =⇒ α < 1− β

ε′2
⇔ 1− b2

4c1
+
(
η′
√
c1 −

b

2
√
c1

)2
≤ 1− β

ε′2

⇔ η′2c2

ε′2
≤ b2

4c1
−
(
η′
√
c1 −

b

2
√
c1

)2
⇔ c2

ε′2
≤ b2

4c1η′2
−
(√

c1 −
b

2
√
c1η′

)2
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Set η′ = b
γc1

for some constant γ > 0 to be chosen such that,

c2

ε′2
≤ b2

4c1 · b2

γ2c21

−
(√

c1 −
b

2
√
c1 · b

γc1

)2
=⇒ c2

ε′2
≤ c1

γ2

4
− c1 ·

(γ
2
− 1
)2

=⇒ c2 ≤ ε′2 · c1(γ − 1)

Since c2 ≤ c1 we can choose, γ = 1 + 1
ε′2 and we have αt−1 < 1. Also note

that,

α = 1 + η′2c1 − η′b = 1 +
b2

γ2c2
1

− b2

γc1
= 1− b2

c1
·
(1

γ
− 1

γ2

)
.

= 1− b2

c1
· ε′2

(1 + ε′2)2
= 1− b2

c1
· 1(
ε′ + 1

ε′

)2

And here we recall that the condition that the lemma specifies on the ratio
b2

c1
which ensures that the above equation leads to α > 0

Now in this case we get the given bound on T in the lemma by solving
equation C.1. To see this, note that,

α = 1− b2

c1
· ε′2

(1 + ε′2)2
and β = η′2c2 =

b2

γ2c1
· c2 =

b2c2

c1
· (ε′2)2

(1 + ε′2)2
.

Plugging the above into equation C.1 we get, αT−1 =
ε′2∆(c1−c2)

Cc1−c2ε′2 =⇒ T =

1 +

log

(
ε′2(c1−c2)
Cc1−c2ε′2

)
log

(
1− b2

c1
· ε′2
(1+ε′2)2

) .

Lemma C.2. Suppose we have a sequence of real numbers ∆1,∆2, . . . s.t

∆t+1 ≤ (1− η′b1 + η′2c1)∆t + η′2c2 + η′c3

for some fixed parameters b1, c1, c2, c3 > 0 s.t ∆1 >
c3
b1

and free parameter
η′ > 0. Then for,

ε′2 ∈
(c3

b1
,∆1

)
, η′ =

b1
γc1

, γ > max

{
b21
c1
,

(
ε′2 + c2

c1

ε′2 − c3
b1

)}
> 1
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it follows that ∆T ≤ ε′2 for,

T = O

(
log

[
∆1

ε′2 −
( c2
c1

+γ· c3
b1

γ−1

)
])

Proof of Lemma C.2. Let us define α = 1− η′b1 + η′2c1 and β = η′2c2 +
η′c3. Then by unrolling the recursion we get,

∆t ≤ α∆t−1 +β ≤ α(α∆t−2 +β) +β ≤ ... ≤ αt−1∆1 +β(1 +α+ . . .+αt−2).

Now suppose that the following are true for ε′ as given and for α & β
(evaluated for the range of η′s as specified in the theorem),

Claim 1 : α ∈ (0, 1)

Claim 2 : 0 < ε′2(1− α)− β

We will soon show that the above claims are true. Now if T is s.t we have,

αT−1∆1 + β(1 + α+ . . .+ αT−2) = αT−1∆1 + β · 1− αT−1

1− α
= ε′2

then αT−1 = ε′2(1−α)−β
∆1(1−α)−β . Note that Claim 2 along with with the assump-

tion that ε′2 < ∆1 ensures that the numerator and the denominator of the
fraction in the RHS are both positive. Thus we can solve for T as follows,

=⇒ (T− 1) log

(
1

α

)
= log

[
∆1(1− α)− β
ε′2(1− α)− β

]
=⇒ T = O

(
log

[
∆1

ε′2 −
( c2
c1

+γ· c3
b

γ−1

)
])

In the second equality above we have estimated the expression for T after
substituting η′ = b1

γc1
in the expressions for α and β.

Proof of claim 1 : α ∈ (0, 1). We recall that we have set η′ = b1
γc1

. This

implies that, α = 1− b21
c1
·
(

1
γ−

1
γ2

)
. Hence α > 0 is ensured by the assumption

that γ >
b21
c1

. And α < 1 is ensured by the assumption that γ > 1
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Proof of claim 2 : 0 < ε′2(1− α)− β. We note the following,

− 1

ε′2
·
(
ε′2(1− α)− β

)
= α−

(
1− β

ε′2

)
= 1− b21

4c1
+
(
η′
√
c1 −

b1
2
√
c1

)2
−
(

1− β

ε′2

)
=
η′2c2 + η′c3

ε′2
+
(
η′
√
c1 −

b1
2
√
c1

)2
− b21

4c1

=

(
η′
√
c2 + c3

2
√
c2

)2
− c23

4c2

ε′2
+
(
η′
√
c1 −

b1
2
√
c1

)2
− b21

4c1

= η′2

(
1

ε′2
·
(
√
c2 +

c3

2η′
√
c2

)2

+
(√

c1 −
b1

2η′
√
c1

)2
− 1

η′2

[
b21
4c1

+
1

ε′2

(
c2

3

4c2

)])

Now we substitute η′ = b1
γc1

for the quantities in the expressions inside the
parantheses to get,

− 1

ε′2
·
(
ε′2(1− α)− β

)
= α−

(
1− β

ε′2

)
= η′2

(
1

ε′2
·
(
√
c2 +

γc1c3

2b1
√
c2

)2

+ c1 ·
(γ

2
− 1
)2
− c1

γ2

4
− 1

ε′2
· γ

2c2
1c

2
3

4b21c2

)

= η′2

(
1

ε′2
·
(
√
c2 +

γc1c3

2b1
√
c2

)2

+ c1(1− γ)− 1

ε′2
· γ

2c2
1c

2
3

4b21c2

)

=
η′2

ε′2

(
c2 +

γc1c3

b1
− ε′2c1(γ − 1)

)

=
η′2c1

ε′2

(
(ε′2 +

c2

c1
)− γ ·

(
ε′2 − c3

b1

))

Therefore, − 1
ε′2

(
ε′2(1− α)− β

)
< 0 since by assumption ε′2 > c3

b1
, and γ >(

ε′2 + c2
c1

)
/
(
ε′2 − c3

b1

)
.
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