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Abstract 

The objective of this paper is to forecast the volatility of the West Texas Intermediate (WTI) oil 
returns over the monthly period of January 1900 to June 2024 by utilizing the information content 
of newspapers articles-based indexes shortages for the United States (US). We measure volatility 
as the inter-quantile range by fitting a Bayesian time-varying parameter quantile regression (TVP-
QR) on oil returns. The TVP-QR is also used to estimate skewness, kurtosis, lower- and upper-tail 
risks, and we control for them in our forecasting model along with leverage. Based on the Lasso 
estimator to control for overparameterization, we find that the model with moments outperform 
the benchmark autoregressive model involving 12 lags of volatility. More importantly, the 
performance of the moments-based model improves further when we incorporate the aggregate 
metric of shortages and its sub-indexes, particularly those related to the industry and labor sectors. 
These findings carry significant implications for investors. 
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1. Introduction 

The last two decades have witnessed a process of financialization of the oil market (and the 

commodity sector in general) which, in turn, has resulted in increased market participation of 

institutional investors like hedge funds, pension funds, and insurance companies, to the extent that 

crude oil is now considered a profitable “alternative” investment in the portfolios of financial 

institutions (Bampinas and Panagiotidis, 2015, 2017). Accurate forecasts of oil returns volatility 

are crucial for oil investors, as they serve as essential inputs for investment decisions and portfolio 

management. 

Recently, there has been a notable increase in supply chain disruptions due to so-called “rare 

disaster events” associated with heightened geopolitical and climate risks, and, of course, the 

COVID-19 pandemic. Against this backdrop, and given the importance of determining the future 

path of price volatility from the perspective of oil market players, the objective of this paper is to 

forecast the volatility of the West Texas Intermediate (WTI) oil returns over the monthly period of 

January 1900 to June 2024 by utilizing the information content of newspapers articles-based 

indexes of shortages for the United States (US), as developed by Caldara et al. (2024). It is 

worthwhile noting that, by studying the longest possible sample of data available for shortages, we 

are able to avoid any sample-selection-bias, and track, in a robust manner, the historical effects on 

the forecast ability of the oil market due to events such as major coal mines strikes during the turn 

of the 20th century, two World Wars, the Suez Crisis in 1956, the oil shocks during 1970s, the Iraqi 

invasion of Kuwait in 1990, besides the recent COVID-19 pandemic. 

Theoretically speaking, supply chain disruptions, serving as a proxy for disaster events, besides 

emanating from strikes and price controls, are prone to increase oil returns volatility by 

contributing to jump risk in oil prices, which, in turn, constitutes a large part of the variation in 

crude oil prices (Demirer et al., 2018, 2022a; Bouri et al., 2021). Moreover, supply chain 

constraints have been associated with negative effects on output (Ascari et al., 2024; Burriel et al., 

2024; Diaz et al., 2024; Ginn, 2024), which is likely to translate into higher macroeconomic 

uncertainty (Ludvigson et al., 2021), and enhance the volatility in the oil market through the 

“theory of storage” (Cepni et al., 2022; Gupta and Pierdzioch, 2022; Wen et al., 2024).1 Finally, a 

 
1 As discussed in detail by Fama and French (1987), this theory related to the determination of commodity market 
volatility states that, rising macroeconomic uncertainty causes risk-averse commodity producers to increase holding 
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contraction in output due to the supply restrictions can also adversely impact demand for oil, 

leading to lower trading volumes and, hence, reduced oil returns volatility (Demirer et al., 2020; 

Salisu et al., 2022a).2 In other words, there are multiple theories influencing the impact of shortages 

on oil returns volatility, though the sign of the effect can be ambiguous depending on the strength 

of the channels.   

To econometrically conduct our analysis, realizing the possibility of structural changes over 125 

(1900-2024) years of data, we first employ a Bayesian time-varying parameter quantile regression 

(TVP-QR) model on oil returns, following Pfarrhofer (2022), to obtain robust calculations of the 

corresponding volatility as an inter-quantile range from the conditional quantiles of the univariate 

framework. A further advantage of this approach is that we are also able to compute, from the 

estimated conditional quantiles, additional oil market moments such as, skewness, kurtosis, lower- 

and upper-tail risks, which, along with leverage (i.e., negative only oil returns) have been shown 

to play important roles in forecasting historical monthly estimates of oil returns volatility (Salisu 

et al., 2022b; Gupta et al., 2023).3 Then secondly, we utilized a linear predictive regression model, 

but estimated using the popular least absolute shrinkage and selection operator (Lasso) estimator 

(Tibshirani, 1996), given that our forecasting models, over rolling-windows of 120 months (i.e., 

10 years), can contain between 12 to 21 predictors, associated with lags of volatility, oil market 

moments, and various indexes of shortages. 

To the best of our knowledge, this is the first paper to analyze the role of monthly indexes of 

shortages in forecasting the corresponding volatility of WTI real oil returns based on a machine-

learning approach covering more than a century of historical data. By doing so, we contribute to 

the already existing large literature on forecasting of oil returns volatility by studying the role of 

supply-side constraints, with extant studies having considered a plethora of economic variables by 

 
of physical inventory, as future cash flows are expected to be negatively impacted causing a rise in the convenience 
yield to produce increased commodity-price volatility. 
2 Fall in oil prices can also lead to increase or reduction of oil market volatility through the traditional “leverage effect” 
signalling bad-news (Geman and Shih, 2009), or due to fall in fear among oil consumers (Aboura and Chevallier, 
2013), respectively. 
3 See, for example, Asai et al. (2020), Gkillas et al. (2020), Degiannakis and Filis (2022), Demirer et al. (2022b), Luo 
et al. (2022), who have stressed on the relevance of these moments in the context of realized volatility derived from 
intraday oil price data. 
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utilizing a wide array of econometric frameworks (see, Degiannakis and Filis (2017), Salisu et al. 

(2022c) and Gupta et al. (2024) for detailed reviews of this literature).  

The remainder of this paper is organized as follows: Section 2 describes the data, while Section 3 

lays out the basic details of the forecasting framework and its estimation process. Section 4 

presents the results, with Section 5 concluding the paper. 

2. Data 

As far as the monthly WTI spot oil price is concerned, from which we compute log-returns in 

percentages (i.e., first-differences of the natural logarithms of prices multiplied by 100), the series 

is obtained from the Global Financial Data.4 The log-returns are subsequently fitted to the Bayesian 

TVP-QR model, with detailed specifications provided in the Appendix at the end of the paper.. 

Once we obtain the fitted values oil log-returns (𝑦"!"# ) at the conditional quantiles, i.e., p = 0.01, 

0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, and 0.99, we, along with leverage (LEV) —  a time series 

involving the months that correspond to only negative real raw (i.e., unfitted) oil log-returns, we 

obtain our estimates of lower (LTR)- and upper (UTR)-tail risks, skewness (SKEW) and kurtosis 

(KURT), to forecast our metric of oil log-returns volatility, namely the inter-quantile range (IQR). 

Note that, following Foglia et al. (2025), IQR = 𝑦"#.%#$−𝑦"#.&#$; LTR = 𝑦"#.#'$; UTR = 𝑦"#.%'$; SKEW= 

(𝑦"#.%#$+𝑦"#.&#$−2𝑦"#.'#$)/(𝑦"#.%#$−𝑦"#.&#$), and; KURT =  (𝑦"#.%%$−𝑦"#.#&$)/(𝑦"#.('$−𝑦"#.)'$).  

We now turn our attention to the main predictors, i.e., the shortage indexes, which are basically 

monthly newspapers-based indicator that measures the intensity of shortages of materials, goods, 

labor, and energy in the U.S., with the individual indexes (for energy, food, industry, and labor 

shortages) adding up to the overall index.5 Caldara et al. (2024) outline the construction of these 

indexes using a sample of approximately 20,000 news articles per month, starting in 1900 and 

continuing to the present. This dataset comprises around 25 million articles published in six major 

U.S. newspapers.: The Boston Globe, The Chicago Tribune, The Los Angeles Times, The New 

York Times, The Wall Street Journal, and The Washington Post. Each month during the sample 

period, the shortage indexes track the number of articles discussing shortages in energy, food, 

 
4 See: https://globalfinancialdata.com/. 
5 The data can be publicly downloaded from: https://www.matteoiacoviello.com/shortages.html. 

https://globalfinancialdata.com/
https://www.matteoiacoviello.com/shortages.html
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industry, or labor. Due to the extensive sample period and the broad text corpus analyzed by 

Caldara et al. (2024), these indexes capture a wide range of historical domestic and global events. 

Note that, each month, the index counts articles that discuss shortages in energy, food, industry or 

labor markets normalized by the total number of articles. A higher index value indicates more 

intense shortages. The steps to followed to create the search query is as follows: First, Caldara et 

al. (2024) construct a broader set of articles, which must mention at least one shortage term namely, 

‘shortage’, ‘scarcity’, ‘bottleneck’, or ‘rationing’, along with an economics-related term, such as 

‘economy’, ‘market’, or ‘commerce’. Second, these authors draw a random sample of about 3300 

articles from the above set of articles and extract the 1000 most frequent collocates, words 

appearing within five words of the shortage terms. From these collocates, Caldara et al. (2024) 

select those indicative of shortages in specific sectors. The most common collocates, excluding 

stopwords, involve ‘oil’, ‘water’, ‘war’, ‘time’, ‘coal’, ‘days’, ‘food’, ‘cars’, ‘people’, 

‘government’, ‘million’, ‘labor’, ‘state’, ‘home’, ‘steel’, and ‘fuel’. Generic words which convey 

little information about shortages, such as ‘time’, ‘days’, ‘people’, and ‘government’, are 

subsequently removed. The remaining collocates are grouped into four topics: food, industry, 

labor, and energy. Third, using the lists of shortage terms, economics terms, and topic-specific 

terms, the search query is constructed. An article is included in the shortage index if it meets two 

conditions: (a) a shortage term must appear within five words of a topic-specific term, and; (b) the 

article must contain at least one economics term. If an article meets the first condition for multiple 

topic-specific categories, it is counted once for each, such the total number of shortage articles is 

the sum across categories. This approach gives greater weight to articles discussing multiple types 

of shortages, thus enhancing the informational content of the index.6  

At the time of writing this paper, our sample spans the monthly period from January 1900 to June 

2024. Figure 1 illustrates the WTI log-returns, the corresponding interquartile range (IQR), and 

various predictors, including LTR, UTR, SKEW, KURT, and the shortage indexes. The figure 

clearly demonstrates that the shortage indexes tend to rise significantly during periods of economic 

 
6 It must be pointed out that, the article classification into four topics is further corroborated by an ex-post Latent 
Dirichlet Allocation (LDA) analysis on a sample of articles meeting the inclusion criteria. Specifically, for each article, 
LDA provides a probability vector indicating the degree to which each of the four topics is present, with these 
probabilities allowing Caldara et al. (2024) to validate the topic classification used in the searches, and also enable 
them to track trends in topic prevalence over time.  
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turmoil, such as the World Wars and the oil crises of the 1970s (energy). Notably, they also spiked 

during the COVID-19 pandemic, reaching their highest level in the past 40 years. However, there 

are some other past peaks, especially associated with the World Wars I and II, and the oil crises, 

which are of comparable or larger in size. One must note that, in general, the IQR of oil returns 

also tends to track quite well the fluctuations of the shortages indexes, barring the post-World II 

period until the effective emergence of Organization of Petroleum Exporting Countries (OPEC) in 

the early 1970s, which was characterized by a various types of government controls in the oil 

market. Moreover, given that there is also considerable variation across the shortages sub-indexes, 

it is warranted to utilize these sub-indexes of energy (Shortages_Energy), food (Shortages_Food), 

industry (Shortages_Industry), and labor (Shortages_Labor) in our forecasting experiment, besides 

the overall shortages (Shortages_Aggregate) index. 

 [INSERT FIGURE 1] 

 

3. Forecasting Model and Results 

Our linear predictive regression model is given by: 

𝐼𝑄𝑅"*+ = 𝑎 + 𝑋",𝑏 + ϵ"*+                (1) 

where h denotes the forecast horizon (in months); IQRt+h denotes the average of volatility between 

periods of time t and t + h, with volatility being captured by the inter-quantile range (IQR) obtained 

from the estimated quantiles of the Bayesian TVP-QR under the dhs-TVS prior setting; Xt is the 

vector of our predictors, which vary according to the models under consideration, and are described 

below; ϵ"*+ denotes the usual disturbance term, and; a denote the constant, i.e., the conditional 

mean of IQRt+h, and b is a vector of coefficients in Rn, corresponding to Xt involving n predictors, 

that needs to be estimated. 

As far as our benchmark model (M1) is concerned, Xt includes 12 lags of IQRt, chosen based on 

the Akaike Information Criterion (AIC). Model 2 (M2) builds on M1 by including LEV, SKEW, 

KURT, LTR and UTR, and Model 3 (M3) adds Shortages_Aggregate to the predictors in M2. M4 

extends the covariate set of M2 by including the four sub-indexes of shortages, i.e., 

Shortages_Energy, Shortages_Food, Shortages_Industry, and Shortages_Labor. 
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Given the above set-up, M1, M2, M3, and M4 contain 12, 17, 18 and 21 predictors, and with us 

using a rolling-window prediction structure involving 120 monthly observation each time, we use 

the popular Lasso shrinkage estimator to accommodate for the possibility of overparameterization 

and associated poor out-of-sample forecasting performances. The idea underlying this shrinkage 

estimator is to reduce the dimension of a regression model in a data-driven manner to improve the 

accuracy of predictions derived from the penalized model as follows: 

𝑏3= argmin 4∑ (𝐼𝑄𝑅"*+ − 𝑎 − 𝑋",𝑏)) 	+ 	𝜆 ∑ 8b-8.
-/&

0
"/& :                       (2) 

where T denotes the number of observations used to estimate the forecasting model; λ is a 

shrinkage parameter, and n corresponds to the number of coefficients that are subject to the 

shrinkage process. Hence, the Lasso estimator adds to the standard quadratic loss function in 

ordinary least squares (OLS) estimator a penalty term that increases in the absolute value of the 

coefficients. The Lasso estimator, thereby, shrinks a few co-ordinates towards zero, where the 

effect of this shrinking must be balanced against the resulting effect on the quadratic loss function. 

The final non-zero coefficients indicate the corresponding predictors are significant. 

As far as our forecasting set-up is concerned, we use the first 10 years, i.e., 1900:01 to 1909:12 as 

our in-sample and then roll this window of 120 months forward by leaving out one initial 

observation till 2024:06-h to produce h =1-, 3-, 6-, 12-, and 24-month-ahead forecasts. Note that, 

to prevent any possibility of a look-ahead-bias in the derived values of SKEW, KURT, LTR and 

UTR, the Bayesian TVP-QR was re-estimated across the various quantiles using a rolling-window 

of 120 months as well. 

Table 1 presents the Root Mean Square Errors (RMSEs) of models M1, M2, M3 and M4. As can 

be seen, M2, M3 and M4 outperforms the benchmark M1 model by massive margins, with the 

gains ranging from 39% (at h = 24) to 86% (at h = 6), confirming the findings in the literature (see, 

for example, Asai et al. (2020), Gkillas et al. (2020), Degiannakis and Filis (2022), Demirer et al. 

(2022), Luo et al. (2022)) underlining the importance of moments in forecasting IQRt+h, i.e., oil 

returns volatility across various forecasting horizons, and in the process, justifies our decision to 

control for them when analyzing the predictive role of shortages. The RMSEs across M2, M3 and 

M4 are, however, quite close to each other, though the latter two produce slightly lower RMSEs 

than M2, suggesting the role played by aggregate and sector-specific shortages. Between M3 and 
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M4, the former records slightly higher RMSEs than the latter, suggesting that disaggregated 

information on shortages tend to matter more. Having depicted the role of shortages in producing 

forecasting gain for the inter-quantile range of oil returns, i.e., its volatility, in terms of the RMSEs 

across short-, medium-, and long-run, it is important to determine whether these gains are 

statistically significant or not, even though they might seem marginal relative to the information 

content of the moments. 

[INSERT TABLE 1] 

In this regard, since M2, M3 and M4 nests the benchmark M1, as well as M3 and M4 nests M2, 

we utilize the Clark and West (2007; CW) test of statistical significance of forecasts involving two 

nested competing models. The null hypothesis posits that both models exhibit equal predictive 

performance, whereas the alternative hypothesis suggests that the competing model outperforms 

the benchmark model. Hence, the CW test is a one-sided test. 

As can be seen from the p-values of the CW test reported in Table 2, M2, i.e., the model with the 

moments (LEV, SKEW, KURT, LTR and UTR) outperforms the benchmark model (M1) 

containing only 12 lags of the volatility at the 5% level of significance consistently over 1-, 3-, 6-

, 12-, and 24-month-ahead forecasts of IQRt+h. As outlined above, this finding is in line with the 

extant literature that has highlighted the important predictive role for moments in forecasting oil 

returns volatility. Not surprisingly, M3 and M4 also outperform M1 at the 1% level of significance 

for all the 5 forecast horizons considered, suggesting that moments and shortages, both at the 

aggregate- and sectoral-level, can produce forecasting gains relative the benchmark model 

involving only lags of oil returns volatility. More importantly, both M3 and M4, containing either 

the overall shortages index (Shortages_Aggregate), or the sub-indexes (Shortages_Energy, 

Shortages_Food, Shortages_Industry, and Shortages_Labor) respectively, strongly outperforms 

M2 at the 1% level of significance for h = 1, 3, 6, 12, and 24. Additionally, we employ the Diebold 

and Mariano (1995) test to compare the forecast performance of the two non-nested models, M3 

and M4, assessing whether disaggregated shortage information provides better predictive accuracy 

than the overall index. Accordingly, the null hypothesis states that the forecasts from M3 and M4 

are equally accurate, while the alternative hypothesis posits that M4 outperforms M3.. We find that 

the null is strongly rejected at the 1% level of significance for h = 1, 3, and 6, and at the 5% and 

10% levels of significance respectively, for 12-, and 24-month-ahead forecasts. In other words, we 
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confirm that aggregate and, especially, sub-indexes of shortages have important and predictive 

content for movements of the inter-quantile range, i.e., volatility, of oil returns through the history 

covering 125 years of data, at short-, medium-, and long-term horizons. 

As a complementary exercise in terms of the p-values of the CW-test, to check which sub-index 

of shortages among the four matters relatively more, we carried out our forecasting experiment 

with a modified version of M4, wherein, instead of considering all the sub-indexes together, we 

utilized each of them individually. In other words, we defined M4(I), M4(II), M4(III) and M4(IV) 

as models corresponding to a structure which involves M2 and Shortages_Energy or 

Shortages_Food or Shortages_Industry or Shortages_Labor, respectively. Interestingly, M4(I) fails 

to outperform M2 at all horizons, while M4(II) does better than M2 only at longer horizons of h = 

12 and 24, at the 5% level of significance. The strongest forecasting gains for oil returns volatility 

relative to M2, i.e., the model of moments, comes from M4(III) and M4(IV) at the 1% level of 

significance recorded by the CW test across all forecast horizons. In other words, shortages related 

to industries, where role of oil is undeniable as an input, and the labor market, possibly governing 

aggregate demand in the economy, seems to matter the most among the four types of shortages 

concerned. In other words, shortages in industry and the labor market tends to signal negative 

effects on output and earnings due to reduced economy-wide demand and higher macroeconomic 

uncertainty, which in turn can increase the volatility in the oil market through the “theory of 

storage”. Alternatively, a contraction in output can also lead to lower trading volumes of oil and, 

hence, produce a reduction in future oil returns volatility. In other words, shortages associated with 

industries and the labor market can capture the up- and down-movements, and hence, fluctuations 

(volatility in the oil market) relatively accurately. This is more so, since, as can be seen from Figure 

1, these two types of shortages have been comparatively more frequent with strong peaks. The fact 

that the sub-index shortages associated the energy sector cannot outperform the model for oil 

returns volatility involving its moments, is reflective of the fact that information involving own-

sector-specific shortages are possibly already contained in the moments of its returns (Wen et al., 

2021).      

[INSERT TABLE 2] 
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4. Conclusion 

We forecast the volatility of the WTI oil returns over the monthly period of January 1900 to June 

2024 by utilizing the information content of newspapers articles-based indexes of aggregate and 

sectoral shortages of the US. We measure volatility employing the interquantile range, estimated 

through a Bayesian time-varying parameter quantile regression on oil returns to derive the 

underlying fitted quantiles. This approach also allows us to estimate skewness, kurtosis, lower- 

and upper-tail risks, and incorporate them into our forecasting model alongside leverage.. Based 

on the shrinkage estimation using the Lasso estimator to control for overparameterization, we find 

that the model with moments outperform the benchmark autoregressive model, but the 

performance of the former, in turn, is improved further when we incorporate the role of the 

aggregate metric of shortages, as well as its sub-indexes considered all together, with highest gains 

emanating from supply constraints in the industry and labor sectors.     

Our historical findings hold significant investment implications, as they demonstrate that 

incorporating information on shortages—particularly from the industrial and labor sectors—

enable oil market investors to more accurately forecast oil return volatility. This, in turn, aids in 

the construction of optimal investment portfolios.7 Moreover, from a policy perspective, precise 

prediction of the future path of oil-market volatility by exploiting the informational content of 

shortages using machine learning could aid policymakers to propose and implement fiscal and 

monetary policies ahead of time so as to stabilize strong fluctuations in economic activity 

(originating initially from shortages), which are likely to be exacerbated, given its strong historical 

association with variability in oil prices (van Eyden et al., 2019). 

As part of future research, it would be interesting to extend our analysis to other (energy and non-

energy) commodity markets, possibly using intraday data, though over shorter sample periods, 

given the availability of newspapers-based daily supply bottlenecks indicators of major economies 

 
7 An alternative way to assess the economic implications of our findings is to directly use an investor’s utility function, 
as in Cenesizoglu and Timmermann (2012), to measure the net benefits from utilizing information on 
Shortages_Aggregate in predicting oil market volatility (Model M3), relative to not using the same and relying only 
on moments (Model M2). To this end, in Table A1 in the Appendix, we present the annualized net certainty equivalent 
returns (CER) in % for three levels of increasing risk aversion (γ= 3, 5 and 10). As can be seen, the net CER is always 
positive across h = 1, 3, 6, 12 and 24, suggesting that oil investors are likely to make utility gains, especially at shorter 
horizons and/or higher degree of risk aversion, by utilizing the information content of shortages over and above its 
own moments. 
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around the world as developed by Burriel et al. (2024).8 Moreover, though here we focus only on 

the Lasso approach to forecasting oil returns volatility due to shortages, as part of further work, 

we can indeed investigate other linear and nonlinear machine learning approaches to confirm if 

the performance of forecasting can be improved further.9  

 

 

 

 

 

 

 

 

 
8 Given the observation by Gozgor et al. (2023) that global supply chain constraints spills over to commodity market 
returns, we used the k-th order nonparametric causality-in-quantiles test of Balcilar et al. (2018) to analyse the causal 
effect on the entire conditional distributions of the log-returns and squared log-returns (i.e., volatility) of  various S&P 
GSCI Total Return Indexes associated with the overall commodity market, and various sub-indexes (Precious Metals, 
Energy, Non-Energy, Industrial Metals, Agriculture, Livestock, Softs, and Grains), due to a world metric of supply 
bottlenecks over the daily period of 15th January 2010 to 7th June 2024. The S&P GSCI Total Return Indexes are 
derived from Refinitiv Datastream, while the global index of supply bottlenecks (GSBI) is obtained using the first 
principal component of the indexes of Burriel et al. (2024) for the US, the United Kingdom (UK), Germany, France, 
Italy, Spain and China, available at: https://www.bde.es/wbe/en/areas-actuacion/analisis-e-
investigacion/recursos/indices-de-cuellos-de-botella-en-la-oferta-basados-en-articulos-de-prensa.html. As can be 
seen from the standard normal tests statistics reported in Table A2 in the Appendix of the paper, predictability from 
the GSBI holds over entire conditional distributions (conditional quantiles of 0.10 to 0.90) of both returns and squared 
returns for the overall and sub-sectors of the commodity market, but with a stronger influence on volatility. 
Interestingly, the effect on the returns and volatility of the energy-based commodities stands out relative to the other 
sectors. This serves as a preliminary motivation to investigate this question further using intraday data to forecast 
realized volatility of not only the aggregate commodity market but also its sub-sectors with these supply bottlenecks 
indexes at both country- and global-level, after controlling for realized moments. 
9 It must be realized that the focus here is on a horserace across predictors of oil returns volatility, and in particular 
that of shortages, rather than models. Despite this, based on the suggestion of an anonymous referee, we utilized a 
Long Short-Term Memory model, which is a type of Recurrent Neural Network (RNN), to re-conduct our forecasting 
exercise. As with the Lasso, we found that the model with shortages outperformed the benchmark, and the one with 
moments in a statistically significant manner, thus ensuring the robustness of our findings. However, more importantly, 
the Lasso was found to statistically outperform the LSTM model across the various forecasting models, hence 
suggesting the superiority of the former. Complete details of these results are available upon request from the authors.   

https://www.bde.es/wbe/en/areas-actuacion/analisis-e-investigacion/recursos/indices-de-cuellos-de-botella-en-la-oferta-basados-en-articulos-de-prensa.html
https://www.bde.es/wbe/en/areas-actuacion/analisis-e-investigacion/recursos/indices-de-cuellos-de-botella-en-la-oferta-basados-en-articulos-de-prensa.html


12 
 

References 

Aboura, S., and Chevallier, J. (2013). Leverage vs. Feedback: Which effect drives the oil market? 
Finance Research Letters, 10(3), 131-141. 

Asai, M. Gupta, R., and McAleer, M. (2020). Forecasting volatility and co-volatility of crude oil 
and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks. International 
Journal of Forecasting, 36(3), 933-948. 

Ascari, G., Bonam, D., and Smadu, A. (2024). Global supply chain pressures, inflation, and 
implications for monetary policy. Journal of International Money and Finance, 142(C), 
103029. 

Balcilar, M., Gupta R., Nguyen D.K., and Wohar, M.E. (2018). Causal effects of the United States 
and Japan on Pacific-Rim stock markets: nonparametric quantile causality approach. Applied 
Economics, 50(53), 5712-5727. 

Bampinas, G., and Panagiotidis, T. (2015). On the relationship between oil and gold before 
andafter financial crisis: Linear, nonlinear and time-varying causality testing. Studies 
inNonlinear Dynamics & Econometrics, 19(5), 657-668. 

Bampinas, G., and Panagiotidis, T. (2017). Oil and stock markets before and after financial crises: 
A local Gaussian correlation approach. The Journal of Futures Markets, 37(12), 1179-1204. 

Bouri, E., Gupta, R., Pierdzioch, C., and Salis, A.A. (2021). El Niño and Forecastability of Oil-
Price Realized Volatility. Theoretical and Applied Climatology, 144(3-4), 1173-1180. 

Burriel, P., Kataryniuk, I., Moreno Pérez, C., and Viani, F. (2024). A New Supply Bottlenecks 
Index Based On Newspaper Data. International Journal of Central Banking, 20(2), 17-69. 

Caldara, D., Iacoviello, M., and Yu, D. (2024). Measuring Shortages since 1900. Working Paper: 
https://www.matteoiacoviello.com/research_files/SHORTAGE_PAPER.pdf. 

Cepni, O., Gupta, R., Pienaar, D., and Pierdzioch, C. (2022). Forecasting the realized variance of 
oil-price returns using machine learning: Is there a role for U.S. state-level uncertainty? Energy 
Economics, 114(C), 106229. 

Cenesizoglu, T., and Timmermann, S. (2012). Do return prediction models add economic value? 
Journal of Banking and Finance, 36(11), 2974-2987. 

Clark, T.D., and West, K.D. (2007). Approximately normal tests for equal predictive accuracy in 
nested models. Journal of Econometrics, 138(1), 291-311. 

Degiannakis, S., and Filis, G. (2017). Forecasting oil price realized volatility using information  
 channels from other asset classes. Journal of International Money and Finance, 76(C), 28-

49. 
Degiannakis, S., and Filis, G. (2022). Oil price volatility forecasts: What do investors need to 

know? Journal of International Money and Finance, 123(C), 102594. 
Demirer, R., Gkillas, K., Gupta, R., and Pierdzioch, C. (2022b). Risk aversion and the 

predictability of crude oil market volatility: A forecasting experiment with random forests. 
Journal of the Operational Research Society, 73(8), 1755-1767. 

Demirer, R., Gupta, R., Nel, J., and Pierdzioch, C. (2022a). Effect of rare disaster risks on crude 
oil: evidence from El Niño from over 145 years of data. Theoretical and Applied Climatology, 
147(1-2), 691-699. 

Demirer, R., Gupta, R., Pierdzioch, C., and Shahzad, S.J.H. (2020). The predictive power of oil 
price shocks on realized volatility of oil: A note. Resources Policy, 69(C), 101856. 

Demirer, R., Gupta, R., Suleman, M.T., and Wohar, M.E. (2018). Time-varying rare disaster risks, 
oil returns and volatility. Energy Economics, 75(C), 239-248. 

https://www.matteoiacoviello.com/research_files/SHORTAGE_PAPER.pdf


13 
 

Diaz, E.M., Cunado, J., and de Gracia, F.P. (2023). Commodity price shocks, supply chain 
disruptions and US inflation. Finance Research Letters, 58, 104495. 

Diebold, F.X., and Mariano, R.S. (1995). Comparing Predictive Accuracy. Journal of Business and 
Economic Statistics, 13(3), 253-263. 

Fama, E.F., and French, K.R. (1987). Commodity futures prices: Some evidence on forecast power, 
premiums, and the theory of storage. Journal of Business, 60(1), 55-73. 

Foglia, M., Plakandaras, V., Gupta, R., and Ji, Q. (2024). Long-span multi-layer spillovers between 
moments of advanced equity markets: The role of climate risks. Research in International 
Business and Finance, 74(C), 102667. 

Geman, H., and Shih, Y.F. (2009). Modeling Commodity Prices under the CEV Model. Journal of 
Alternative Investments, 11(3), 65-84 

Ginn, W. (2024). Global supply chain disruptions and financial conditions. Economics Letters, 
239, 111739. 

Gkillas, K., Gupta, R., and Pierdzioch, C. (2020). Forecasting realized oil-price volatility: The role 
of financial stress and asymmetric loss. Journal of International Money and Finance, 
104(C), 102137. 

Gozgor, G., Khalfaoui., R., and Yarovaya, L. (2023). Global supply chain pressure and commodity 
 markets: Evidence from multiple wavelet and quantile connectedness analyses. Finance 
 Research Letters, 54(C), 103791. 
Gupta, R., Ji, Q., Pierdzioch, C., and Plakandaras, V. (2023). Forecasting the conditional 

distribution of realized volatility of oil price returns: The role of skewness over 1859 to 2023. 
Finance Research Letters, 58(Part C), 194501. 

Gupta, R., Nielsen, J., and Pierdzioch, C. (2024). Stock market bubbles and the realized volatility 
of oil price returns. Energy Economics, 132(C), 107432. 

Gupta, R., and Pierdzioch, C. (2022). Forecasting the realized variance of oil-price returns: a 
disaggregated analysis of the role of uncertainty and geopolitical risk. Environmental Science 
and Pollution Research, 29(29), 52070-52082. 

Ludvigson, S.C., Ma, S., and Ng, S. (2021). Uncertainty and business cycles: Exogenous impulse 
or endogenous response? American Economic Journal: Macroeconomics, 13(4), 369-410. 

Luo, J., Demirer, R., Gupta, R., and Ji, Q. (2022). Forecasting oil and gold volatilities with 
sentiment indicators under structural breaks. Energy Economics, 105(C), 105751. 

Pfarrhofer, M. (2022). Modeling tail risks of inflation using unobserved component quantile 
 regressions. Journal of Economic Dynamics and Control, 143(C), 104493. 
Salisu, A.A., Gupta, R., Bouri, E., and Ji, Q. (2022c). Mixed-frequency forecasting of crude oil 

volatility based on the information content of global economic conditions. Journal of 
Forecasting 41(1), 134-157. 

Salisu, A.A., Gupta, R., and Demirer, R. (2022c). Global financial cycle and the predictability of 
oil market volatility: Evidence from a GARCH-MIDAS model. Energy Economics, 
108(C), 105934. 

Salisu, A.A., Pierdzioch, C., and Gupta, R. (2022b). Oil Tail Risks and the Forecastability of the 
Realized Variance of Oil-Price: Evidence from Over 150 Years of Data. Finance Research 
Letters, 46(Part B), 102378. 

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal 
Statistical Society, Series B, 58(1), 267-288. 



14 
 

van Eyden R., Difeto, M., Gupta, R., and Wohar, M.E. (2019). Oil price volatility and economic 
growth: Evidence from advanced economies using more than a century of data. Applied 
Energy, 233(C), 612-621. 

Wen, D., He, M., Wang, Y., and Zhang, Y. (2024). Forecasting crude oil market volatility: A 
comprehensive look at uncertainty variables. International Journal of Forecasting, 40(3), 
1022-1041. 

Wen, J., Zhao, X-X., and Chang, C-P. (2021). The impact of extreme events on energy price risk. 
Energy Economics, 99(C), 105308. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

FIGURES AND TABLES: 

Figure 1. Data Plots 

 

 

Note: IQR: Inter-Quantile Range; LEV: Leverage; SKEW: Skewness; KURT: Kurtosis; LTR: Lower Tail Risk; UTR: 
Upper Tail Risk; Shortages correspond to the various indexes of aggregate shortages, which is the sum of shortages 
due to energy, food, industry and labor sectors. 

 

 

Table 1. Root Mean Square Errors (RMSEs) 
Horizon (h) 

Models 1 3 6 12 24 
M1 2.8751 10.8909 25.0669 19.7698 20.7861 
M2  0.6379 1.8267 3.4784 6.7759 12.8031 
M3 0.6375 1.8252 3.4743 6.7608 12.7835 
M4 0.6374 1.8249 3.4735 6.7595 12.7821 

Note: M1 is the benchmark model with 12 lags of the inter-quantile range of oil log-returns; M2 is M1+oil log-returns 
moments (leverage, skewness, kurtosis, lower- and upper-tail risks); M3 is M2+aggregate shortages index; M4 is M2+ 
all four sub-indexes of energy, food, industry and labor.   
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Table 2. Forecast comparison tests p-values 
Horizon (h) 

Models 1 3 6 12 24 
M2 versus M1 0.0031 0.0274 0.0278 0.0175 0.0388 
M3 versus M1 0.0010 0.0012 0.0235 0.0025 0.0000 
M4 versus M1 0.0010 0.0012 0.0234 0.0025 0.0000 
M3 versus M2 0.0005 0.0005 0.0005 0.0001 0.0001 
M4 versus M2 0.0003 0.0002 0.0002 0.0001 0.0001 
M4 versus M3 0.0043 0.0008 0.0001 0.0128 0.0924 

M4(I) versus M2 0.9644 0.9978 0.9900 0.4730 0.7615 
M4(II) versus M2 0.1486 0.2635 0.6085 0.0439 0.0443 
M4(III) versus M2 0.0002 0.0001 0.0001 0.0000 0.0001 
M4(IV) versus M2 0.0007 0.0005 0.0003 0.0001 0.0001 

Note: The entries in all rows, except M4 versus M3, are p-values of the Clark and West (2007) test of forecast 
comparison across two nested models, with the null being forecast equality, and the alternative is that the rival model 
outperforms the benchmark. For M4 versus M3, we report the corresponding p-values for the Diebold and Mariano 
(1995) test of forecast comparison across two non-nested models, with the same null and alternative hypotheses as 
above. M1 is the benchmark model with 12 lags of the inter-quantile range of oil log-returns; M2 is M1+oil log-returns 
moments (leverage, skewness, kurtosis, lower- and upper-tail risks); M3 is M2+aggregate shortages index; M4 is M2+ 
all four sub-indexes of energy, food, industry and labor; M4(I) is M2+sub-index of energy shortages; M4(II) is 
M2+sub-index of food shortages; M4(III) is M2+sub-index of industry shortages, and; M4(IV) is M2+sub-index of 
labor shortages.   

 

 

 

 


