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eral linear models as well as time series models is considered. We es-

timate the regression coefficients by using local linear M-estimation.

For these estimators, weak Bahadur representations are obtained and

are used to construct simultaneous confidence bands. For practical

implementation, we propose a bootstrap based method to circum-

vent the slow logarithmic convergence of the theoretical simultaneous

bands. Our results substantially generalize and unify the treatments

for several time-varying regression and auto-regression models. The

performance for ARCH and GARCH models is studied in simulations

and a few real-life applications of our study are presented through

analysis of some popular financial datasets.
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1. Introduction. Time-varying dynamical systems have been studied extensively in

the literature of statistics, economics and related fields. For stochastic processes observed

over a long time horizon, stationarity is often an over-simplified assumption that ignores

systematic deviations of parameters from constancy. For example, in the context of finan-

cial datasets, empirical evidence shows that external factors such as war, terrorist attacks,

economic crisis, some political event etc. introduce such parameter inconstancy. As Bai [3]

points out, ‘failure to take into account parameter changes, given their presence, may lead

to incorrect policy implications and predictions’. Thus functional estimation of unknown

parameter curves using time-varying models has become an important research topic re-

cently. In this paper, we propose a general setting for simultaneous inference of local linear

M-estimators in semi-parametric time-varying models. Our formulation is general enough to

allow unifying time-varying models from the usual linear regression, generalized regression

and several auto-regression type models together. Before discussing our new contributions

in this paper, we provide a brief overview of some previous works in these areas.

In the regression context, time-varying models are discussed over the past two decades

to describe non-constant relationships between the response and the predictors; see, for

instance, Fan and Zhang [19], Fan and Zhang [20], Hoover et al. [27], Huang, Wu and

Zhou [28], Lin and Ying [37], Ramsay and Silverman [45], Zhang, Lee and Song [58] among

others. Consider the following two regression models

Model I: yi = xTi θi + ei, Model II: yi = xTi θ0 + ei, i = 1, . . . , n,

where xi ∈ Rd (i = 1, . . . , n) are the covariates, T is the transpose, θ0 and θi = θ(i/n) are

the regression coefficients. Here, θ0 is a constant parameter and θ : [0, 1]→ Rd is a smooth

function. Estimation of θ(·) has been considered by Hoover et al. [27], Cai [9]) and Zhou

and Wu [63] among others. Hypothesis testing is widely used to choose between model I

and model II, see, for instance, Zhang and Wu [59], Zhang and Wu [60], Chow [11], Brown,

Durbin and Evans [7], Nabeya and Tanaka [41], Leybourne and McCabe [34], Nyblom [42],

Ploberger, Krämer and Kontrus [44], Andrews [2] and Lin and Teräsvirta [35]. Zhou and

Wu [63] discussed obtaining simultaneous confidence bands (SCB) in model I, i.e. with

additive errors. However their treatment is heavily based on the closed-form solution and

it does not extend to processes defined by a more general recursion. Our framework allows

us to perform inference on a much larger class of regression settings. Moreover, it can also

accommodate generalized linear models as shown in Section 5. Little has been known for

time-varying models in this direction previously.
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The results from time-varying linear regression can be naturally extended to time-varying

AR, MA or ARMA processes. However, such an extension is not obvious for conditional

heteroscedastic (CH) models. These are difficult to estimate but also often more useful in

analyzing and predicting financial datasets. Since Engle [17] introduced the classical ARCH

model and Bollerslev [6] extended it to a more general GARCH model, these have remained

primary tools for analyzing and forecasting certain trends for stock market datasets. As

the market is vulnerable to frequent changes, non-uniformity across time is a natural phe-

nomenon. The necessity of extending these classical models to a set-up where the parame-

ters can change across time has been pointed out in several references; for example Stărică

and Granger [49], Engle and Rangel [18] and Fryzlewicz, Sapatinas and Subba Rao [24].

Towards time-varying parameter models in the CH setting, numerous works discussed the

CUSUM-type procedure, for instance, Kim, Cho and Lee [30] for testing change in param-

eters of GARCH(1,1). Kulperger et al. [33] studied the high moment partial sum process

based on residuals and applied it to residual CUSUM tests in GARCH models. Interested

readers can find some more changepoint detection results in the context of CH models in

James Chu [29], Chen and Gupta [10], Lin et al. [36], Kokoszka et al. [31] or Andreou and

Ghysels [1].

Historically in the analysis of financial datasets, the common practice to account for the

time-varying nature of the parameter curves was to transfer a stationary tool/method in

some ad hoc way. For example, in Mikosch and Stărică [39], the authors analyzed S&P500

data from 1953-1990 and suggested that time-varying parameters are more suitable due

to such a long time-horizon. They re-estimated the parameters for every block of 100

sample points and to account for the abrupt fluctuation of the coefficients, they generated

re-estimates of parameters for samples of size 100, 200, . . . . This treatment suffers from

different degree of reliability of the estimators at different parts of the time horizon. There

are examples outside the analysis of economic datasets, where similar approach of splitting

the time-horizon has been adapted to fit CH type models. For example, in Giacometti

et al. [25], the authors analyzed Italian mortality rates from 1960-2003 using an AR(1)-

ARCH(1) model and observed abrupt behavior of yearwise coefficients. We capture all these

models together and provide significant improvements over such heuristic treatments. For

the convenience of the readers, we summarize our contributions in this paper below after

a brief literature overview.

A time-varying framework and a pointwise curve estimation using M-estimators for
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locally stationary ARCH models was provided by Dahlhaus and Subba Rao [15]. Since

then, while several pointwise approaches were discussed in the tvARMA and tvARCH

case (cf. Dahlhaus and Polonik [13], Dahlhaus and Subba Rao [15], Fryzlewicz, Sapati-

nas and Subba Rao [24]), pointwise theoretical results for estimation in tvGARCH pro-

cesses were discussed in Rohan and Ramanathan [48] and Rohan [47] for GARCH(1,1)

and GARCH(p,q) models. Specifically, for the ARMA-GARCH type models there has been

some attempts for the pointwise inference and thus calls for a natural although signifi-

cantly more challenging extension to simultaneous inference. On the other hand, coming

to the regime of time-varying generalized linear models, even pointwise inference remained

largely untouched, almost surprisingly so, since time-varying generalized regression arise

very naturally in econometrics and a large number of other scientific fields. For example,

autoregressive logistic models are commonly used in conjunction with longitudinal data.

For medical research and biology, see de Vries et al. [16], Kowsar et al. [32] etc; for clima-

tology, see Guanche, Mı́nguez and Méndez [26]; for risk management analysis see Taylor

and Yu [51] etc. Time-varying logit models also have wide applications in recommenda-

tion systems, environmental economics, public economics, transportation economics etc.

We believe this apparent gap of an inferential framework for these models is due to the

inherent correlation between possibly endogenous covariates and the possibly non-linear

link function.

Our contributions in this paper is multi-directional. We provide a unifying framework

that binds linear regression models, generalized regression models and many popularly used

auto-regressive models including CH type processes where simultaneous inference for each

of these classes are probably important contributions on their own. In fact, our framework

is significantly different from that introduced in [15] and draws its general motivation from

the unification perspective. Through an introduction of a smoothness class in subsection

2.4 and Assumptions 2.1 or Assumptions 2.2, we provided our results for this new frame-

work. Also, it is important to note that these assumptions are written to accommodate this

vast generality and can be simplified without any essential difficulty for the subclasses. To

the best of our knowledge, this is the first such attempt in unifying time-varying models

from diverse fields in one single thread. Even without the particular contribution of con-

structing simultaneous inference or more generally the theme of time-varying models, the

fact that our framework binds such a large class of models can be exploited in other areas

of statistics literature. As an instance, generalizing from our smoothness class here defined
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using negative log-likelihood, one of the authors is currently exploiting this framework in

the light of density power divergence measures (Basu et al. [4]) to extend robust statistics

literature towards time-series models for both time-constant and time-varying parameters.

We use weak Bahadur-type representations, a Gaussian approximation theorem from

Zhou and Wu [62] and extreme value Gaussian theory to obtain SCBs for contrasts of

the parameter curves. These intervals provide a generalization from testing parameter

constancy to testing any particular parametric form such as linear, quadratic, exponential

etc. A very general recursion model (cf. (2.1)) is considered and asymptotic results for a

local linear M-estimator are provided. To deal with bias expansions, we use the theory

about derivative processes which was recently formalized in Dahlhaus, Richter and Wu

[14].

It is important to highlight the additional technical challenges involved here because

of the vast generality of the model from the simplistic linear model in [63] and how it is

solved with novel techniques. In general, Bahadur representations are important for the

asymptotic analysis of estimators by approximating them by linear forms. The Bahadur-

type representation obtained in subsection 3.2 may be of independent interest due to its

general set-up and can itself be thought as a new contribution to the literature of locally

stationary processes. Moreover, the technical tools to obtain this Bahadur representation

result heavily depends on a series of lemmas (cf. Lemma 7.1-Lemma 7.12) that derives some

concentration inequalities and chaining results. These carefully exploit the local stationarity

and other smoothness class assumptions and thus is significantly different from the much

simpler tools used in [63].

A limitation for the theoretical confidence intervals reported in Section 3 is that it only

covers (bn, 1− bn) fraction of the entire time-spectrum where bn denotes the bandwidth for

estimation. Note that, these apparently incomplete confidence bands are not new in the

literature and it appears in Wu and Zhao [56] or [63] for much simpler models such as

yi = µ(i/n) + ei or yi = xTi θ(i/n) + ei

respectively. The authors therein made the intervals asymptotically comprehensive by

choosing bn → 0. However, for practical implementation often cross-validated or other

optimally chosen bandwidth turns out to be rather large, for example, the same for the

linear model case as reported in [63] turns out to be bn = 0.25. Constructing a confidence

band for such a high bandwidth covering only (bn, 1 − bn) fraction of the time-spectrum

would simply render too restrictive and practically meaningless. This problem is much
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more severe for the recursively defined CH type models. Even for much easily estimable

time-constant cases the GARCH type of processes we usually require large bandwidth to

ensure reasonable estimation quality. It is difficult to go beyond (bn, 1 − bn) for the theo-

retical bands since the Gaussian extreme value theory used for the same do not allow us

to consider the two ends of the time-spectrum. However, we solve this important issue by

observing that our bootstrap step reported in subsection 4.4 uses a Gaussian approxima-

tion (cf. Theorem 3.3) that works for all the partial sums of a mean-0 process. This allows

for extreme small or large values of time, i.e. t ∈ (0, bn) ∪ (1 − bn, 1) and thus it can be

extended to make the SCBs truly comprehensive. We discuss this boundary consideration

in Section 4.

The assumptions in this paper while building the geberal framework are intentionally

kept general to suit a large class of models. Later we also simplified some of these for spe-

cific prominent subclasses in Section 5. From an application point of view, the tvGARCH

processes are probably the most important and sophisticated subclass and it has almost

become standard to analyze log-return data using small order GARCH because of its su-

perlative forecasting ability. It was important for us to explore optimality of the conditions

present in the literature for tvGARCH processes. Using some matrix arguments and new

tools exploiting the recursive equation for GARCH processes we obtained that the existence

of 4 + δ moments of the error process for some small δ > 0 suffices for the construction

of the simultaneous bands which significantly improves the 8 th moment assumption for

usually simpler pointwise inference as presented in [47] or [48]. Such a significant relaxation

of course comes at the cost of positing much more refined assumptions (cf. Assumption

7.16, 7.17) which we postpone to appendix for the sake of clear exposition.

The rest of the article is organized as follows. In Section 2, we introduce our framework,

the functional dependence measure, the assumptions and the M-estimators of the param-

eter curves. Section 3 consists of the results about the weak Bahadur representation and

the SCBs of the related contrasts. Section 4 is dedicated to practical issues which arise

when using the SCBs like estimation of the dispersion matrix of the estimator, bandwidth

selection and a wild Bootstrap procedure to overcome the slow logarithmic convergence

from the theoretical SCB. Moreover, this section also covers the boundary consideration

to extend the theoretical but approximate SCB to the entirety of time-spectrum. We dis-

cuss some examples to show the general applicability of our framework in Section 5. Some

summarized simulation studies and real data applications can be found in Section 6. We
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defer all the proofs to supplement.

2. Model assumptions and estimators.

2.1. The model. For some known family of real-valued (possibly stochastic) functions

Fi, we consider the model with time-varying parameter curve

(2.1) Yi = Fi(Xi, θ(i/n)), i = 1, . . . , n,

where n is the number of observations, Xi = (Xij)j∈N and Yi represent a possibly infinite-

dimensional covariate process and the real-valued response process respectively. Here θ :

[0, 1]→ Θ ⊂ RdΘ is a time varying parameter curve. To cover important time series models,

we assume that not Xi itself but some truncated version Xc
i = (Xc

ij)j∈N is observed. Let ζi,

i ∈ Z be independent and identically distributed random variables and Fi := (. . . , ζi−1, ζi).

We assume the following form for Yi and Xi

(2.2) Xi = Gi(Fi), Yi = Hi(Fi), i = 1, . . . , n,

where Gi(·) = (Gij(·))j∈N and Hi(·) are measurable functions.

It is worth noting that we do not necessarily need the representation (2.1) as it is only

needed in an optional condition (2.13). Some more general formulations may still fit in the

setting of this paper. There are some important special cases of (2.1):

(a) Time-varying time series models: Assume that, (εi)i∈Z are i.i.d., choose ζi = εi and

Xi = (Yi−1, Yi−2, . . .). Then (2.1) translates to

Yi = F ((Yi−1, Yi−2, . . .), θ(i/n), εi),

which for instance covers tvARMA, tvARCH, tvGARCH processes. In this context,

since only Y1, . . . , Yn are observed, one usually has Xc
i = (Yi−1, . . . , Y1, 0, 0, . . .).

(b) The generalized linear model: By using Fi(x, θ) = gi(x
Tθ), where gi : R → R serves

as a (probably stochastic) link function, (2.1) has the form

Yi = gi(X
T
i θ(i/n)).

An important example is logistic regression which is assumed to be time-varying in

the following sense:

Yi ∼ Bin(m,πi), log
( πi

1− πi
)

= XT
i θ(i/n),

where Xi could possibly be lagged values of Yi as well.

In either case, our goal is to estimate θ(·) from the observations Zci = (Yi, X
c
i ), i = 1, . . . , n.
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2.2. The estimator. In this paper, we focus on local M-estimation: Let K(·) ∈ K, where

K is the family of non-negative symmetric kernels with support [−1, 1] which are contin-

uously differentiable on [−1, 1] such that
∫ 1
−1 |K

′(u)|2du > 0. Let `(z, θ) be an objective

function. A usual choice is the negative log conditional (Gaussian) likelihood of the model

which leads to a minimum distance estimator. Define the local linear likelihood function

(2.3) Lcn,bn(t, θ, θ′) := (nbn)−1
n∑
i=1

Kbn(t− i/n)`(Zci , θ + θ′(i/n− t)),

where Kbn(·) := K(·/bn). Let Θ′ := [−R,R]k with some R > 0. A local linear estimator of

θ(t), θ′(t) is given by

(2.4) (θ̂bn(t), θ̂′bn(t)) = argmin
(θ,θ′)∈Θ×Θ′

Lcn,bn(t, θ, θ′), t ∈ [0, 1].

In Examples 5.1 and 5.2, we discuss applications and choices of ` for general recursively

defined locally stationary time series models and tvGARCH processes. In Example 5.3, we

consider a time-varying logistic regression model with a Binomial likelihood function `.

2.3. The functional dependence measure. To state the structure of dependence we use

throughout the paper, we introduce a functional dependence measure on the underlying

process using the idea of coupling as done in Wu [53]. Assume that a stationary process Zi

has mean 0, Zi ∈ Lq, q > 0 and it admits the causal representation

Zi = J(ζi, ζi−1, . . .).(2.5)

Suppose that (ζ∗i )i∈Z is an independent copy of (ζi)i∈Z. For some random variable Z, let

‖Z‖q := (E|Z|q)1/q denote the Lq-norm of Z. For j ≥ 0, define the functional dependence

measure

δZq (i) = ‖Zi − Z∗i ‖q,(2.6)

where F∗i is a coupled version of Fi with ζ0 in Fi replaced by ζ∗0 ,

F∗ = (ζi, ζi−1, · · · , ζ1, ζ
∗
0 , ζ−1, ζ−2, · · · ),(2.7)

and Z∗i = J(F∗i ). Note that δZq (i) measures the dependence of Zi on ζ0 in terms of the qth

moment. The tail cumulative dependence measure ∆Z
q (j) for j ≥ 0 is defined as

∆Z
q (j) =

∞∑
i=j

δZq (i).(2.8)
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2.4. The class H(My,Mx, χ, C̄). To prove uniform convergence of Lcn,bn and its deriva-

tives w.r.t. θ, we require ` to be Lipschitz continuous in direction of θ and to grow at

most polynomially in direction of z = (y, x), where the degree is measured by integers

My,Mx ≥ 1. We will therefore ask ` and its derivatives to be in the class H(My,Mx, χ, C̄)

which is defined as follows: Let χ = (χi)i=1,2,... be a sequence of nonnegative real numbers

with |χ|1 :=
∑∞

i=1 χi <∞, and C̄ > 0 be some constant. Define |x|χ,1 :=
∑∞

i=1 χi|xi|. Put

χ̂ = (1, χ), and for nonnegative integers dx, dy, define the ‘polynomial rest’

Rdy ,dx(z) :=

dy∑
k=0

dx∑
l=0

k+l≤max{dx,dy}

|y|k|x|lχ,1.

A function g : R× RN ×Θ→ R is in H(My,Mx, χ, C̄) if supθ∈Θ |g(0, θ)| ≤ C̄,

sup
z

sup
θ 6=θ′

|g(z, θ)− g(z, θ′)|
|θ − θ′|1RMy ,Mx(z)

≤ C̄

and

sup
θ

sup
z 6=z′

|g(z, θ)− g(z′, θ)|
|z − z′|χ̂,1 · {RMy−1,Mx−1(z) +RMy−1,Mx−1(z′)}

≤ C̄.

If g is vector- or matrix-valued, g ∈ H(My,Mx, χ, C̄) means that every component of g is in

H(My,Mx, χ, C̄). In Section 5, we will see that a large class of log Gaussian likelihoods and

the usual logistic regression likelihood belongs to H(My,Mx, χ, C̄). In case of time series

it often holds that M = Mx = My, which allows to use a simplified version RMy ,Mx(z) =

1 + |z|Mχ̂,1.

2.5. Assumptions. In this paper, we prove weak Bahadur representations and construct

simultaneous confidence bands for θ̂bn(·) and θ̂′bn(·). Clearly, more smoothness assumptions

on θ(·) and ` are needed to prove results for the latter one which is postponed to Assumption

2.2.

In the following, we will assume the existence of measurable functions H,G such that

Ỹi(t) = H(t,Fi) ∈ R and X̃i(t) = G(t,Fi) ∈ RN are well-defined for all t ∈ [0, 1]. These

processes will serve as stationary approximations of Yi, Xi if |i/n − t| � 1. For brevity,

define Z̃i(t) := (Ỹi(t), X̃i(t)
T)T and Zi := (Yi, X

T
i )T. The constant r ≥ 2 in the following

assumption is connected to the number of moments that are assumed for Zi (cf. (A5) and

(A7)), while γ > 1 is a measure of decay of the dependence which is present in the model.
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Assumption 2.1. Suppose that for some r ≥ 2 and some γ > 1,

(A1) (Smoothness in θ-direction) ` is twice continuously differentiable w.r.t. θ. It holds

that `,∇θ`,∇2
θ` ∈ H(My,Mx, χ, C̄) for some My,Mx ≥ 1, C̄ > 0 and χ = (χi)i=1,2,...

with χi = O(i−(1+γ)).

(A2) (Assumptions on unknown parameter curve) Θ is compact and for all t ∈ [0, 1], θ(t)

lies in the interior of Θ. Each component of θ(·) is in C3[0, 1].

(A3) (Correct model specification) For all t ∈ [0, 1], the function θ 7→ L(t, θ) := E`(Z̃0(t), θ)

is uniquely minimized by θ(t).

(A4) The eigenvalues of the matrices

V (t) = E∇2
θ`(Z̃0(t), θ(t)),(2.9)

I(t) = E[∇θ`(Z̃0(t), θ(t)) · ∇θ`(Z̃0(t), θ(t))T],(2.10)

Λ(t) =
∑
j∈Z

E[∇θ`(Z̃0(t), θ(t)) · ∇θ`(Z̃j(t), θ(t))T],(2.11)

are bounded from below by some λ0 > 0, uniformly in t.

(A5) (Stationary approximation) Let M = max{Mx,My}. There exist CA, CB, D > 0 such

that for all n ∈ N, i = 1, . . . , n, t, t′ ∈ [0, 1], j ∈ N:

max{‖Yi‖rM , ‖Ỹ0(t)‖rM , ‖Xij‖rM , ‖X̃0j(t)‖rM} ≤ D,

and

‖Xij − X̃ij(i/n)‖rM ≤ CAn−1, ‖X̃0j(t)− X̃0j(t
′)‖rM ≤ CB|t− t′|,

and either

(2.12) ‖Yi − Ỹi(i/n)‖rM ≤ CAn−1, ‖Ỹ0(t)− Ỹ0(t′)‖rM ≤ CB|t− t′|

or (with χ from (A1))

(2.13) sup
x 6=x′

‖Fi(x, θ)− Fi(x′, θ)‖My

|x− x′|χ,1
<∞.

(A6) (Negligibility of the truncation) For all i, j: |Xc
ij | ≤ |Xij |. For 1 ≤ j ≤ i, Xij = Xc

ij.

(A7) (Weak dependence) It holds that supt∈[0,1] δ
X̃(t)
rM (k) = O(k−(1+γ)) and either (2.13) or

supt∈[0,1] δ
Ỹ (t)
rM (k) = O(k−(1+γ)) holds.
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Note that (A2), (A3) and (A4) are typical assumptions in M-estimation theory to guarantee

convergence of the estimator towards the correct parameter and to use Taylor expansions

and bias expansions. The condition on L in (A3) directly implies 0 = ∇θL(t, θ(t)) =

E∇θ`(Z̃0(t), θ(t)) under the imposed smoothness conditions, which will be used in the

proofs. In many special cases in time series analysis (cf. Example 5.1), it may even oc-

cur that ∇θ`(Z̃0(t), θ(t)) is a martingale difference sequence or at least an uncorrelated

sequence. In these cases, Λ(t) = I(t) such that the verification of (A4) is simplified.

Asking the objective function ` to be twice continuously differentiable w.r.t. θ as done

in (A1) is a typical condition and is needed to use Taylor expansions. We additionally ask

` and its derivatives w.r.t. θ to be in H(My,Mx, χ, C̃). This is exploited in two ways: It

allows quantification of the order of dependence of `(Yi, Xi, θ) based on the dependence

of Xi, Yi, and it allows to deal with local stationarity by replacing Xi, Yi by its stationary

counterparts. In this context, we especially need a decay condition on the coefficients xi

which appear in `. This decay is quantified by the sequence χ = (χi)i∈N. We use this rate

to show that the observed truncated values Xc
i are negligible compared to Xi and that

the overall dependence of `(Yi, Xi, θ) has the same order as the original sequences Yi, Xi

(cf. (A7)). Lastly, condition (A1) implicitly implies continuity of the matrices appearing in

(A4) such that it is enough to show pointwise positive definiteness.

To eliminate bias terms, we state (A5) which asks for smoothness of the processes Xi, Yi

in time direction and the existence of a stationary approximation. Here we consider two

different cases. The case (2.13) is dedicated to general linear models which may have

discretely distributed observations Yi and thus would not fulfill a condition like (2.12) for

rM ≥ 2. To prove central limits theorems and to use strong Gaussian approximations,

we need a weak dependence assumption which is given in (A7). Let us emphasize the fact

that all conditions besides (A5) are formulated for the stationary approximation Z̃i(t) =

(Ỹi(t), X̃i(t)) which in general allows easier verification and the possibility to use earlier

results obtained for stationary settings.

To prove a typical second-order bias decomposition for θ̂′bn(t), we need that the stationary

approximations Z̃i(t) are differentiable w.r.t. t. The concept of derivative processes in

the context of locally stationary processes was originally introduced in Dahlhaus [12] and

Dahlhaus and Subba Rao [15] and formalized in Dahlhaus, Richter and Wu [14] especially

for processes with Markov structure.

Assumption 2.2 (Differentiability assumptions). Suppose that there exist M ′y,M
′
x ≥ 2



12 S. KARMAKAR ET AL.

such that M ′ := max{M ′x,M ′y} fufills M ′ ≤ rM and

(B1) θ(·) ∈ C4[0, 1].

(B2) ∇2
θ`(z, θ) is continuously differentiable. It holds that ∇3

θ` ∈ H(M ′y,M
′
x, χ, C̄), and

for all l ∈ N0, ∂zl∇2
θ` ∈ H(M ′y − 1,M ′x − 1, χ′, C̄χ̂l) with some absolutely summable

sequence χ′ = (χ′i)i=1,2,....

(B3) t 7→ Z̃0(t) is continuously differentiable and supt∈[0,1] supj∈N0
‖∂tZ̃0j(t)‖M ′ ≤ D,

sup
j∈N0

sup
t6=t′

‖∂tZ̃0j(t)− ∂tZ̃0j(t
′)‖M ′

|t− t′|
≤ CB.

Note that the condition ∂xl∇2
θ` ∈ H(M ′y,M

′
x, χ

′, C̄χl) asks ∇2
θ` to be dependent on xl with

a factor of at most χl which is a stronger condition than the corresponding condition on

∇2
θ` in (A1).

A slightly different set of assumptions (Assumption 7.16, 7.17) which is specifically de-

signed for conditional heteroscedastic models, leading to weaker moment assumptions, is

postponed to the appendix. All theoretical results in this paper also hold under this set of

assumptions.

3. Main results.

3.1. Consistency and asymptotic normality. For l ≥ 0, define

µK,l :=

∫
K(x)xldx, σ2

K,l :=

∫
K(x)2xldx.

Under weaker assumptions than those needed for the proof of SCBs, we can obtain pointwise

consistency and asymptotic normality of the estimators θ̂bn and θ̂′bn . For matrices A,B, let

A⊗B denote the Kronecker product and

(3.1) A⊗k = A⊗ . . .⊗A

denote the k-fold Kronecker product.

Theorem 3.1. Fix t ∈ (0, 1). Let Assumption 2.1 hold with r = 2. Assume that nbn →
∞, bn → 0.

(i) (Consistency) It holds that θ̂bn(t)− θ(t) = oP(1).

If additionally nb3n →∞, it holds that θ̂′bn(t)− θ′(t) = oP(1).
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Assume that supj∈N0
supt∈[0,1] ‖Z0j(t)‖(2+a)M <∞ for some a > 0.

(ii) If nb7n → 0, then

(3.2)
√
nbn(θ̂bn(t)− θ(t)− b2n

µK,2
2

θ′′(t))
d→ N(0, σ2

K,0 · V (t)−1I(t)V (t)−1).

(iii) If additionally, Assumption 2.2 is fulfilled and nb9n → 0, then( √
nbn(θ̂bn(t)− θ(t)− b2n

µK,2
2 θ′′(t))√

nb3n(θ̂′bn(t)− θ′(t)− b2n
µK,4
2µK,2

bias(t))

)
d→ N

(
0, σ2

K,0

(
1 0

0 µ−2
K,2

)
⊗ {V (t)−1I(t)V (t)−1}

)
,(3.3)

where bias(t) = 1
3θ

(3)(t) + V (t)−1E[∂t∇2
θ`(Z̃0(t), θ(t))]θ′′(t).

The results hold true if instead of Assumption 2.1, 2.2, Assumption 7.16, 7.17 with some

r > 2 is assumed.

Remark The condition supj∈N0
‖Z̃0j(t)‖(2+a)M <∞ is needed to prove a Lindeberg-type

condition. As pointed out in the proof of Theorem 2.9 in Dahlhaus, Richter and Wu [14],

it can be dropped if instead supj∈N0
‖ supt∈[0,1] |Z̃0j(t)|‖2M <∞ is assumed.

About local constant estimation If instead of (2.3) and (2.4), a local constant estima-

tion via

Lcn,bn,const(t, θ) := (nbn)−1
n∑
i=1

Kbn(i/n− t)`(Zci , θ)

and θ̂bn,const(t) = argminθ∈Θ L
c
n,bn

(t, θ) is used, one needs more smoothness assumptions

on the underlying process to obtain a similar result as in (3.2). If for instance twice differ-

entiability of t 7→ Z̃0(t) is assumed, one obtains√
nbn(θ̂bn(t)− θ(t)− b2n

µK,2
2

V (t)−1E[∂2
t∇θ`(Z̃0(t), θ)

∣∣
θ=θ(t)

])

d→ N(0, σ2
K,0 · V (t)−1I(t)V (t)−1).

Note that the bias term changes significantly.

3.2. A weak Bahadur representation for θ̂bn, θ̂′bn. In the following, we obtain a weak

Bahadur representation of θ̂bn and θ̂′bn which will be used to construct simultaneous confi-

dence bands. The first part of Theorem 3.2(i) shows that θ̂bn(t)−θ(t) can be approximated
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by the expression V (t)−1∇θLcn,bn(t, θ(t), θ′(t)) as expected due to a standard Taylor argu-

ment. The second part of Theorem 3.2(i) deals with approximating this term by a weighted

sum of t-free terms, namely

(nbn)−1
n∑
i=1

Kbn(i/n− t)hi, hi := ∇θ`(Z̃i(i/n), θ(i/n)),

which is necessary to apply some earlier results from Zhou and Wu [63]. Similar results are

obtained for θ̂′bn in Theorem 3.2(ii). Let Tn := [bn, 1− bn]. For some vector or matrix x, let

|x| := |x|2 denote its Euclidean or Frobenius norm, respectively.

Theorem 3.2 (Weak Bahadur representation of θ̂bn , θ̂′bn). Let βn = (nbn)−1/2b
−1/2
n log(n)1/2

and put

τ (j)
n = (βn + bn)((nbn)−1/2 log(n) + b1+j

n ), j = 1, 2.

Let Assumption 2.1 be fulfilled with some r > 2.

(i) It holds that

sup
t∈Tn

∣∣∣V (t) ·
{
θ̂bn(t)− θ(t)

}
−∇θLcn,bn(t, θ(t), θ′(t))

∣∣∣ = OP(τ (1)
n ),(3.4)

sup
t∈Tn

∣∣∇θLcn,bn(t, θ(t), θ′(t))− b2n
µK,2

2
V (t)θ′′(t)(3.5)

−(nbn)−1
n∑
i=1

Kbn(i/n− t)hi
∣∣ = OP(βnb

2
n + b3n + (nbn)−1).

(ii) If additionally Assumption 2.2 is fulfilled, then

sup
t∈Tn

∣∣∣µK,2V (t) · bn
{
θ̂′bn(t)− θ′(t)

}
− b−1

n ∇θ′Lcn,bn(t, θ(t), θ′(t))
∣∣∣ = OP(τ (2)

n ),(3.6)

sup
t∈Tn

∣∣b−1
n ∇θ′Lcn,bn(t, θ(t), θ′(t))− b3n

µK,4
2

V (t)bias(t)(3.7)

−(nbn)−1
n∑
i=1

Kbn(i/n− t)(i/n− t)
bn

hi
∣∣ = OP(βnb

2
n + b4n + (nbn)−1).

Remark The results hold true if instead of Assumption 2.1, 2.2, Assumption 7.16, 7.17 is

assumed.
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3.3. Simultaneous confidence bands for θ̂bn, θ̂′bn. Based on the weak Bahadur result, we

use results from Wu and Zhou [57] to obtain a Gaussian analogue of

1

nbn

n∑
i=1

Kbn(t− i/n)CTV (t)−1∇θ`(Z̃i(i/n), θ(i/n)) =:
1

nbn

n∑
i=1

Kbn(t− i/n)h̃i(i/n)

for some C ∈ Rs×k.
For the following results, let us assume that there exists some measurable function

H̃(·, ·) such that for each t ∈ [0, 1], h̃i(t) = H̃(t,Fi) ∈ Rs is well-defined. Put Sh̃(i) :=∑i
j=1 h̃j(j/n). For a positive semidefinite matrix A with eigendecomposition A = QDQT,

where Q is orthonormal and D is a diagonal matrix, define A1/2 = QD1/2QT, where D1/2

is the elementwise root of D.

Theorem 3.3 (Theorem 1 and Corollary 2 from Wu and Zhou [57]). Assume that for

each component j = 1, . . . , s:

(a) supt∈[0,1] ‖h̃0(t)j‖2+ς <∞,

(b) supt6=t′∈[0,1] ‖h̃0(t)j − h̃0(t′)j‖2/|t− t′| <∞,

(c) supt∈[0,1] δ
h̃(t)j
2+ς (k) = O(k−(γ+1)) with some γ ≥ 1.

for some ς ≤ 2. Then on a richer probability space, there are i.i.d. V1, V2, . . . ∼ N(0, Is×s)

and a process S0
h̃
(i) =

∑i
j=1 Σh̃(j/n)Vj such that (Sh̃(i))i=1,...,n

d
= (S0

h̃
(i))i=1,...,n and

max
i=1,...,n

|Sh̃(i)− S0
h̃
(i)| = OP(πn).

where

(3.8) πn = n(2ς+2γ+γς)/(2ς+8γ+4γς) log(n)2γ(3+ς)/(ς+4γ+2γς)

and

Σh̃(t) =
(∑
j∈Z

E[h̃0(t)h̃j(t)
T]
)1/2

.

Based on this theorem, we are able to prove the following asymptotic statement for simul-

taneous confidence bands for θ(·):

Theorem 3.4 (Simultaneous confidence bands for θ(·) and θ′(·)). Let C be a fixed

k × s matrix with rank s ≤ k. Define θ̂bn,C(t) := CTθ̂bn(t), θ̂′bn,C(t) := CTθ̂′bn(t) and

θC(t) := CTθ(t), AC(t) := V (t)−1C, Σ2
C(t) := AT

C(t)Λ(t)AC(t).
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Let Assumption 2.1 be fulfilled with r = 2 + ς for some ς > 0. Assume that, for αexp =

(2γ + ςγ − ς)/(ς + 4γ + 2γς), log(n)
(
bnn

αexp
)−1 → 0.

(i) If nb7n log(n)→ 0, then

lim
n→∞

P
(√nbn
σK,0

sup
t∈Tn

∣∣∣Σ−1
C (t)

{
θ̂bn,C(t)− θC(t)− b2n

µK,2
2

θ′′C(t)
}∣∣∣

−BK(m∗) ≤ u√
2 log(m∗)

)
= exp(−2 exp(−u)),(3.9)

(ii) If additionally, Assumption 2.2 is fulfilled and nb9n log(n) → 0, then with K̂(x) =

K(x)x,

lim
n→∞

P
(√nb3nµK,2

σK,2
sup
t∈Tn

∣∣∣Σ−1
C (t)

{
θ̂′bn,C(t)− θ′C(t)− b2n

µK̂,4
2µK̂,2

CTbias(t)
}∣∣∣

−BK̂(m∗) ≤ u√
2 log(m∗)

)
= exp(−2 exp(−u)),(3.10)

where in both cases Tn = [bn, 1− bn], m∗ = 1/bn and

(3.11) BK(m∗) =
√

2 log(m∗) +
log(CK) + (s/2− 1/2) log(log(m∗))− log(2)√

2 log(m∗)
,

with

CK =

{∫ 1
−1 |K

′(u)|2du/σ2
K,0π

}1/2

Γ(s/2)
.

Remark The results hold true with arbitrarily large γ > 0 if instead of Assumption 2.1,

2.2, Assumption 7.16, 7.17 is assumed.

Remark The conditions on bn are fulfilled for bandwidths bn = n−α, where α ∈ (0, 1)

satisfies:

(i) 1/7 < α < αexp in case (i),

(ii) 1/9 < α < αexp in case (ii).

If γ > 2ς/(2 + ς), then the bandwidths bn = cn−1/5 are covered.

Note that for practical use of the SCB in (3.9) and (3.10), one needs to estimate the

bias term, choose a proper bandwidth bn and estimate ΣC(t). Furthermore, the theoretical

SCB only has slow logarithmic convergence, thus one requires huge n to achieve the desired

coverage probability. To tackle these type of problems, we discuss practical issues in the

next Section 4.
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4. Implementational issues. In this section, we discuss some issues which arise by

implementing the procedure from Theorem 3.4. We focus on estimation of θ̂bn and opti-

mization of the corresponding SCBs; the results for θ̂′bn can be obtained accordingly.

4.1. Bias correction. There are several possible ways to eliminate the bias term in

(3.9). A natural way is to estimate θ′′(t) by using a local quadratic estimation routine

with some bandwidth b′n ≥ bn. However the estimation of θ′′(t) may be unstable due to the

convergence condition nb5n →∞ which may be hard to realize together with nb7n log(n)→ 0

from Theorem 3.4 in practice. Here instead we propose a bias correction via the following

jack-knife method: We define

θ̃bn(t) := 2θ̂bn/
√

2(t)− θ̂bn(t).(4.1)

Since the weak Bahadur representation from Theorem 3.2(i) holds both for θ̂bn/
√

2 and

θ̂bn(t), we obtain

sup
t∈Tn

∣∣V (t) · {θ̃bn(t)− θ(t)} − (nbn)−1
n∑
i=1

K̃bn(i/n− t)hi
∣∣ = OP(τ (1)

n + βnb
2
n + b3n + (nbn)−1),

where K̃(x) := 2
√

2K(
√

2x) − K(x). Note that the bias term of order b2n is eliminated

by construction. This shows that Theorem 3.4(i) still holds true for θ̃bn(·) with kernel K

replaced by the fourth-order kernel K̃ and with no bias term of order b2n.

4.2. Estimation of the covariance matrix ΣC(t). In this subsection, we discuss the es-

timation of Σ2
C(t) (namely, V (t) and Λ(t)) since this term is generally unknown but arises

in the SCB in Theorem 3.4. In Examples 5.1, 5.2 and 5.3 it can be seen that in many time

series and independent regression models where the objective function ` is given by a (con-

ditional) maximum likelihood approach, it holds that Λ(t) = I(t) due to the fact that the

∇θ`(Z̃i(t), θ(t)), i ∈ Z are uncorrelated. In the case that the objective function ` coincides

with the true log conditional likelihood, one has even V (t) = I(t). As it can be seen in

Examples 5.1 and 5.2, even in the misspecified case it may often hold that V (t) = c0 · I(t)

with some constant c0 > 0 only dependent on properties of the i.i.d. innovations ζ0 which

can be calculated by further assumptions on ζ0.

Therefore, it may often hold that Σ2
C(t) = CTV (t)−1Λ(t)V (t)−1C obeys one of the two

equalities

Σ2
C(t) = CTV (t)−1I(t)V (t)−1C, or(4.2)

Σ2
C(t) = CTI(t)−1C/c0 with some known constant c0.(4.3)
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We therefore focus on estimation of V (t) and I(t). We propose the (boundary-corrected)

estimators

V̂bn(t) := (nbnµ̂K,0,bn(t))−1
n∑
i=1

Kbn(i/n− t)∇2
θ`(Z

c
i , θ̂bn(t) + (i/n− t)θ̂′bn(t)),(4.4)

Îbn(t) := (nbnµ̂K,0,bn(t))−1
n∑
i=1

Kbn(i/n− t)∇θ`(Zci , θ̂bn(t) + (i/n− t)θ̂′bn(t))(4.5)

×∇θ`(Zci , θ̂bn(t) + (i/n− t)θ̂′bn(t))T,

where µ̂K,0,bn(t) :=
∫ (1−t)/bn
−t/bn K(x)dx. The convergence of these estimators is given in the

next Proposition. Note that the following Proposition also holds if θ̂′bn in (4.4) and (4.5) is

replaced by 0.

Proposition 4.1. Let Assumption 2.1 hold with some r > 2. Let (βn+bn) log(n)2 → 0.

Then

(i) supt∈(0,1) |V̂bn(t)− V (t)| = OP((log n)−1).

(ii) If r > 4, then supt∈(0,1) |Îbn(t)− I(t)| = OP((log n)−1).

This shows uniform consistency of V̂bn(·), Îbn(·) if (βn + bn) log(n)2 → 0. Note that in

(ii), we need more moments to discuss ∇θ` · ∇θ`T ∈ H(2My, 2Mx, χ,
¯̄C) ( ¯̄C > 0). In many

special cases, this may be relaxed.

In either case (4.2) or (4.3), we define Σ̂C(t) by replacing V (t), I(t) by the corresponding

estimators V̂bn(t), Îbn(t).

If no relations are known between V (t) and Λ(t), one has to use a more general approach

to estimate Λ(t). We do not want to focus on this situation since the applications we have

in mind (cf. Section 5) are kept by (4.2) or (4.3). Therefore, we only adopt a method from

Zhou and Wu [63] to estimate Λ(t). Define D̃i := ∇θ`(Zci , θ̂bn(i/n)), Q̃i :=
∑m

j=−m D̃i+j

and Φ̃i := Q̃iQ̃
T
i /(2m+ 1). Let τn be some bandwidth, and put γn := τn + (m+ 1)/n. For

t ∈ In := [γn, 1− γn] ⊂ (0, 1), define

Λ̃(t) :=

∑n
i=1Kτn(i/n− t)Φ̃i∑n
i=1Kτn(i/n− t)

.

Note that Λ̃(t) is always positive semi-definite. We have the following convergence result.
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Theorem 4.2. Suppose that Assumption 2.1 holds with r = 4. Assume that ωn = o(1),

where ωn = n1/4√m log(n){(nbn)−1/2 log(n) + b2n}. Then with ρ = 1,

sup
t∈In
|Λ̃(t)− Λ(t)| = OP

(
ωn +

√
m

nτ2
n

+m−1 + τρn

)
.

If additionally Assumption 2.2(B1),(B3) is fulfilled with M ′ = 2M and ∇θ` is continuously

differentiable with ∂zj∇θ` ∈ H(My−1,Mx−1, χ′, χ̂jC̄) for all j ∈ N0, then one can choose

ρ = 2.

Let us shortly discuss the choices of τn, bn and m in the above setting. For two positive

sequences (rn), (sn) we write rn � sn if rn/sn and sn/rn are bounded for all n large enough.

If one chooses m � nq1 , bn � n−q2 and τn = n−q3 with some q1, q2, q3 > 0, we obtain from

Theorem 4.2 that supt∈In |Λ̃(t) − Λ(t)| = OP(n−ν) = OP((log n)−1) with some ν > 0 if

q1/2 + 1/4 < min{2q2, 1/2 − q2/2} and q1 < 1 − 2q3. In the special case q2 = 1/5, this

reduces to the condition q1 < min{3/10, 1− 2q3}.

4.3. Bandwidth selection. Based on the asymptotic result (3.2) in Theorem 3.1 under

Assumption 2.1, the MSE global optimal bandwidth choice reads

(4.6) b̂n = n−1/5 ·
(σ2

K,0

∫ 1
0 tr(V (t)−1I(t)V (t)−1)dt

µ2
K,2

∫ 1
0 |θ′′(t)|2dt

)1/5
.

We therefore adapt a model-based cross validation method from Richter and Dahlhaus [46],

which was shown to work even if the underlying parameter curve is only Hölder continuous

and ∇θ`(Z̃i(t), θ(t)) is uncorrelated. Here, we reformulate this selection procedure for the

local linear setting. For j = 1, . . . , n, define the leave-one-out local linear likelihood

(4.7) Lcn,bn,−j(t, θ, θ
′) := (nbn)−1

n∑
i=1,i 6=j

Kbn(i/n− t)`(Zci , θ + (i/n− t)θ′)

and the corresponding leave-one-out estimator

(θ̂bn,−j(t), θ̂
′
bn,−j(t)) = argmin

θ∈Θ,θ′∈Θ′
Lcn,bn,−j(t, θ, θ

′).

The bandwidth b̂CVn is chosen via minimizing

(4.8) CV (bn) := n−1
n∑
i=1

`(Zci , θ̂bn,−i(i/n))w(i/n),
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where w(·) is some weight function to exclude boundary effects. A possible choice is w(·) :=

1[γ0,1−γ0] with some fixed γ0 > 0. Note that it is important to use the modified local linear

approach due to the different bias terms (cf. Remark 3.1). In Richter and Dahlhaus [46], it

was shown that the local constant version of this procedure selects asymptotically optimal

bandwidths and works even if a model misspecification is present, i.e. if the function ` leads

to estimators θ̂bn which are not consistent. This motivates that a similar behavior should

hold for the local constant version.

4.4. Bootstrap method. The SCB for θC(t) obtained in Theorem 3.4 provides a slow

logarithmic rate of convergence to the Gumbel distribution. Thus, for even moderately

large values of sample size n, it is practically infeasible to use such a theoretical SCB as

the coverage will possibly be lower than the specified nominal level. We circumvent this

convergence issue in this subsection by proposing a wild bootstrap algorithm. Recall the

jackknife-based bias corrected estimator of θ̃bn from (4.1). Let θ̃C(t) = CT θ̃bn(t). We have

the following proposition as the key idea behind the bootstrap method.

Proposition 4.3. Suppose that Assumption 2.1 holds with r = 2 + ς. Furthermore,

assume that bn = O(n−κ) with 1/7 < κ < (2γ + ςγ − ς)/(ς + 4γ + 2γς). Then on a richer

probability space, there are i.i.d. V1, V2, . . . ,∼ N(0, Ids) such that

sup
t∈Tn
|θ̂bn,C(t)− θC(t)− ΣC(t)Q

(0)
bn

(t)| = OP
( n−ν√

nbn log(n)1/2

)
,(4.9)

where ν = min{(2γ + ςγ − ς)/(2ς + 8γ + 4γς)− κ/2, 7κ/2− 1/2, κ/2} > 0 and

Q
(0)
bn

(t) =
1

nbn

n∑
i=1

ViKbn(i/n− t).

The proof of Proposition 4.3 is immediate from the approximation rates (7.68), (7.69),

(7.70) and (7.72) which, ignoring the log(n) terms, are of the form cn · (nbn)−1/2 log(n)−1/2

with

cn ∈ {
(
bnn

(2γ+ςγ−ς)/(ς+4γ+2γς)
)−1/2

, b1/2n , bn, (nb
7
n)1/2, (nb2n)−1/2}.

One can interpret (4.9) in the sense that ΣC(t)Q
(0)
bn

(t) approximates the stochastic variation

in θ̂bn,C(t) − θC(t) uniformly over t ∈ Tn and thus it can be used as margin of errors to

construct confidence bands, provided one can consistently estimate ΣC(t).
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4.4.1. Boundary considerations. The results shown above only hold for t ∈ Tn. For

inference of some time series models like ARCH or GARCH, large bandwidths are needed

to get sufficiently smooth and stable estimators even for a large number of observations.

It seems hard to generalize the SCB result Theorem 3.4 to the whole interval t ∈ (0, 1).

However it is possible to generalize the bootstrap procedure which may be more important

in practice:

Proposition 4.4. Suppose that the conditions on κ, ν of Proposition 4.3 hold. Then

on a richer probability space, there exist i.i.d. V1, V2, . . . ,∼ N(0, Ids) such that

sup
t∈(0,1)

|N (0)
bn

(t) ·
{
θ̂bn,C(t)− θC(t)

}
+ b2nN

(1)
bn

(t)θ′′C(t)− ΣC(t)Wbn(t)| = OP
( n−ν√

nbn log(n)1/2

)
,

where

(4.10) Wbn(t) = Q
(0)
bn

(t)−
µ̂K,1,bn(t)

µ̂K,2,bn(t)
·Q(1)

bn
(t)

and N
(j)
bn

(t) :=
µ̂K,j,bn (t)µ̂K,j+2,bn (t)−µ̂K,j+1,bn (t)2

µ̂K,2,bn (t) , µ̂K,j,bn(t) :=
∫ (1−t)/bn
−t/bn K(x)xjdx,

Q
(j)
bn

(t) =
1

nbn

n∑
i=1

ViKbn(i/n− t)
[
(i/n− t)b−1

n

]j
, (j = 0, 1).

Note that the additional term in (4.10) reduces to Q
(0)
bn

(t) for t ∈ Tn.

To eliminate the bias inside t ∈ Tn it is still recommended to use the jack-knife estimator

θ̃C(t). From Proposition 4.4 we obtain

sup
t∈(0,1)

∣∣N (0)
bn

(t)N
(0)

bn/
√

2
(t)
{
θ̃C(t)− θ(t)

}
+ b2n

{
N

(1)

bn/
√

2
(t)N

(0)
bn

(t)−N (1)
bn

(t)N
(0)

bn/
√

2
(t)
}
θ′′C(t)

−ΣC(t)W
(debias)
bn

(t)
∣∣ = OP

( n−ν√
nbn log(n)1/2

)
,(4.11)

where

(4.12)

W
(debias)
bn

(t) = 2N
(0)
bn

(t)·
[
Q

(0)

bn/
√

2
(t)−

µ̂K,1,bn/
√

2(t)

µ̂K,2,bn/
√

2(t)
Q

(1)

bn/
√

2
(t)
]
−N (0)

bn/
√

2
(t)·
[
Q

(0)
bn

(t)−
µ̂K,1,bn(t)

µ̂K,2,bn(t)
Q

(1)
bn

(t)
]
.

The additional factor N
(0)
bn

(t)N
(0)

bn/
√

2
(t) in (4.11) serves as an indicator how near t is to

the boundary. For t ∈ Tn, this factor is 1 while for t ∈ (0, 1)\Tn, N
(0)
bn

(t)N
(0)

bn/
√

2
(t) may
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be very small, inducing large diameters of the band near the boundary. Note that the

bias correction of the jack-knife estimator θ̃C(t) may be useless in t ∈ (0, 1)\Tn since

N
(1)

bn/
√

2
(t)N

(0)
bn

(t) 6= N
(1)
bn

(t)N
(0)

bn/
√

2
(t). However it is necessary from a theoretical point of

view to use the same estimator for the whole region (0, 1) to get a uniform band based on

the approximation (4.11).

In practice, the result (4.11) can be used as follows: We can create a large number of

i.i.d. copies W
(boot,debias)
bn

(t) of W
(debias)
bn

(t) by creating i.i.d. copies

(4.13)

Q
(0),boot
bn

(t) =
1

nbn

n∑
i=1

V ∗i Kbn(i/n− t), Q
(1),boot
bn

1

nbn

n∑
i=1

V ∗i Kbn(i/n− t) · (i/n− t)b−1
n

where V ∗1 , V
∗

2 , . . . , are i.i.d.N(0, Is×s)-distributed random variables, and computingW
(boot,debias)
bn

(t)

according to (4.12). Quantiles of W
(debias)
bn

(t) then can be determined by using the cor-

responding empirical quantile of the copies W
(boot,debias)
bn

(t). Then one can use (4.11) to

construct the confidence band for θC(t). For convenience of the readers, we provide a sum-

marized algorithm of the above discussion.

Algorithm for constructing SCBs of θC(t):

• Compute the appropriate bandwidth bn based on the cross validation method in

Subsection 4.3 and compute θ̃C(t) based on the jackknife-based estimator from 4.1.

• For r = 1, . . . , N with some large N , generate n i.i.d. N(0, Is×s) random variables

V ∗1 , . . . , V
∗
n and compute qr = supt∈(0,1) |W

(boot,debias)
bn

(t)|, where W
(boot,debias)
bn

(t) is

computed according to (4.12), (4.13).

• Compute u1−α = qb(1−α)Nc, the empirical (1−α)th quantile of supt∈[0,1] |W
(debias)
bn

(t)|.
• Calculate Σ̂C(t) = {CT V̂(t)

−1Λ̂(t)V̂ (t)−1C}1/2 with the estimators proposed in Sub-

section 4.2. As mentioned there, V (t)−1Λ(t)V (t)−1 can often be simplified.

• The SCB for θC(t) is θ̃C,bn(t) + Σ̂C(t)u1−αBs, where Bs = {x ∈ Rs : |x| ≤ 1} is the

unit ball in Rs.

5. Examples. We now apply our theory to a large class of recursively defined time

series models, GARCH processes and, as an important special case of general linear models,

logistic regression models. The main goal of this chapter is to show that the theory invented

in Section 3 and Section 4 covers many interesting time varying models. Due to the general

formulation of the following examples, it is not possible to obtain minimal restrictions on
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the parameter spaces. The restrictions however can be relaxed by considering more specific

models.

Proposition 5.1 (Time-varying recursively defined time series models). Assume that

Xi = (Yi−1, . . . , Yi−p, 0, . . .)
T, Xc

i = (Yi−1, . . . , Y1∨(i−p), 0, . . .)
T and consider

(5.1) Yi = µ(Xi, θ(i/n)) + σ(Xi, θ(i/n))ζi,

where θ = (α1, . . . , αk, β0, . . . , βl)
T and

µ(x, θ) :=
k∑
i=1

αimi(x), σ(x, θ) :=
( l∑
i=0

βiνi(x)
)1/2

,

with some functions mi : Rp → R, νi : Rp → R≥0. Assume that

1. ζi are i.i.d. with Eζi = 0, Eζ2
i = 1 and for some a > 0, E|ζi|(2+a)M < ∞ (M is

defined below).

2. For all t ∈ [0, 1], the sets

{m1(X̃0(t)), . . . ,mk(X̃0(t))}, {ν0(X̃0(t)), . . . , νl(X̃0(t))}

are (separately) linearly independent in L2.

3. There exist (κij) ∈ Rk×p≥0 , (ρij) ∈ R(l+1)×p
≥0 such that for all i:

(5.2) sup
x 6=x′

|mi(x)−mi(x
′)|

|x− x′|κi·,1
≤ 1, sup

x 6=x′

|
√
νi(x)−

√
νi(x′)|

|x− x′|ρi·,1
≤ 1.

Let νmin > 0 be some constant such that for all x ∈ R, ν0(x) ≥ νmin. With some

βmin > 0, choose Θ̃ ⊂ Rk × Rl+1
≥βmin such that

(5.3)

p∑
j=1

(
sup
θ∈Θ̃

k∑
i=1

|αi|κij + ‖ζ0‖2M · sup
θ∈Θ̃

l∑
i=0

√
βiρij

)
< 1.

4. Assumption 2.1 (A2) is valid with some Θ ⊂ Θ̃.

Then Assumption 2.1 is fulfilled with some r > 2 for ` chosen to be proportional to the

negative log Gaussian conditional likelihood,

`(y, x, θ) =
1

2

[(y − µ(x, θ)

σ(x, θ)

)2
+ log σ(x, θ)2

]
,
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with M = 3, geometrically decaying χ and Λ(t) = I(t). In the special case σ(x, θ)2 ≡ β0,

one can choose M = 2.

If (i) Eζ3
0 = 0, or (ii) µ(x, θ) ≡ 0 or (iii) σ(x, θ) ≡ β0 and Em(X̃0(t)) = 0, then

I(t) =
( Ik 0

0 (Eζ4
0−1)Il+1/2

)
· V (t),

where Id denotes the d-dimensional identity matrix.

If additionally, Assumption 2.2 (B1) is fulfilled and mi, νi are differentiable such that for

all j = 1, . . . , p and all i,

sup
x 6=x′

|∂xjmi(x)− ∂xjmi(x
′)|

|x− x′|1
<∞, sup

x 6=x′

|∂xjνi(x)− ∂xjνi(x′)|
|x− x′|1

<∞,

then Assumption 2.2 is fulfilled for `.

In the tvAR model (cf. [46], Example 4.1), it holds that p = k, m1(x) = x1, ..., mk(x) = xk,

l = 0, ν0(x) = 1, leading to the rather strong condition supθ∈Θ

∑k
i=1 |αi| < 1. As seen in

the proof of Proposition 5.1, the condition (5.3) however is only needed to guarantee the

existence of the process and corresponding moments. By using techniques which are more

specific to the model, one can obtain much less strict assumptions such as Θ being a

compact subset of

{θ = (α1, ..., αk, β0) ∈ Rk×(0,∞) : α(z) = 1+
k∑
i=1

αiz
i has only zeros outside the unit circle},

cf. [46], Example 4.1.

In the tvARCH case, the above Proposition 5.1 asks for E|ζi|6+a <∞ with some a > 0. In

the following, we consider the tvGARCH model, showing that by using matrix arguments

and a more refined set of assumptions (cf. Assumption 7.16, 7.17 in the appendix), these

condition can be relaxed to E|ζi|4+a <∞.

The tvGARCH model was for instance studied in the stationary case in Francq and

Zaköıan [23]. More recently, pointwise asymptotic results were obtained in Rohan and

Ramanathan [48]. For a matrix A, we define ‖A‖q := (‖Aij‖q)ij as a component-wise

application of ‖ · ‖q. Recall the Kronecker product from (3.1).

Proposition 5.2 (tvGARCH models). For i = 1, . . . , n, consider the recursion

Yi = σ2
i ζ

2
i ,

σ2
i = α0(i/n) +

m∑
j=1

αj(i/n)Yi−j +
l∑

j=1

βj(i/n)σ2
i−j ,
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where θ = (α0, . . . , αm, β1, . . . , βl) : [0, 1]→ Θ ⊂ Rm+l+1. Let f(θ) = (α1, . . . , αm, β1, . . . , βl)
T

and let ej = (0, . . . , 0, 1, 0, . . . , 0)T be the unit column vector with jth element being 1, 1 ≤
j ≤ l + m. Define Mi(θ) = (f(θ)ζ2

i , e1, . . . , em−1, f(θ), em+1, . . . , em+l−1)T. Let αmin > 0,

and

Θ̃ = {θ ∈ Rm+l+1
≥0 : α0 ≥ αmin, λmax(‖M0(θ)‖2) < 1}.

Suppose that

(i) Assumption 2.1(A2) is fulfilled with Θ ⊂ int(Θ̃) and each component of θ(·) is in

C4[0, 1],

(ii) ζi are i.i.d. with Eζi = 0, Eζ2
i = 1 and E|ζi|4+a <∞ with some a > 0.

Then Assumption 7.16 is fulfilled with some r > 2 and the choices Xi = (Yi−1, Yi−2, . . .)

and Xc
i = (Yi−1, Yi−2, . . . , Y1, 0, 0, . . .) for the conditional quasi likelihood

`(y, x, θ) =
1

2

[ y

σ(x, θ)2
+ log(σ(x, θ)2)

]
,

where σ(x, θ)2 is recursively defined via σ(x, θ)2 = α0 +
∑m

j=1 αjxj +
∑l

j=1 βjσ(xj→, θ)
2

and xj→ := (xj+1, xj+2, . . .). It holds that Λ(t) = I(t) = ((Eζ4
0 − 1)/2)V (t).

In the important GARCH(1,1) case, the parameter space condition translated to

(5.4) λmax(‖M0(θ)‖2) = β1 + α1‖ζ0‖24 < 1.

If ζ0 ∼ N(0, 1), it holds that ‖ζ0‖24 =
√

3 ≈ 1.73. Bollerslev [6] proved that stationary

GARCH processes have 4th moments under the condition λmax(E[M0(θ)⊗2]) < 1 or equiv-

alently,

β2
1 + 2‖ζ0‖22α1β1 + α2

1‖ζ0‖44 < 1,

By using ‖ζ0‖2 ≤ ‖ζ0‖4, it is easily seen that (5.4) is slightly more restrictive. This is due

to the additional approximation arguments we have to use in the case of local stationarity.

Lastly, let us consider a locally stationary logistic regression model which could be used

to check if effects of certain covariates change over time. In the stationary setting, such

models were for instance considered by [21], [40] and [22]. We only consider one population

of size m for simplicity.
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Proposition 5.3 (Logistic regression). Fix m ∈ N. Assume that ζi = (ζi,0, ζi,1, . . . , ζi,m)T,

where ζi,j, i ∈ Z, j = 0, . . . ,m are i.i.d. uniformly distributed on [0, 1]. Let Xi ∈ Rp be a

vector of covariates, Xi = G(i/n,Gi) with Gi = (. . . , ζi−1,0, ζi,0). For i = 1, . . . , n,

Yi =
m∑
j=1

1{ζi,j≤π(XT
i θ(i/n))}, i.e. Yi|Xi ∼ Bin

(
m,π(XT

i θ(i/n))
)
,

where π(w) is given by logit(w) = w and θ : [0, 1]→ Θ ⊂ Rp is the parameter curve which

we want to estimate.

We use the typical maximum likelihood approach based on

`(y, x, θ) = m · log
(
1 + exp

(
xTθ
))
− y ·

(
xTθ
)
.

Assume that:

1. Assumption 2.1(A2) is fulfilled with some compact [−D,D]p+1 ⊂ Θ ⊂ Rp+1, D > 0,

2. For some a > 0, X̃i(t) = G(t,Gi) fulfills supt∈[0,1] ‖X̃0(t)‖4+a <∞ and supt∈[0,1] δ
X̃(t)
4+a (k) =

O(k−(1+γ)) with some γ > 1.

3. For all t, t′ ∈ [0, 1] it holds that, with some constant CB > 0,

‖X̃0(t)− X̃0(t′)‖4+a ≤ CB|t− t′|.

4. For each t ∈ [0, 1], E[X̃0(t)X̃0(t)T] is positive definite.

Then Assumption 2.1 is fulfilled with some r > 2 and Λ(t) = I(t) = V (t).

Note that it is not possible to fulfill Assumption 2.2 in our setting of Example 5.3 since

the condition of the existence of an a.s. derivative of t 7→ X̃0(t) is too strong. It was

discussed in Dahlhaus, Richter and Wu [14], that differentiability in L1 should be enough

to show the bias expansions for which Assumption 2.2 is needed, i.e. we conjecture that

the results for θ̂′bn of this paper also hold true for this example.

6. Simulation results and applications. This section consists of some summarized

simulations and some real data applications related to our theoretical results. Because of

the generality of our theoretical framework, it is impossible to report simulation perfor-

mance even for the most prominent examples in these different classes. Therefore we restrict

ourselves to conditional heteroscedasticity (CH) models for simulations and real data ap-

plications. For the time-varying simultaneous band, to the best of our knowledge, there is

no or little simulation results reported. For the tvAR, tvMA, tvARMA and tvRegressions

we obtained satisfactory results but they are omitted here to keep this discussion concise.
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6.1. Simulations. In this section, we study the finite sample coverage probabilities of

our SCBs for theoretical coverage α = 0.9 and α = 0.95 in the following tvARCH(1) and

tvGARCH(1,1) models:

(a) Xi =
√
α0(i/n) + α1(i/n)X2

i−1ζi, where α0(t) = 0.8 + 0.3 cos(πt), α1(t) = 0.45 +

0.1 cos(πt),

(b) Xi = σiζi, σ
2
i = α0(i/n)+α1(i/n)X2

i−1+β1(i/n)σ2
i−1, where α0(t) = 1.3+0.2∗sin(2πt),

α1(t) = 0.25 + 0.05 ∗ sin(πt) and β1(t) = 0.4 + 0.1 sin(πt),

where ζi is i.i.d. standard normal distributed. For estimation, we choose K(x) = 3
4(1 −

x2)1[−1,1](x) to be the Epanechnikov kernel, n = 2000 for (a) and n = 5000 for (b) and bn

ranging from 0.175 to 0.375 in steps of 0.025 (the optimal bandwidths (4.6) are given by

b̂
(a)
n ≈ 0.27 for model (a) and by b̂

(b)
n ≈ 0.41 for n = 5000 for model (b)). For each situation,

N = 2000 replications are performed and it is checked if the obtained SCB based on (4.11)

contains the true curves in t ∈ (0, 1). In both models we have Λ(t) = I(t) = V (t) and

therefore estimate Σ2
C(t) = CTI(t)−1C via replacing I(t) by Îbn(t) from (4.5). We obtained

the results given in Tables 1 and 2. The estimation, for smaller sample sizes n, sometimes

may lead to difficulties since the optimization routine (optim in programming language R)

may not converge. We decided to discard these pathological cases for simplicity. It can be

seen that the empirical coverage probabilities are reasonably close to the nominal level for

bandwidths close to the optimal ones and they do not differ too much for other bandwidths

as well.

Table 1
Coverage probabilities of the SCB in (a) for n = 1000, 2000 and 5000; boptn = 0.48, 0.42, 0.34 respectively

α = 90% α = 95%

n bn α0 α1 (α0, α1)T α0 α1 (α0, α1)T

1000 0.4 0.873 0.846 0.845 0.937 0.906 0.900

0.45 0.885 0.875 0.879 0.941 0.925 0.927

0.5 0.887 0.876 0.864 0.948 0.926 0.931

0.55 0.871 0.870 0.866 0.931 0.925 0.921

2000 0.3 0.893 0.861 0.868 0.946 0.924 0.930

0.35 0.886 0.872 0.866 0.938 0.928 0.921

0.4 0.891 0.878 0.874 0.937 0.926 0.933

0.45 0.874 0.873 0.883 0.940 0.937 0.937

5000 0.25 0.885 0.883 0.882 0.941 0.931 0.936

0.3 0.892 0.883 0.889 0.949 0.938 0.941

0.35 0.900 0.891 0.894 0.948 0.945 0.938

0.4 0.900 0.899 0.894 0.953 0.947 0.937

0.45 0.878 0.880 0.881 0.934 0.937 0.930
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Table 2
Coverage probabilities of the SCB in (b) for n = 2000, 5000, boptn = 0.49, 0.41 respectively

α = 90% α = 95%

n bn α0 α1 β1 (α0, α1, β1)T α0 α1 β1 (α0, α1, β1)T

2000 0.35 0.897 0.876 0.899 0.807 0.936 0.920 0.942 0.859

0.40 0.886 0.906 0.898 0.838 0.924 0.942 0.936 0.890

0.45 0.868 0.899 0.871 0.835 0.919 0.939 0.923 0.890

0.50 0.881 0.902 0.890 0.831 0.926 0.945 0.935 0.885

0.55 0.875 0.896 0.887 0.812 0.928 0.939 0.935 0.881

0.60 0.864 0.913 0.881 0.798 0.923 0.956 0.934 0.864

5000 0.30 0.894 0.876 0.896 0.825 0.934 0.933 0.931 0.891

0.35 0.892 0.870 0.896 0.841 0.940 0.925 0.939 0.894

0.40 0.903 0.896 0.892 0.847 0.950 0.941 0.944 0.914

0.45 0.884 0.902 0.887 0.850 0.933 0.946 0.938 0.906

0.50 0.887 0.905 0.890 0.833 0.942 0.949 0.946 0.901

0.55 0.864 0.893 0.902 0.785 0.933 0.935 0.949 0.873

6.2. Applications. In this section, we consider a few real-data applications of our pro-

cedure. As mentioned in Section 1, there are abundant results in the literature about

time-varying regression but the results for time-varying autoregressive conditional het-

eroscedastic models are scarce. Thus it is important to evaluate the performance of our

constructed SCBs for these type of models in both theoretical and real data scenarios.

Among the popular heteroscedastic models, usually GARCH type models are most diffi-

cult to estimate due to the recursion of the variance term.

We consider two examples from the class of conditional heteroscedastic models with

two types of financial datasets: one foreign exchange and one stock market daily pricing

data. As Fryzlewicz, Sapatinas and Subba Rao [24] found out, ARCH models have good

forecasting ability for currency exchange type data whereas for data coming from the stock

market, GARCH models are preferred. Typically, these daily closing price data show unit

root behavior and thus instead of using the daily price data, we model the log-return data.

The log-return is defined as follows and is close to the relative return

Yi = logPi − logPi−1 = log

(
1 +

Pi − Pi−1

Pi−1

)
≈ Pi − Pi−1

Pi−1
,

where Pi is the closing price on the ith day. Because of the apparent time-varying nature of

volatility these log-return data typically show, conditional heteroscedastic models are used

for analysis and forecasting.
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6.2.1. Real data application I: USD/GBP rates. For the first application, we consider

a tvARCH(p) model with p = 1, 2. It has the following form

Y 2
i = σ2

i ζ
2
i , σ2

i = α0(i/n) + α1(i/n)Y 2
i−1 + . . .+ αp(i/n)Y 2

i−p.

Many different exchange rates from 1990-1999 for USD with other currencies were ana-

lyzed in [24] using tvARCH(p) models with p = 0, 1, 2. The authors suggested choosing p =

1 for USD-GBP exchange rates. We collect the same data from www.federalreserve.gov/

releases/h10/Hist/default1999.htm and fit both tvARCH(1) and tvARCH(2) models.

This is a sample of size 2514 and we use cross-validated bandwidth 0.15 and 0.16 for the

two models. We only show the results for the fit with tvARCH(1) here. We observed that

the estimates for the parameter curves α0(·) and α1(·) for tvARCH(2) model are very sim-

ilar to that from the tvARCH(1) fit and thus it indicates against including the extra α2(·)
parameter in our model. We also provide the plots for the log-returns and ACF plot of

squared sample that shows evidence of conditional heteroscedasticity.

Based on Figure 1 time-constancy for both the parameter curves is rejected at 5% level

of significance. For α1(·), the estimate generally stays below the stationary fit. Also, one

can see from the plot of actual log-returns that there are large shocks from 1990 to 1993

compared to those seen in 1993-1999. This can be explained through the high (low) values

shown for the estimated curve α0(·) for the time-period 1990-1993 (1993-1999).

6.2.2. Real data application II: Merval index data. In the empirical analysis of log-

return for stock market data, however, as Palm [43] and others suggest, lower order GARCH

have been often found to account sufficiently for the conditional heteroscedasticity. More-

over, GARCH(1,1) and in a very few cases GARCH(1,2) and GARCH(2,1) models are used

and higher order GARCH models are typically not necessary. Another advantage of using

GARCH(1,1) over ARCH(p) models is that one need not worry about choosing a proper

lag p as GARCH(1,1) can be thought as an ARCH model with p =∞. In this subsection,

we implement a time-varying version of GARCH(1,1) and obtain the bootstrapped SCB.

A tvGARCH(1,1) model has the following form:

Y 2
i = σ2

i ζ
2
i , σ2

i = α0(i/n) + α1(i/n)Y 2
i−1 + β1(i/n)σ2

i−1.

As our second example, we choose to analyze the log returns of Merval index data from

Argentina for the time period January 2010 to December 2017. In Tagliafichi Ricardo

[50], the author considered daily returns for the period 1990-2000 and mentioned how

www.federalreserve.gov/releases/h10/Hist/default1999.htm
www.federalreserve.gov/releases/h10/Hist/default1999.htm
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Fig 1. Analysis of USD/GBP data from Jan 1990 to Dec 1999. Top left: Log-returns. Top right: ACF plot.
Bottom panel: Estimates of the parameters α0(·), α1(·), respectively (red) with 95% SCBs (dashed) and
estimates of the parameters assuming constancy (blue).

time-varying nature can be present in the parameters of the GARCH(1,1) model he fits.

In particular, he chose to split this time horizon in 3 parts and computed the estimates

separately to compare with the overall estimates. This index was remodelled in 2000 and

has increased about 1000% in each five years. We considered daily log returns from January

2010 to December 2017 in this analysis. Our cross-validated bandwidth is 0.445 for this

data of size 1960. As one can see from Figure 2, the time series show significant lags in its

ACF plot after squaring; indicating conditional heteroscedasticity.

One can see that the estimates for β1(·) is below the corresponding time-constant fit. For

the α1(·) and β1(·) parameters since it is possible to find a horizontal line passing through

the corridor created by the bands, the hypothesis of time-constancy cannot be rejected at

5% level of significance. But specific patterns such as those seen in the simultaneous bands

for α1(·) and β1(·) cannot be implied from just a time-constant fit.

References.
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Fig 2. Analysis of MERVAL index data from Jan 2010 to Oct 2017. Top left: ACF plot. Top right, bottom
left, bottom right: Estimates of the parameters α0(·), α1(·) and β1(·), respectively (red) with SCBs (dashed)
and estimates of the parameters assuming constancy (blue).
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[49] Stărică, C. and Granger, C. (2005). Nonstationarities in stock returns. The Review of Economics

and Statistics 87 503–522.

[50] Tagliafichi Ricardo, A. (2001). The Garch model and their application to the VaR. In XXXI

International Astin Colloquium. Citeseer.

[51] Taylor, J. W. and Yu, K. (2016). Using auto-regressive logit models to forecast the exceedance

probability for financial risk management. Journal of the Royal Statistical Society: Series A (Statistics

in Society) 179 1069–1092.

[52] Witting, H. and Müller-Funk, U. (1995). Mathematische Statistik. II. B. G. Teubner, Stuttgart

Asymptotische Statistik: parametrische Modelle und nichtparametrische Funktionale. [Asymptotic

statistics: parametric models and nonparametric functionals]. MR1363716

[53] Wu, W. B. (2005). Nonlinear system theory: another look at dependence. Proc. Natl. Acad. Sci. USA

102 14150–14154 (electronic). MR2172215

[54] Wu, W. B. and Min, W. (2005). On linear processes with dependent innovations. Stochastic Processes

and their Applications 115 939 - 958.

[55] Wu, W. B. and Shao, X. (2004). Limit theorems for iterated random functions. J. Appl. Probab. 41

425–436. MR2052582

[56] Wu, W. B. and Zhao, Z. (2007). Inference of trends in time series. J. R. Stat. Soc. Ser. B Stat.

Methodol. 69 391–410. MR2323759

[57] Wu, W. B. and Zhou, Z. (2011). Gaussian approximations for non-stationary multiple time series.

Statist. Sinica 21 1397–1413. MR2827528

[58] Zhang, W., Lee, S.-Y. and Song, X. (2002). Local polynomial fitting in semivarying coefficient

model. J. Multivariate Anal. 82 166–188. MR1918619

[59] Zhang, T. and Wu, W. B. (2012). Inference of time-varying regression models. Ann. Statist. 40

1376–1402. MR3015029

[60] Zhang, T. and Wu, W. B. (2015). Time-varying nonlinear regression models: nonparametric estima-

tion and model selection. Ann. Statist. 43 741–768. MR3319142

[61] Zhang, D. and Wu, W. B. (2017). Gaussian Approximation for High Dimensional Time Series. Ann.

Statist. 45 1895–1919.

[62] Zhou, Z. and Wu, W. B. (2009). Local linear quantile estimation for nonstationary time series. Ann.

Statist. 37 2696–2729. MR2541444

[63] Zhou, Z. and Wu, W. B. (2010). Simultaneous inference of linear models with time varying coeffi-

cients. J. R. Stat. Soc. Ser. B Stat. Methodol. 72 513–531. MR2758526

http://www.ams.org/mathscinet-getitem?mr=3039969
http://www.ams.org/mathscinet-getitem?mr=1363716
http://www.ams.org/mathscinet-getitem?mr=2172215
http://www.ams.org/mathscinet-getitem?mr=2052582
http://www.ams.org/mathscinet-getitem?mr=2323759
http://www.ams.org/mathscinet-getitem?mr=2827528
http://www.ams.org/mathscinet-getitem?mr=1918619
http://www.ams.org/mathscinet-getitem?mr=3015029
http://www.ams.org/mathscinet-getitem?mr=3319142
http://www.ams.org/mathscinet-getitem?mr=2541444
http://www.ams.org/mathscinet-getitem?mr=2758526


SIMULTANEOUS INFERENCE FOR TIME-VARYING MODELS 35

Supplement: This material ([doi]COMPLETED BY THE TYPESETTER) contains

the proofs of the results in the paper as well as the proofs of the examples.

7. Proofs. For η = (η1, η2) ∈ Θ× (Θ′ · bn) =: En, define

L◦,cn,bn(t, η) := (nbn)−1
n∑
i=1

Kbn(i/n− t)`(Zci , η1 + η2(i/n− t)b−1
n )

and L̂◦n,bn , L◦n,bn similarly as L◦,cn,bn but with Zci replaced by Z̃i(i/n) or Zi, respectively.

We define ηbn(t) = (θ(t)T, bnθ
′(t)T)T as the value which should be estimated by η̂bn(t) =

(θ̂bn(t)T, bnθ̂
′
bn

(t)T)T, the minimizer of L◦n,bn(t, η). In the proof of Theorem 3.1, it is shown

that L◦n,bn(t, η) converges to L◦(t, η) :=
∫ 1
−1K(x)L(t, η1 + η2x)dx. If χ ∈ RN, recall that

χ̂ = (1, χ) ∈ RN0 .

For t ∈ (0, 1) and η ∈ En = Θ × (Θ′ · bn) and some Lipschitz continuous function

K̂ (Lipschitz constant LK̂) and compact support [−1, 1] (K̂ bounded by |K̂|∞), define

K̂bn(·) := K̂(·/bn) and

(7.1)

Gn(t, η) := (nbn)−1
n∑
i=1

K̂bn(i/n−t)·{g(Zi, η1+η2(i/n−t)b−1
n )−Eg(Zi, η1+η2(i/n−t)b−1

n )}.

Let Gcn(t, η), Ĝn(t, η) denote the same quantities but with Zi replaced by Zci or Z̃i(i/n),

respectively.

Assumptions 2.1, 2.2 are formulated as general as possible to cover a lot of different

models. However in specific situations, the conditions therein may be too strong. Later we

will introduce a different set of assumptions which is specifically designed for tvGARCH

models. The results can be obtained with very similar proofs. Because of that, let us

introduce the more general classHs(My,Mx, χ, C̄) for s ≥ 0: A function g : R×RN×Θ→ R
is in Hs(My,Mx, χ, C̄) if supθ∈Θ |g(0, θ)| ≤ C̄,

sup
z

sup
θ 6=θ′

|g(z, θ)− g(z, θ′)|
|θ − θ′|1RMy ,Mx(z)1+s

≤ C̄

and

sup
θ

sup
z 6=z′

|g(z, θ)− g(z′, θ)|
|z − z′|χ̂,1 · {RMy−1,Mx−1(z)1+s +RMy−1,Mx−1(z′)1+s}

≤ C̄.

Obviously, H = H0.

[
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7.1. Proofs of Section 3.

Proof of Theorem 3.1. The proof is similar to the proof of Theorems 5.2 and 5.4 in

[14].

(i) Fix t ∈ (0, 1). By Lemma 7.8(ii) applied to `, we have

sup
η∈En

|L̂◦n,bn(t, η)− EL̂◦n,bn(t, η)| = oP(1).

Applying Lemma 7.9 to `, we obtain

sup
η∈En

|EL̂◦n,bn(t, η)− L◦(t, η)| = O(bn + (nbn)−1) = o(1),

where L◦(t, η) =
∫ 1
−1K(x)L(t, η1 + η2x)dx. By Lemma 7.8(i), we have∥∥ sup

η∈En
|L◦,cn,bn(t, η)− L̂◦n,bn(t, η)|

∥∥
1

= O((nbn)−1),

and thus

sup
η∈En

|L◦,cn,bn(t, η)− L◦(t, η)| = oP(1).

By Lemma 7.1, η 7→ L◦(t, η) is Lipschitz continuous. Since θ(t) is the unique minimizer of

θ 7→ L(t, θ), we conclude that (η1, η2) = (θ(t), 0) is the unique minimizer of η 7→ L◦(t, η).

Since η̂bn(t) = (θ̂bn(t)T, bnθ̂
′
bn

(t)T)T is a minimizer of L◦,cn,bn(t, η), standard arguments yield

(7.2) η̂bn(t) = (θ̂bn(t)T, bnθ̂
′
bn(t)T)T = (θ(t)T, 0)T + oP(1).

We now show that θ̂′bn(t)− θ′(t) = oP(1) if nb3n →∞. The following argumentation is also

a preparation for the proof of (ii),(iii). By (7.2), we have that η̂bn(t) is in the interior of

Θ× (Θ′ · bn) with probability tending to 1 (since it converges to (θ(t)T, 0) in probability),

thus ∇ηL◦,cn,bn(t, η̂bn(t)) = 0 with probability tending to 1. By a Taylor expansion we obtain

(7.3) η̂bn(t)− ηbn(t) = −
[
∇2
ηL
◦,c
n,bn

(t, η̄(t))
]−1 · ∇ηL◦,cn,bn(t, ηbn(t)),

with some η̄(t) ∈ Θ × (Θ′ · bn) satisfying |η̄(t) − ηbn(t)| ≤ |η̂bn(t) − ηbn(t)|. Let V (t, θ) :=

E∇2
θ`(Z̃0(t), θ). Since g = ∇2

θ` ∈ H(My,Mx, χ, C̄), we can use similar arguments as in (i)

(but with Lemma 7.8(ii)(c) replaced by Lemma 7.8(ii)(b) in case of Assumption 7.16) to

obtain

(7.4) sup
|η−ηbn (t)|1<ι

|∇2
ηL
◦,c
n,bn

(t, η)− V ◦(t, η)| = oP(1),
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where

(7.5) V ◦(t, η) =

∫ 1

−1
K(x)

(
1 x

x x2

)
⊗ V (t, η1 + η2x)dx.

Let

(7.6) V ◦(t) :=

(
1 0

0 µK,2

)
⊗ V (t).

From (i), we have |η̄(t) − ηbn(t)| ≤ |η̂bn(t) − ηbn(t)| = oP(1), i.e. η̄1(t) = θ(t) + oP(1) and

η̄2(t) = bnθ
′(t) + oP(1) = oP(1). By continuity of θ 7→ V (t, θ) and (7.4), we conclude that

(7.7) ∇2
θL
◦,c
n,bn

(t, η̄(t)) = V ◦(t, η̄(t)) + oP(1) = V ◦(t) + oP(1).

By Lemma 7.8(i), we have

(7.8) ‖∇ηL◦,cn,bn(t, ηbn(t))−∇ηL̂◦n,bn(t, ηbn(t))‖1 = O((nbn)−1).

With (7.3), (7.7) and (7.8) we obtain(√
nbn(θ̂bn(t)− θ(t))√
nb3n(θ̂′bn(t)− θ′(t))

)
=
√
nbn(η̂bn(t)− ηbn(t))

= −V ◦(t)−1
√
nbn∇ηL̂◦n,bn(t, ηbn(t)) + oP(1)

= −V ◦(t)−1
√
nbn
{
∇ηL̂◦n,bn(t, ηbn(t))− E∇ηL̂◦n,bn(t, ηbn(t))

}
−V ◦(t)−1

( √
nbnE∇η1L̂

◦
n,bn

(t, ηbn(t))√
nb3nb

−1
n E∇η2L̂

◦
n,bn

(t, ηbn(t))

)
+ oP(1).(7.9)

By (7.9), it is enough to show the two convergences in probability,

b−1
n

{
∇η2L

◦
n,bn(t, ηbn(t))− E∇ηL̂◦n,bn(t, ηbn(t))

}
= oP(1),(7.10)

b−1
n E∇ηL̂◦n,bn(t, ηbn(t)) = oP(1).(7.11)

By (7.50) (use Lemma 7.5(i) if Assumption 2.1 holds and Lemma 7.6(i) if Assumption 7.16

holds) from the proof of Lemma 7.8(ii), applied to each component of ∇θ` with K̂(x) =

K(x)x and ς = 1, we obtain∥∥∇η2L
◦
n,bn(t, ηbn(t))− E∇ηL̂◦n,bn(t, ηbn(t))

∥∥
2

= O((nbn)−1/2),
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which shows (7.10) due to nb3n → ∞. Using the intermediate result (7.57) in the proof of

Lemma 7.10, we have

E∇ηL̂◦n,bn(t, ηbn(t)) = O(b3n + n−1 + (nbn)−1),

we obtain (7.11) due to nb3n →∞, which completes the proof of (i).

(ii),(iii) Our aim is to show asymptotic normality of the term in the second to last line

of (7.9). Define Ui,n(t) := (Kbn(i/n − t),Kbn(i/n − t)(i/n − t)b−1
n )T. Following the proof

idea of Theorem 3(ii) in [53], let m ≥ 1 and define

Sn,bn,m(t) :=
m−1∑
l=0

(nbn)−1/2
n∑
i=1

Ui,n(t)⊗ Pi−l∇θ`(Z̃i(i/n), θ(t) + θ′(t)(i/n− t)).

Recall ηbn(t) = (θ(t)T, bnθ
′(t)T)T. Write shortly LIM for lim supn→∞ lim supm→∞. Then we

have for each component j = 1, . . . , 2dΘ, that

LIM ‖Sn,bn,m(t)j − (nbn)1/2
{
∇ηj L̂◦n,bn(t, ηbn(t))− E∇ηj L̂◦n,bn(t, ηbn(t))

}
‖2

≤ LIM (nbn)−1/2
∞∑
l=m

∥∥∥ n∑
i=1

(Ui,n(t)⊗ Pi−l∇θ`(Z̃i(i/n), θ(t) + θ′(t)(i/n− t)))j
∥∥∥

2

= LIM (nbn)−1/2
( n∑
i=1

∥∥(Ui,n(t)⊗ Pi−l∇θ`(Z̃i(i/n), θ(t) + θ′(t)(i/n− t)))j
∥∥2

2

)1/2

≤ |K|∞LIM
∞∑
l=m

sup
t∈[0,1]

sup
i,θ

δ
∇θi`(Z̃(t),θ)

2 (l) = 0,(7.12)

by Lemma 7.5(i) if Assumption 2.1 holds or Lemma 7.6(i) if Assumption 7.16 holds. De-

fine Mi(t) := (nbn)−1/2
∑m−1

l=0 Ui,n(t) ⊗ Pi∇θ`(Z̃i+l((i + l)/n), θ(t) + θ′(t)(i/n − t)) and

S̃n,bn,m(t) :=
∑n

i=1Mi(t). It is easy to see with Lemma 7.1 or Lemma 7.3 applied to ∇θ`
that with some ι′ > 0 small enough,

(7.13) sup
|u−v|≤ι′

‖Pi∇θ`(Z̃0(u), θ(v))‖2 ≤ 2 sup
|u−v|≤ι′

‖∇θ`(Z̃0(u), θ(v))‖2 <∞.

Since m is finite and (7.13), we conclude that for each component j = 1, . . . , 2dΘ,

(7.14) ‖Sn,bn,m(t)j − S̃n,bn,m(t)j‖2 = O((nbn)−1/2).

Let a = (aT1 , a
T
2 )T ∈ RdΘ × RdΘ . We want to apply a central limit theorem for martingale

differences to aTS̃n,bn,m(t). Put

Σm :=
m−1∑
l1,l2=0

E
[
P0∇θ`(Z̃l1(t), θ(t))P0∇θ`(Z̃l2(t), θ(t))T

]
= Cov

(m−1∑
l=0

P0∇θ`(Z̃l(t), θ(t))
)
.
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Lemma 7.1 (if Assumption 2.1 holds) or Lemma 7.3 (if Assumption 7.16 holds; note that

|i/n− t| ≤ bn implies both θ(t) + θ′(t)(i/n− t) and θ( i+l1n ) to be near θ(t)) applied to ∇θ`
gives:

sup
|i/n−t|≤bn

‖Pi∇θ`(Z̃i+l1((i+ l1)/n), θ(t) + θ′(t)(i/n− t))− Pi∇θ`(Z̃i+l1(t), θ(t))‖2

≤ sup
|i/n−t|≤bn

‖∇θ`(Z̃0((i+ l1)/n), θ(t) + θ′(t)(i/n− t))−∇θ`(Z̃0(t), θ(t))‖2

= O(bn + n−1)

and due to (7.13),

sup
i
‖Pi∇θ`(Z̃i+l2((i+ l2)/n), θ(t) + θ′(t)(i/n− t))‖2 ≤ 2 sup

|u−v|≤ι′
‖∇θ`(Z̃0(u), θ(v))‖2 <∞.

We therefore have by Hölder’s and Markov’s inequality that

n∑
i=1

Mi(t)Mi(t)
T

=
m−1∑
l1,l2=0

(nbn)−1
n∑
i=1

Kbn(i/n− t)2

(
1 (i/n− t)b−1

n

(i/n− t)b−1
n (i/n− t)2b−2

n

)
⊗{Pi∇θ`(Z̃i+l1(t), θ(t)) · Pi∇θ`(Z̃i+l2(t), θ(t))T}+OP(bn + n−1)

=

(
σ2
K,0 0

0 σ2
K,2

)
⊗ Σm + oP(1).

The last step is due to Lemma A.2 in [15]. It remains to show a Lindeberg-type condition

for Mi(t). Put M̃ij,l := Pi∇θj`(Z̃i+l((i + l)/n), θ(t) + θ′(t)(i/n − t)). There exists some

constant C > 0 such that for j = 1, . . . , dΘ and ι > 0,

n∑
i=1

E
[
Mi(t)

2
j1{|Mi(t)j |>ι}

]
≤ C(nbn)−1

m−1∑
l=0

n∑
i=1

Kbn(i/n− t)2E
[
M̃2
ij,l1{|K|∞|M̃ij,l|>ι(nbn)1/2}

]
.(7.15)

Using Hölder’s inequality we have

E
[
M̃2
ij,l1{|K|∞|M̃ij,l|>ι(nbn)1/2}

]
≤ E[|M̃ij,l|2+a]2/(2+a)P(|K|∞|M̃ij,l| > ι(nbn)1/2)a/(2+a),
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which tends to zero using Markov’s inequality, (7.13) (with ‖ · ‖2 replaced by ‖ · ‖2+a) and

the condition

sup
j∈N0

sup
t∈[0,1]

‖Z̃0(t)j‖(2+a)M <∞

(which is automatically fulfilled with a = ς if Assumption 7.16 holds with r = 2 + ς).

This shows that (7.15) is tending to 0. The proof for j = dΘ + 1, . . . , 2dΘ is similar. From

Theorem 18.2 in Billingsley [5] and the Cramer-Wold device we obtain

(7.16) S̃n,bn,m(t)
d→ N

(
0,

(
σ2
K,0 0

0 σ2
K,2

)
⊗ Σm

)
.

Using Theorem 5.46 in [52], (7.12), (7.14), (7.16) and Σm → Λ(t) (m→∞), we obtain

(7.17) (nbn)1/2{∇ηL̂◦n,bn(t, ηbn(t))− E∇ηL̂◦n,bn(t, ηbn(t))} d→ N
(

0,

(
σ2
K,0 0

0 σ2
K,2

)
⊗ Λ(t)

)
.

Using (7.17), the expansion (7.9) and Lemma 7.10, we obtain the result provided that

nb7n → 0 for (ii) and nb9n → 0 for (iii).

Proof of Theorem 3.2. (i),(ii) By Lemma 7.8(i),(iii)(a) and Lemma 7.9(a) (in case

Assumption 2.1 holds) or Lemma 7.8(i),(iii)(c) and Lemma 7.9(a) (if Assumption 7.16

holds) applied to g = `, we have that

sup
t∈Tn

sup
η∈En

|L◦,cn,bn(t, η)− L◦(t, η)| = OP(βn + (nbn)−1) +O(bn),

i.e. L◦,cn,bn(t, η) converges to L◦(t, η) uniformly in t, η if bn = o(1) and βn = o(1). It was

already seen in the proof of Theorem 3.1 that L◦(t, η) is continuous w.r.t. η and uniquely

minimized by η = (θ(t)T, 0)T. Standard arguments give

(7.18) sup
t∈Tn
|η̂bn(t)− ηbn(t)| = oP(1).

Thus for n large enough, η̂bn(t) is in the interior of En uniformly in t. By a Taylor expansion,

we obtain for each t ∈ Tn:

(7.19) η̂bn(t)− ηbn(t) = −
[
V ◦(t) +Rn,bn(t)

]−1 · ∇ηL◦,cn,bn(t, ηbn(t)),

where Rn,bn(t) = ∇2
ηL
◦,c
n,bn

(t, η̄(t))− V ◦(t) with some η̄(t) ∈ En satisfying |η̄(t)− ηbn(t)|1 ≤
|η̂bn(t)− ηbn(t)|1 and V ◦(t) is defined in (7.6).
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By Lemma 7.8(i),(iii)(a) and Lemma 7.9(a) (if Assumption 2.1 holds) or Lemma 7.8(i),(iii)(c)

and Lemma 7.9(b) (if Assumption 7.16 holds) applied to g = ∇2
θ` and K̂(x) = K(x),

K̂(x) = K(x)x or K̂(x) = K(x)x2, respectively, we have for some fixed ι′ > 0:

(7.20) sup
t∈Tn

sup
|η−ηbn (t)|<ι′

|∇2
ηL
◦,c
n,bn

(t, η)− V ◦(t, η)| = OP(βn + (nbn)−1) +O(bn),

where V ◦(t, η) is defined in (7.5).

For the moment, let h̃i(t) = ∇θ`(Z̃i(t), θ(t)). Note that Eh̃0(t) = E∇θ`(Z̃0(t), θ(t)) = 0

by Assumption 2.1(A3), (A1) (or Assumption 7.16(A3’), (A1’)).

By Lemma 7.5(i) (if Assumption 2.1 holds) or Lemma 7.6(i) (if Assumption 7.16 holds),

we have supt δ
h̃(t)j
2+ς (k) = supt δ

∇θj `(Z̃(t),θ(t))

2+ς (k) = O(k−(1+γ)) for each j = 1, . . . , dΘ. Using

Lemma 7.1 (if Assumption 2.1 holds) or Lemma 7.3 (if Assumption 7.16 holds), we see

that the assumptions of Lemma 7.14 are fulfilled and thus, applied to h̃i(t),

(7.21) sup
t∈Tn

∣∣(nbn)−1
n∑
i=1

Kbn(i/n− t)∇θ`(Z̃i(i/n), θ(i/n))
∣∣ = OP((nbn)−1/2 log(n)).

With Lemma 7.12, we obtain

sup
t∈Tn

∣∣∇ηL̂◦n,bn(t, ηbn(t))− E∇ηL̂◦n,bn(t, ηbn(t))
∣∣ = OP((nbn)−1/2 log(n) + βnb

2
n).

Since E∇θ`(Z̃0(t), θ(t)) = 0, we obtain with Lemma 7.10(i),(ii) and Lemma 7.8(i):

(7.22) sup
t∈Tn
|∇ηjL

◦,c
n,bn

(t, ηbn(t))| = OP((nbn)−1/2 log(n) + (nbn)−1 + βnb
2
n + b1+j

n ),

where j = 1, 2. Since θ 7→ V (t, θ) = E∇2
θ`(Z̃0(t), θ) is Lipschitz continuous (apply Lemma

7.1 in case of Assumption 2.1 or Lemma 7.3 in case of Assumption 7.16 to ∇2`), the same

holds for η 7→ V ◦(t, η). We conclude that with some constant C > 0,

(7.23) sup
t∈Tn
|Rn,bn(t)| ≤ sup

t∈Tn
sup
η∈En

|∇2
ηL
◦,c
n,bn

(t, η)− V ◦(t, η)|+ C sup
t∈Tn
|η̂bn(t)− ηbn(t)|.

Inserting (7.22), (7.23) and (7.18) into (7.19), we obtain

(7.24) sup
t∈Tn
|η̂bn,j(t)− ηbn,j(t)| = OP((nbn)−1/2 log(n) + (nbn)−1 + βnb

2
n + b1+j

n ),
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where j = 1, 2. Inserting (7.24), (7.20) into (7.23), we get supt∈Tn |Rn,bn(t)| = OP(βn+ bn+

(nbn)−1). Together with∣∣V ◦(t)(η̂bn(t)− ηbn(t)
)
−∇L◦,cn,bn(t, ηbn(t))

∣∣
≤

∣∣[I2k×2k + V ◦(t)−1Rn,bn(t)
]−1 − I−1

2k×2k

∣∣ · |∇ηL◦,cn,bn(t, ηn(t))|

≤
∣∣[I2k×2k + V ◦(t)−1Rn,bn(t)

]−1∣∣ · ∣∣V ◦(t)−1Rn,bn(t)
∣∣ · |∇ηL◦,cn,bn(t, ηbn(t))|,

and (7.22) we have (3.4) and (3.6). The other results (3.5) and (3.7) follow from Lemma

7.8(i), Lemma 7.12 and Lemma 7.10.

Lemma 7.1. Let q > 0 and s ≥ 0. Let g ∈ Hs(My,Mx, χ, C̄) and M := max{Mx,My}.
Let Ŷ , Ŷ ′ be random variables and X̂ = (X̂j)j∈N, X̂ ′ = (X̂ ′j)j∈N be sequences of random

variables. Assume that there exists some D > 0 such that uniformly in j ∈ N,

(7.25) ‖Ŷ ‖qM(1+s), ‖Ŷ ′‖qM(1+s), ‖X̂j‖qM(1+s), ‖X̂ ′j‖qM(1+s) ≤ D.

Let Ẑ = (Ŷ , X̂), Ẑ ′ = (Ŷ ′, X̂ ′). Then there exists some constant C > 0 only dependent on

M , D, χ and D̃ (only in (ii)) such that

(i)

‖ sup
θ∈Θ
|g(Ẑ, θ)− g(Ẑ ′, θ)|‖q ≤ C̄ · C

∞∑
j=0

χ̂j‖Ẑj − Ẑ ′j‖qM ,(7.26)

∥∥ sup
θ 6=θ′

|g(Ẑ, θ)− g(Ẑ, θ′)|
|θ − θ′|1

∥∥
q
≤ C̄ · C,(7.27)

‖ sup
θ∈Θ
|g(Ẑ, θ)|‖q ≤ C̄ · C,(7.28)

‖RMx,My(Ẑ)1+s‖q ≤ C.(7.29)

(ii) Let s = 0. If additionally, E[|Ŷ − Ŷ ′|qMy |σ(X̂, X̂ ′)] ≤ D̃|X̂ − X̂ ′|qMy

χ,1 with some

constant D̃ > 0, then

(7.30) ‖ sup
θ∈Θ
|g(Ẑ, θ)− g(Ẑ ′, θ)|‖q ≤ C̄ · C

∞∑
j=1

χj‖X̂j − X̂ ′j‖qM .

Proof of Lemma 7.1. During the proofs, we consider My,Mx ≥ 2 and thus M ≥ 2.

In the case My = 1 or Mx = 1, the proofs are easier since some terms do not show up.
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(i) Note that RMy−1,Mx−1 is a polynomial in |x|χ,1, |y| with (joint) degree at most M−1.

Since

RMy−1,Mx−1(Ẑ) =
∑

k+l≤M−1,0≤k≤My−1,0≤l≤Mx−1

|Ŷ |k|X̂|lχ,1,

we have by Hölder’s inequality,

‖RMy−1,Mx−1(Ẑ)‖q(1+s)M/(M−1)

≤
∑

k+l≤M−1,0≤k≤My−1,0≤l≤Mx−1

( ∞∑
i=1

χi‖X̂i‖q(1+s)M

)l‖Ŷ ‖kq(1+s)M

≤
∑

0≤k+l≤M−1

(|χ|1D)lDk ≤ (1 +D(|χ|1 + 1))M−1.(7.31)

Therefore:

‖ sup
θ∈Θ
|g(Ẑ, θ)− g(Ẑ ′, θ)|‖q

≤ C̄
∥∥|Ŷ − Ŷ ′|(RMy−1,Mx−1(Ŷ , X̂)1+s +RMy−1,Mx−1(Ŷ ′, X̂)1+s)

∥∥
q

+
∥∥|X̂ − X̂ ′|χ,1 · (RMy−1,Mx−1(Ŷ , X̂)1+s +RMy−1,Mx−1(Ŷ , X̂ ′)1+s)

∥∥
q

(7.32)

≤ C̄‖Ŷ − Ŷ ′‖qM ·
(
‖RMy−1,Mx−1(Ŷ , X̂)‖1+s

q(1+s)M/(M−1)

+‖RMy−1,Mx−1(Ŷ ′, X̂)‖1+s
q(1+s)M/(M−1)

)
+C̄‖|X̂ − X̂ ′|χ,1‖qM

(
‖RMy−1,Mx−1(Ŷ , X̂)‖1+s

q(1+s)M/(M−1)

+‖RMy−1,Mx−1(Ŷ , X̂ ′)‖1+s
q(1+s)M/(M−1)

)
≤ 2C̄(1 +D(|χ|1 + 1))(M−1)(1+s)

(
‖Ŷ − Ŷ ′‖qM +

∞∑
j=1

χj‖X̂j − X̂ ′j‖qM
)
,

which shows (7.26). The proof of (7.28) is obvious from (7.26) and supθ∈Θ |g(0, θ)| ≤ C̄.

RMy ,Mx is a polynomial in |x|χ,1 and |y| with (joint) degree at most M . As in (7.31), we

obtain

‖RMy ,Mx(Ẑ)‖q(1+s) ≤ (1 +D(|χ|1 + 1))M ,

showing (7.29).

(7.27) follows from (7.29) and

|g(Ẑ, θ)− g(Ẑ, θ′)| ≤ C̄|θ − θ′|1RMy ,Mx(Ẑ)1+s.
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(ii) We first obtain (7.32) as before. The second summand has the upper bound

2C̄(1 +D(|χ|1 + 1))M−1
∞∑
j=1

χj‖X̂j − X̂ ′j‖qM .

For the first summand in (7.32), notice that∥∥|Ŷ − Ŷ ′| ·RMy−1,Mx−1(Ŷ , X̂)
∥∥
q

≤
∑

k+l≤M−1,0≤k≤My−1,0≤l≤Mx−1

‖|Ŷ − Ŷ ′| · |Ŷ |k · |X̂|lχ,1‖q.

By Hölder’s inequality for conditional expectations,∥∥|Ŷ − Ŷ ′| · |Ŷ |k|X̂|lχ,1∥∥q
= E

[
E[|Ŷ − Ŷ ′|q|Ŷ |qk|σ(X̂, X̂ ′)] · |X̂|qlχ,1

]1/q
≤ E[E[|Ŷ − Ŷ ′|qMy |σ(X̂, X̂ ′)]1/MyE[|Ŷ |qkMy/(My−1)|σ(X̂, X̂ ′)](My−1)/My |X̂|qlχ,1]1/q

=: E[A1 ·A2 ·A3]1/q.

By the additional condition, we have A1 ≤ D̃1/My |X̂ − X̂ ′|qχ,1. By Hölder’s inequality,

E[A1 ·A2 ·A3]1/q ≤ E[AM1 ]1/(qM)E[A
M/k
2 ]k/(qM)E[A

M/(M−k−1)
3 ](M−k−1)/(qM).

We have E[AM1 ]1/M ≤ D̃1/My‖|X̂ − X̂ ′|χ,1‖qqM ,

E[A
M/(M−k−1)
3 ](M−k−1)/M = ‖|X̂|χ,1‖qlMql/(M−k−1) ≤ ‖|X̂|χ,1‖

ql
qM

and by Jensen’s inequality for conditional expectations (note that
My−1
k

M
My
≥ 1),

E[A
M/k
2 ]k/M ≤ E[E[|Ŷ |qkMy/(My−1)·My−1

My
M
k |σ(X̂, X̂ ′)]]k/M = ‖Ŷ ‖qkMq.

Putting the results together we obtain

‖|Ŷ − Ŷ ′| · |Ŷ |k|X̂|lχ,1‖q ≤ D̃1/(qMy)
∞∑
i=1

χi‖X̂i − X̂ ′i‖qM ·Dk(|χ|1D)l,

which leads to∥∥|Ŷ − Ŷ ′| ·RMy−1,Mx−1(Ŷ , X̂)
∥∥
q
≤ D̃1/(qMy)(1 +D(1 + |χ|1))M−1 ·

∞∑
i=1

χi‖X̂i − X̂ ′i‖qM ,

giving the result.
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Lemma 7.2 (for tvGARCH). Let q > 0 and s > 0. Let X̂, X̂ ′, Ŷ , Ŷ ′ be as in Lemma

7.1 satisfying (7.25). Let g = ` satisfy (7.94). Then there exists some constant C(s) > 0

only dependent on M , D, χ(s) such that

‖ sup
θ∈Θ
|g(Ẑ, θ)− g(Ẑ ′, θ)|‖q ≤ C̄(s) · C(s)

∞∑
j=0

χ̂
(s)
j

(
‖Ẑj − Ẑ ′j‖qM + ‖Ẑj − Ẑ ′j‖sqM(1+s)

)
,(7.33)

‖ sup
θ∈Θ
|g(Ẑ, θ)|‖q ≤ C̄ · C.(7.34)

Proof of Lemma 7.2. It holds that∥∥ sup
θ∈Θ
|g(Ẑ, θ)− g(Ẑ ′, θ)|

∥∥
q

≤ C̄(s)
∥∥|Ẑ − Ẑ ′|χ(s),s · (RM,M (Ẑ) +RM,M (Ẑ ′))

∥∥
q

+C̄(s)
∥∥|Ẑ − Ẑ ′|χ(s),1 · (RM−1,M−1(Ẑ)1+s +RM−1,M−1(Ẑ ′)1+s)

∥∥
q
.

The second summand can be dealt with as in the proof of Lemma 7.1(i), giving the upper

bound

2C̄(s)(1 +D(|χ(s)|1 + 1))(M−1)(1+s)
(
‖Ŷ − Ŷ ′‖qM +

∞∑
j=1

χ
(s)
j ‖X̂j − X̂ ′j‖qM

)
.

For the first summand, we obtain with Hölder’s inequality:∥∥|Ẑ − Ẑ ′|s
χ̂(s),s

· (RM,M (Ẑ) +RM,M (Ẑ ′))
∥∥
q

≤
∞∑
j=0

χ̂
(s)
j ‖Ẑj − Ẑ

′
j‖sq(M+s) ·

(
‖RM,M (Ẑ)‖q(M+s)/M + ‖RM,M (Ẑ ′)‖q(M+s)/M

)
,

giving the result since M + s ≤M(1 + s) and thus ‖RM,M (Ẑ)‖q(M+s)/M ≤ (1 +D(|χ(s)|1 +

1))M .

Lemma 7.3 (for tvGARCH). Let q > 0, s > 0, ι > 0. Let X̂, X̂ ′, Ŷ , Ŷ ′ be as in Lemma

7.1 satisfying (7.25). Let g ∈ Hmults,ι (My,Mx, χ, C̄). Let ζ0 be independent of X̂, X̂ ′ with

‖ζ0‖qM ≤ D. Then there exists some constant C > 0 only dependent on M , D, χ, C̄ such
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that

‖ sup
|θ−θ̃|<ι

|g̃θ̃(ζ0, X̂, θ)− g̃θ̃(ζ0, X̂
′, θ)|‖q ≤ C̄ · C

∞∑
j=1

χj‖X̂j − X̂ ′j‖qM ,(7.35)

∥∥ sup
θ 6=θ′,|θ−θ̃|1<ι,|θ′−θ̃|1<ι

|g̃θ̃(ζ0, X̂, θ)− g̃θ̃(ζ0, X̂, θ
′)|

|θ − θ′|1
∥∥
q
≤ C̄ · C,(7.36)

‖ sup
|θ−θ̃|1<ι

|g̃(ζ0, X̂, θ)|‖q ≤ C̄ · C.(7.37)

Proof of Lemma 7.3. As in the proof of Lemma 7.1(i), we have:

‖RMy−1,Mx−1(1, X̂)‖q(1+s)M/(M−1) ≤ (1 +D(|χ|1 + 1))M−1.

Thus, with Hölder’s inequality,∥∥ sup
|θ−θ̃|<ι

|g(ζ0, X̂, θ)− g(ζ0, X̂
′, θ)|

∥∥
q

≤ 2C̄(1 +D(|χ|1 + 1))(M−1)(1+s)(1 + ‖ζ0‖qM )
∞∑
j=1

χj‖X̂j − X̂ ′j‖qM .

This shows (7.35). (7.37) follows from (7.35) since

‖ sup
|θ−θ̃|<ι

|g̃θ̃(ζ0, 0, θ)|‖q ≤ C̄(1 + ‖ζ0‖MqM ) ≤ C̄(1 +DM ).

Lemma 7.4. Assume that θ(·) ∈ C2[0, 1]. Let χ′ = (χ̃′i)i∈N be an absolutely summable

sequence. Let g : R× RN ×Θ→ R be continuously differentiable. Suppose that either

(a) Assumption 2.1(A5) holds with some r ≥ 2 and Assumption 2.2(B3) holds. Addi-

tionally, g ∈ H(M ′y,M
′
x, χ, C̄), ∇θg ∈ H(M ′y,M

′
x, χ, C̄) and for all l ∈ N, ∂xlg ∈

H(M ′y − 1,M ′x − 1, χ̃, C̄χl).

or

(b) (for tvGARCH) There exists s ≥ 0 such that Assumption 7.16(A5’) holds with r ≥
2(1 + s) and Assumption 7.17(B3’) holds. Additionally, g ∈ Hmults,ι (M ′y,M

′
x, χ, C̄),

∇θg ∈ Hmults,ι (M ′y,M
′
x, χ, C̄) and for all l ∈ N, ∂xlg ∈ Hmults,ι (M ′y − 1,M ′x − 1, χ̃, C̄χl).

Define M ′ := max{M ′y,M ′x}. Then
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(i) supt∈[0,1] ‖∂tg(Z̃0(t), θ(t))‖1 <∞,

(ii)

sup
t6=t′

‖∂tg(Z̃0(t), θ(t))− ∂tg(Z̃0(t′), θ(t′))‖1
|t− t′|

<∞.

Proof of Lemma 7.4. (i) Note that

(7.38) ∂tg(Z̃0(t), θ(t)) = ∂zg(Z̃0(t), θ(t))∂tZ̃0(t) +∇θg(Z̃0(t), θ(t))θ′(t).

By Lemma 7.1 (if Assumption 2.1 holds) or Lemma 7.3 (if Assumption 7.16 holds),

sup
t
‖∇θg(Z̃0(t), θ(t))‖1 <∞.

and there exists a constant C > 0 such that for each j ∈ N0,

(7.39) ‖∂zjg(Z̃0(t), θ(t))‖M ′/(M ′−1) ≤ CC̄χ̂j .

It follows that

‖∂zg(Z̃0(t), θ(t))∂tZ̃0(t)‖1 ≤
∞∑
j=0

‖∂zjg(Z̃0(t), θ(t))‖M ′/(M ′−1) · ‖∂tZ̃0j(t)‖M ′

≤ CDC̄
∞∑
j=0

χ̂j <∞,

which shows the assertion.

(ii) Let t, t′ ∈ [0, 1]. From Lemma 7.1 (if Assumption 2.1 holds) or Lemma 7.3 (if As-

sumption 7.16 holds) we obtain with some constant C > 0, for each k = 1, ..., dΘ,

‖∇θkg(Z̃0(t), θ(t))‖1 ≤ C,

‖∇θkg(Z̃0(t), θ(t))−∇θkg(Z̃0(t), θ(t′))‖1 ≤ C|θ(t)− θ(t′)|1.

From Lemma 7.1 (if Assumption 2.1 holds) or Lemma 7.3 (if Assumption 7.16 holds) we

obtain for each k = 1, ..., dΘ (note that rM ≥M ′ in Assumption 2.2):

‖∇θkg(Z̃0(t), θ(t′))−∇θkg(Z̃0(t′), θ(t′))‖1

≤ C̄C
(
‖Ỹ0(t)− Ỹ0(t′)‖M ′ +

∞∑
j=1

χj‖X̃0(t)− X̃0(t′)‖M ′
)

≤ C̄CCB|t− t′|(1 + |χ|1).(7.40)
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By Lipschitz continuity of θ, θ′, the above results imply that the second summand in

(7.38) fulfills the assertion,

sup
t6=t′

‖∇θg(Z̃0(t), θ(t))θ′(t)−∇θg(Z̃0(t′), θ(t′))θ′(t′)‖1
|t− t′|

<∞.

It remains to show the same for the first summand in (7.38). By (7.39) and ‖∂tZ̃0j(t) −
∂tZ̃0j(t

′)‖M ′ ≤ CB|t− t′| from Assumption 2.2(B3), we have

(7.41) ‖∂zg(Z̃0(t), θ(t))(∂tZ̃0(t)− ∂tZ̃0(t′))‖1 ≤ CC̄CB|χ|1|t− t′|.

Similar as in (7.40), we see by Lemma 7.1 (if Assumption 2.1 holds) or Lemma 7.3 (if

Assumption 7.16 holds) that

(7.42) ‖∂zjg(Z̃0(t), θ(t))− ∂zjg(Z̃0(t′), θ(t))‖M ′/(M ′−1) ≤ χjC̄CCB(1 + |χ′|1)|t− t′|.

Finally, by Lemma 7.1 (if Assumption 2.1 holds) or Lemma 7.3 (if Assumption 7.16 holds)

and Lipschitz continuity of θ, we have

(7.43) ‖∂zjg(Z̃0(t′), θ(t))−∂zjg(Z̃0(t′), θ(t′))‖M ′/(M ′−1) ≤ χjC̄C|θ(t)−θ(t′)|1 = O(|t−t′|).

By Hölder’s inequality, we conclude from (7.42) and (7.43) that

‖(∂zg(Z̃0(t), θ(t))− ∂zg(Z̃0(t′), θ(t′)))∂tZ̃0(t′)‖1 = O(|t− t′|),

which together with (7.41), finishes the proof.

Lemma 7.5. Let q ≥ 1. Suppose that Assumption 2.1(A5), (A7) hold with some r ≥ q.
Let g ∈ H(My,Mx, χ, C̄), where χi = O(i−(1+γ)). Then it holds that

(i) supt∈[0,1] δ
supθ |g(Z̃(t),θ)|
q (j) = O(j−(1+γ)).

(ii) For Mi(t, η, u) := K̂bn(u− t)g(Z̃i(u), η1 + η2(u− t)b−1
n ), we have

sup
u∈[0,1]

sup
t,η

δM(t,η,u)
q (j) = O(j−(1+γ)), sup

u∈[0,1]
δ

supt,η |M(t,η,u)|
q (j) = O(j−(1+γ)).

(iii) Let du(t) = θ(u)− θ(t)− (u− t)θ′(t) and M
(2)
i (t, u) := K̂bn(u− t){

∫ 1
0 g(Z̃i(u), θ(t) +

sdu(t))ds} · du(t). Then it holds for each component that

sup
u∈[0,1]

δM
(2)(t,u)

q (j) = O(b2nj
−(1+γ)), sup

u∈[0,1]
δ

supt |M(2)(t,u)|
q (j) = O(b2nj

−(1+γ)).
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(*) If instead Assumption 7.16(A5’), (A7’) hold with some r > q and g = ` fulfills (7.94)

for all s > 0 small enough,then the statements above remain valid.

Proof. (i) Let Z̃j(t)
∗ be a coupled version of Z̃j(t) where ζ0 is replaced by ζ∗0 . By

Lemma 7.1 we obtain in case (2.12) that with some constant C̃ > 0:

δ
supθ |g(Z̃(t),θ)|
q (j)

= ‖ sup
θ
|g(Z̃j(t), θ)| − sup

θ
|g(Z̃j(t)

∗, θ)|‖q

≤ ‖ sup
θ
|g(Z̃j(t), θ)− g(Z̃j(t)

∗, θ)|‖q

≤ C̃
(
‖Ỹj(t)− Ỹj(t)∗‖qM +

∞∑
i=1

χi‖X̃j−i+1(t)− X̃j−i+1(t)∗‖qM
)

≤ C̃
(
δ
Ỹ (t)
qM (j) +

∞∑
i=1

χiδ
X̃(t)
qM (j − i+ 1)

)
,(7.44)

and in case (2.13), similarly

(7.45) δg(Z̃(t),θ)
q (j) ≤ C̃

∞∑
i=1

χiδ
X̃(t)
qM (j − i+ 1).

In case (*), let s > 0 be such that q(1 + s) < r. Then we have by Lemma 7.2:

δg(Z̃(t),θ)
q (j) ≤ C̃

∞∑
i=0

ˆ̂χ
(s)
i

(
‖Z̃i(t)− Z̃i(t)∗‖qM + ‖Z̃i(t)− Z̃i(t)∗‖sqM(1+s)

)
≤ C̃

∞∑
i=0

χ
(s)
i

(
δ
X̃(t)
qM (j − i+ 1) + [δ

X̃(t)
qM(1+s)(j − i+ 1)]s

)
.(7.46)

Note that if two sequences ai, bi with ai = bi = 0 for i < 0 obey ai, bi = O(i−(1+γ)) then

the convolution cj =
∑∞

i=1 aibj−i+1 still obeys cj = O(j−(1+γ)) due to

|cj | ≤
j+1∑

i=1,i≥(j+1)/2

|ai| · |bj−i+1|+
j+1∑

i=1,|j−i|≥(j+1)/2

|ai||bj−i+1|

≤
(j + 1

2

)−(1+γ)
j+1∑
i=1

|bj−i+1|+
(j + 1

2

)−(1+γ)
j+1∑
i=1

|ai| = O(j−(1+γ)).

Together with Assumption (A7) and (7.44), (7.45) or (in case (*)) Assumption 7.16(A7’)

and (7.46), this shows supt∈[0,1] δ
g(Z̃(t),θ)
r (j) = O(j−(1+γ)).
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The proof for (ii),(iii) is the same since∣∣ sup
t,η
|Mi(t, η, u)| − sup

t,η
|Mi(t, η, u)∗|

∣∣ ≤ sup
t,η
|Mi(t, η, u)−Mi(t, η, u)∗|

≤ |K̂|∞ sup
θ
|g(Z̃i(u), θ)− g(Z̃i(u)∗, θ)|

and (since |du(t)|∞ ≤ sups |θ′′(s)|∞ · b2n if |t− u| ≤ bn), for each l = 1, . . . , k,∣∣ sup
t
|M̃ (2)

i (t, u)l| − sup
t
|M̃ (2)

i (t, u)∗l |
∣∣ ≤ sup

t
|M (2)

i (t, u)l −M
(2)
i (t, u)∗l |

≤ |K̂|∞ sup
s
|θ′′(s)|∞b2n

× sup
t

∫ 1

0
|g(Z̃i(u), θ(t) + sdu(t))− g(Z̃i(u)∗, θ(t) + sdu(t))|ds

≤ |K̂|∞ sup
s
|θ′′(s)|∞b2n sup

θ∈Θ
|g(Z̃i(u), θ)− g(Z̃i(u)∗, θ)|.

Lemma 7.6 (for tvGARCH). Let q ≥ 1. Suppose that Assumption 7.16(A5’), (A7’)

hold with some r > q. For s > 0, let χ(s) = (χ
(s)
i )i∈N be such that χ

(s)
i = O(i−(1+γ)). Let

g be such that g̃θ̃(y, x, θ) := g(F (x, θ̃, y), x, θ) fulfills g̃ ∈ Hmults,ι (My,Mx, χ
(s), C̄(s)) for all

s > 0 small enough. Then

(i) supt∈[0,1] δ
sup|θ−θ(t)|1<ι |g(Z̃(t),θ)|
q (j) = O(j−(1+γ)).

(ii) For n large enough,

sup
u∈[0,1]

sup
t,|η−ηbn (t)|1<ι/2

δM(t,η,u)
q (j) = O(j−(1+γ)), sup

u∈[0,1]
δ

supt,|η−ηbn (t)|1<ι/2 |M(t,η,u)|
q (j) = O(j−(1+γ)).

(iii) For n large enough, supu∈[0,1] δ
M(2)(t,u)
q (j) = O(b2nj

−(1+γ)), and supu∈[0,1] δ
supt |M(2)(t,u)|
q (j) =

O(b2nj
−(1+γ)).

Proof of Lemma 7.6. (i) Let Z̃j(t)
∗ be a coupled version of Z̃j(t) where ζ0 is replaced
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by ζ∗0 . By Lemma 7.3 we obtain that with some constant C̃ > 0:

δ
sup|θ−θ(t)|1<ι |g(Z̃(t),θ)|
q (j)

≤ ‖ sup
|θ−θ(t)|1<ι

|g̃θ(t)(ζj , X̃j(t), θ)− g̃θ(t)(ζj , X̃j(t)
∗, θ)|‖q

≤ C̃
∞∑
i=1

χi‖X̃j−i+1(t)− X̃j−i+1(t)∗‖qM

≤ C̃
∞∑
i=1

χiδ
X̃(t)
qM (j − i+ 1).

The result now follows as in the proof of Lemma 7.5(i) with Assumption 7.16(A7’).

(ii) We have for n large enough that

|η−ηbn(t)|1 = |η1−θ(t)|1+|η2−bnθ′(t)|1 < ι/2 implies |(η1+η2(u−t)b−1
n )−θ(t)|1 ≤ |η1−θ(t)|1+|η2|1 < ι

and |θ − θ(t)|1 < ι, |u − t| ≤ bn implies |θ − θ(u)|1 < ι due to uniform continuity of θ(·).
Therefore, we have for n large enough:∣∣ sup

t,|η−ηbn (t)|1<ι/2
|Mi(t, η, u)| − sup

t,|η−ηbn (t)|1<ι/2
|Mi(t, η, u)∗|

∣∣
≤ sup

t,|η−ηbn (t)|1<ι/2
|K̂bn(u− t)| · |g(Z̃i(u), η1 + η2(u− t)b−1

n )− g(Z̃i(u), η1 + η2(u− t)b−1
n )|

≤ sup
t,|θ−θ(t)|1<ι

|K̂bn(u− t)| · |g̃θ(u)(ζi, X̃i(u), θ)− g̃θ(u)(ζi, X̃i(u)∗, θ)|

≤ |K̂|∞ · sup
|θ−θ(u)|1<ι

|g̃θ(u)(ζi, X̃i(u), θ)− g̃θ(u)(ζi, X̃i(u)∗, θ)|.

The rest works as in (i).

(iii) For n large enough, it holds that |u−t| ≤ bn implies that sups∈[0,1] |θ(t)+sdu(t)−θ(u)| <
ι due to uniform continuity of θ(·). Thus∣∣ sup

t
|M (2)

i (t, u)| − sup
t
|M (2)

i (t, u)∗|
∣∣

≤ |K̂|∞ sup
s
|θ′′(s)|∞b2n sup

|θ−θ(u)|<ι
|g̃θ(u)(ζi, X̃i(u), θ)− g̃θ(u)(ζi, X̃i(u)∗, θ)|.

The rest works as in (i).

Lemma 7.7 (Lipschitz properties of Ĝn). Let s ≥ 0.



52 S. KARMAKAR ET AL.

(i) Let g ∈ Hs(My,Mx, χ, C̄). Let Assumption 2.1(A5) hold with r ≥ 1 + s. Then there

exists some constant C̃ > 0 such that

sup
t∈[0,1]

∥∥∥ sup
η 6=η′

|Ĝn(t, η)− Ĝn(t, η′)|
|η − η′|1

∥∥∥
1
≤ C̃,

and ∥∥∥ sup
t6=t′

sup
η 6=η′

|Ĝn(t, η)− Ĝn(t′, η′)|
|t− t′|+ |η − η′|1

∥∥∥
1
≤ C̃b−2

n ,

(ii) (for tvGARCH) Let g be such that g̃θ̃(y, x, θ) := g(F (x, θ̃, y), x, θ) fulfills g̃ ∈ Hmults,ι (My,Mx, χ
(s), C̄(s))

with χ
(s)
i = O(i−(1+γ)). Let Assumption 7.16(A5’) hold with r ≥ 1 + s and let θ(·) be

continuous. Then there exists some constant C̃(s) > 0 such that

sup
t∈[0,1]

∥∥∥ sup
η 6=η′

|η−ηbn (t)|1<ι/2,|η′−ηbn (t)|1<ι/2

|Ĝn(t, η)− Ĝn(t, η′)|
|η − η′|1

∥∥∥
1
≤ C̃(s),

and ∥∥∥ sup
t6=t′

sup
η 6=η′

|η−ηbn (t)|1<ι/2,|η′−ηbn (t′)|1<ι/2

|Ĝn(t, η)− Ĝn(t′, η′)|
|t− t′|+ |η − η′|1

∥∥∥
1
≤ C̃(s)b−2

n ,

Proof of Lemma 7.7. By Lemma 7.1(i), supt∈[0,1] ‖RMy ,Mx(Z̃0(t))1+s‖1 <∞. This is

needed several times in the following.

(i) Since g ∈ Hs(My,Mx, χ, C̄) and |i/n− t| ≤ bn inside the sum, it holds that

(7.47)

|Ĝn(t, η)−Ĝn(t, η′)| ≤ C̄|η−η′|1·(nbn)−1
n∑
i=1

|K̂bn(i/n−t)|{RMy ,Mx(Z̃i(i/n))1+s+‖RMy ,Mx(Z̃i(i/n))1+s‖1}.

Furthermore, (nbn)−1
∑n

i=1 |K̂bn(i/n− t)| ≤ |K̂|∞. This yields the assertion.

Since g ∈ Hs(My,Mx, χ, C̄), we have with some constant C̃ > 0:

|Ĝn(t, η)− Ĝn(t′, η′)|

≤ (nbn)−1
n∑
i=1

|K̂bn(i/n− t)− K̂bn(i/n− t′)| · sup
θ
{|g(Z̃i(i/n), θ)|+ ‖g(Z̃i(i/n), θ)‖1}

+(nbn)−1
n∑
i=1

|K̂bn(i/n− t′)| · |g(Z̃i(i/n), η1 + η2(i/n− t)b−1
n )− g(Z̃i(i/n), η′1 + η′2(i/n− t′)b−1

n )

≤
[
b−2
n LK̂ |t− t

′|+ b−1
n |K̂|∞{|η − η′|1 + |η2| · |t− t′|b−1

n

]
· 1

n

n∑
i=1

{RMy ,Mx(Z̃i(i/n))1+s

+‖RMy ,Mx(Z̃i(i/n))1+s‖1}.
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Since supη∈En |η2|1 <∞ is compact, this gives the result.

(ii) We now have

|Ĝn(t, η)− Ĝn(t, η′)|

≤ (nbn)−1
n∑
i=1

|K̂bn(i/n− t)| ·
∣∣g̃θ(i/n)(ζi, X̃i(i/n), η1 + η2(i/n− t)b−1

n )

−g̃θ(i/n)(ζi, X̃i(i/n), η′1 + η′2(i/n− t)b−1
n )
∣∣.

Here, |η − ηbn(t)| < ι/2 implies |(η1 + η2(i/n− t)b−1
n )− θ(t)| < ι for n large enough. Since

θ(·) is uniformly continuous, |θ − θ(t)|1 < ι, |i/n − t| ≤ bn imply |θ − θ(i/n)|1 < ι for n

large enough. Since g̃θ̃ ∈ H
mult
s,ι (My,Mx, χ

(s), C̄(s)), we obtain

|Ĝn(t, η)− Ĝn(t, η′)| ≤ C̄(s)|η − η′|1(nbn)−1
n∑
i=1

|K̂bn(i/n− t)| · {RM,M (1, X̃i(i/n))1+s(1 + |ζi|M )1+s

+‖RM,M (1, X̃i(i/n))1+s(1 + |ζi|M )1+s‖1},

giving the result.

We have

|Ĝn(t, η)− Ĝn(t′, η′)|

≤ (nbn)−1
n∑
i=1

|K̂bn(i/n− t)− K̂bn(i/n− t′)|

× sup
|η−ηbn (t)|<ι/2

{|g̃θ(i/n)(ζi, X̃i(i/n), η1 + η2(i/n− t)b−1
n )|+ ‖g̃θ(i/n)(ζi, X̃i(i/n), η1 + η2(i/n− t)b−1

n )‖1}

+(nbn)−1
n∑
i=1

|K̂bn(i/n− t′)| · |g̃θ(i/n)(ζi, X̃i(i/n), η1 + η2(i/n− t)b−1
n )

−g̃θ(i/n)(ζi, X̃i(i/n), η′1 + η′2(i/n− t′)b−1
n ).

The same argumentation as before allows us to use the Lipschitz properties of g̃θ(i/n) w.r.t.

θ, giving the result.

For the proof of the following lemma, we will make use of the adjusted dependence

measure ‖ · ‖q,α which is defined as follows (cf. [61]): For some zero-mean random variable

Z, let ‖Z‖q,α := supm≥0(m+ 1)α∆Z
q (m).

Lemma 7.8. Let γ > 1. For s ≥ 0, let χ
(s)
i = (χ

(s)
i )i∈N be a sequence with χ

(s)
i =

O(i−(1+γ)). Recall the notation from (7.1). Assume that either (in the case (a)) Assumption
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2.1(A5), (A6), (A7) or (in the cases (b),(c)) Assumption 7.16(A5’), (A6’), (A7’) hold with

some r specified below.

(i) Let r ≥ 1 + ς, ς ≥ 0 and assume either that ς = 0 and g ∈ H0(My,Mx, χ
(0), C̄(0)) or

ς > 0 and for all s > 0 small enough, g ∈ Hs(My,Mx, χ
(s), C̄(s)). Then

‖ sup
t∈(0,1)

sup
η∈En

|Ĝn(t, η)−Gcn(t, η)|‖1 = O((nbn)−1).

(ii) Fix t ∈ [0, 1] and assume that nbn →∞. Let r ≥ 1 + ς, ς > 0.

(a) If for all s > 0 small enough, g ∈ Hs(My,Mx, χ
(s), C̄(s)), then

sup
η∈En

|Ĝn(t, η)| = oP(1).

(b) If for all s > 0 small enough, g̃θ̃(y, x, θ) := g(F (y, x, θ̃), x, θ) fulfills g̃ ∈ Hmults,ι (M,χ(s), C̄(s)),

then

sup
|η−ηbn (t)|<ι

|Ĝn(t, η)| = oP(1) if bn → 0.

(c) If for all s > 0 small enough, g fulfills (7.94) and g ∈ Hs(2My, 2Mx, χ
(s), C̄(s)),

then

sup
η∈En

|Ĝn(t, η)| = oP(1).

(iii) Let r ≥ 2 + ς, ς > 0. Define βn = log(n)1/2(nbn)−1/2b
−1/2
n .

(a) If for all s > 0 small enough, g ∈ Hs(My,Mx, χ
(s), C̄(s)), then

sup
t∈(0,1)

sup
η∈En

|Ĝn(t, η)| = OP(βn).

(b) If g is such that g̃θ̃(y, x, θ) := g(F (y, x, θ̃), x, θ) and for all s > 0 small enough,

g̃ ∈ Hmults,ι (M,χ(s), C̄(s)), then

sup
t∈(0,1)

sup
|η−ηbn (t)|1<ι

|Ĝ(t, η)| = OP(βn).

(c) If for all s > 0 small enough, g fulfills (7.94) and g ∈ Hs(2My, 2Mx, χ
(s), C̄(s)),

then

sup
t∈(0,1)

sup
η∈En

|Ĝ(t, η)| = OP(βn).
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Proof of Lemma 7.8. We abbreviate χ = χ(s) and C̄ = C̄(s).

(i) By Lemma 7.1(i),(ii) and by Assumption 2.1(A6), we obtain (independent of (2.12) or

(2.13)) that for some C > 0:

‖ sup
θ∈Θ
|g(Zi, θ)− g(Zci , θ)|‖1 ≤ C

∞∑
j=0

χ̂j‖Zij − Zcij‖M ≤ 2C
∞∑
j=i

χj‖Zij‖M ≤ 2CD
∞∑
j=i

χj .

Similarly, we have in the case (2.12) that

‖ sup
θ∈Θ
|g(Zi, θ)− g(Z̃i(i/n), θ)|‖1 ≤ C

(
‖Yi − Ỹi(i/n)‖M +

∞∑
j=1

χj‖Xij − X̃ij(i/n)‖M
)

≤ CCA|χ|1n−1,

while in the case (2.13) there exists C2 > 0 such that

‖ sup
θ∈Θ
|g(Zi, θ)− g(Z̃i(i/n), θ)|‖1 ≤ C2

∞∑
j=1

χj‖Xij − X̃ij(i/n)‖M ≤ C2CA|χ|1n−1.

Thus

‖ sup
t∈(0,1)

sup
η∈En

|Gn(t, η)−Gcn(t, η)|‖1

≤ |K|∞(nbn)−1
n∑
i=1

‖ sup
θ∈Θ
|g(Zi, θ)− g(Zci , θ)|‖1

≤ 2CD|K|∞(nbn)−1
n∑
i=1

∞∑
j=i

χj + |K|∞(C ∨ C2)|χ|1(nbn)−1.

Since χj = O(j−1+γ), it holds that
∑n

i=1

∑∞
j=i χj = O(1) and the assertion is proved. The

proofs under Assumption 7.16 are similar in view of Lemma 7.2.

(ii) (a) Fix Q > 0. Let κ > 0. Let E
(κ)
n be a discretization of En such that for each

η ∈ En one can find η′ ∈ E(κ)
n with |η−η′|1 ≤ κ. Note that #E

(κ)
n does not need to depend

on n. Then

P
(

sup
η∈En

|Ĝn(t, η)| > Q
)
≤ #E(κ)

n sup
η∈En

P
(
|Ĝn(t, η)| > Q/2

)
+P( sup

|η−η′|1≤κ
|Ĝn(t, η)− Ĝn(t, η′)| > Q/2).(7.48)

By Markov’s inequality, we have for 0 ≤ s ≤ ς,

P
(
|Ĝn(t, η)| > Q/2

)
≤
‖Ĝn(t, η)‖1+s

1+s

(Q/2)1+s
.
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Using Burkholder’s moment inequality (cf. [8]) and Lemma 7.5(i) applied for q = 1 + s,

s > 0 small enough, the computation

‖Ĝn(t, η)‖1+s(7.49)

≤ (nbn)−1
∞∑
l=0

∥∥∥ n∑
i=1

K̂bn(i/n− t)Pi−lg(Z̃i(i/n), η1 + η2(i/n− t)b−1
n )
∥∥∥

1+s

≤ s−1(nbn)−1
∞∑
l=0

(∥∥∥ n∑
i=1

K̂bn(i/n− t)2P 2
i−lg(Z̃i(i/n), η1 + η2(i/n− t)b−1

n )
∥∥∥(1+s)/2

(1+s)/2

)1/(1+s)

≤ s−1(nbn)−s/(1+s)|K̂|∞
∞∑
l=0

sup
t∈[0,1]

δ
supθ∈Θ |g(Z̃(t),θ)|
1+s (l) = O((nbn)−s/(1+s)),

shows that the first summand in (7.48) tends to zero. For the second summand, Lemma

7.7(i) implies

P( sup
|η−η′|1≤κ

|Ĝn(t, η)− Ĝn(t, η′)| > Q/2) ≤ 2C̃κ

Q
,

which can be made arbitrary small by choosing ι small enough. So we have shown that

(7.48) tends to zero for n→∞.

(b) The proof is similar to (a) by using 7.7(ii) and Lemma 7.6(i) instead of Lemma 7.7(i)

and Lemma 7.5(i).

(c) The proof is similar to (a) by using Lemma 7.5(i)(*) instead of Lemma 7.5(i).

(iii) (a) We use a chaining argument. Let r = n3 and let En,r be a discretization of

En such that for each η ∈ En one can find η′ ∈ En,r with |η − η′| ≤ r−1. Define Tn,r :=

{i/r : i = 1, . . . , r} as a discretization of (0, 1). Then #(En,r×Tn,r) = O(r2dΘ+1). For some

constant Q > 0, we have

P
(

sup
η∈En,t∈(0,1)

|Ĝn(t, η)| > Qβn

)
≤ P

(
sup

η∈En,r,t∈Tn,r
|Ĝn(t, η)| > Qβn/2

)
+P
(

sup
|η−η′|≤r−1,|t−t′|≤r−1

|Ĝn(t, η)− Ĝn(t′, η′)| > Qβn/2
)
.(7.50)

Let α = 1/2. Let Mi(t, η, u) := K̂bn(u − t)g(Z̃i(u), η1 + η2(u − t)b−1
n ). By Lemma 7.5(ii)

applied with q = 2 + s, s > 0 small enough, we have supu ∆
supt,η |M(t,η,u)|
2+s (k) = O(k−(1+γ)).

Thus

W2+s,α := sup
u∈[0,1]

‖ sup
t,η
|Mi(t, η, u)|‖2+s,α = sup

m≥0
(m+ 1)α sup

u∈[0,1]
sup
t,η

∆
supt,η |M(t,η,u)|
2+s (m) <∞.
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(independent of n) and

W2,α := sup
u∈[0,1]

sup
t,η
‖Mi(t, η, u)‖2,α = sup

m≥0
(m+ 1)α sup

u∈[0,1]
sup
t,η

∆
M(t,η,u)
2 (m) <∞

(independent of n). Note that l = 1∧log #(En,r×Tn,r) ≤ 3(2dΘ+1) log(n) and Qβn(nbn) =

Qn1/2 log(n)1/2 ≥
√
nlW2,α +n1/(2+s)l3/2W2+s,α & n1/2 log(n)1/2 +n1/(2+s) log(n)3/2 for Q

large enough. By applying Theorem 6.2 of [61] (the proof therein also works for the uniform

functional dependence measure) with q = 2 + s and α = 1/2 to (Mi(t, η, i/n))t∈Tn,r,η∈En,r ,

we have with some constant Cα > 0:

P
(

sup
η′∈En,r,t′∈Tn,r

|Ĝn(t′, η′)| ≥ Qβn/2
)

≤
Cαn · l1+s/2W 2+s

2+s,α

(Q/2)2+s(δn(nbn))2+s
+ Cα exp

(
− Cα(Q/2)2(βn(nbn))2

nW 2
2,α

)
. n−s/2 + exp

(
− (nbn)b−1

n log(n)

n

)
→ 0.(7.51)

By Markov’s inequality and Lemma 7.7(i),

(7.52) P
(

sup
|η−η′|1≤r−1,|t−t′|≤r−1

|Ĝn(t, η)− Ĝn(t′, η′)| ≥ Cβn/2
)

= O
(b−2

n r−1

βn

)
.

We have b−2
n r−1β−1

n = b−2
n n−3(nbn)1/2b

1/2
n log(n)−1/2 → 0. Inserting (7.51) and (7.52) into

(7.50), we obtain the result.

(b) The proof is similar to (a) by using 7.7(ii) and Lemma 7.6(ii) instead of Lemma 7.7(i)

and Lemma 7.5(ii).

(c) The proof is similar to (a) by using 7.7(ii)(*) instead of Lemma 7.7(ii).

Lemma 7.9. For g : R× RN ×Θ→ R. Let

B̂n(t, η) = (nbn)−1
n∑
i=1

K̂bn(i/n− t)g(Z̃i(i/n), η1 + η2(i/n− t)b−1
n ).

(a) If Assumption 2.1(A5) is fulfilled with r ≥ 1 + s, s ≥ 0 and g ∈ Hs(My,Mx, χ, C̄),

then

sup
t∈(0,1)

sup
η∈En

|EB̂n(t, η)−
∫ (1−t)/bn

−t/bn
K̂(x)Eg(Z̃0(t), η1 + η2x)dx| = O((nbn)−1 + bn).
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(b) If Assumption 7.16(A5’) is fulfilled with r ≥ 1 + s and g is such that g̃θ̃(y, x, θ) :=

g(F (y, x, θ̃), x, θ) fulfills g̃ ∈ Hmults,ι (M,χ, C̄), then

sup
t∈(0,1)

sup
|η−ηbn (t)|<ι

|EB̂n(t, η)−
∫ (1−t)/bn

−t/bn
K̂(x)Eg(Z̃0(t), η1+η2x)dx| = O((nbn)−1 +bn).

If the supremum is taken over t ∈ Tn instead of t ∈ (0, 1), then
∫ (1−t)/bn
−t/bn can be replaced by∫ 1

−1.

Proof of Lemma 7.9. (a) Let B̃n(t, η) := (nbn)−1
∑n

i=1 K̂bn(i/n−t)g(Z̃i(t), η1+η2(i/n−
t)b−1

n ). By Lemma 7.1(i), we have with some constant C̃ > 0 that either in the case of (2.12),

‖g(Z̃0(i/n), η1 + η2(i/n− t)b−1
n )− g(Z̃0(t), η1 + η2(i/n− t)b−1

n )‖1

≤ C̃
(
‖Ỹ0(i/n)− Ỹ0(t)‖M +

∞∑
i=1

χi‖X̃−i(i/n)− X̃−i(t)‖M
)
≤ C̃CB(1 + |χ|1)bn

or in the case of (2.13),

‖g(Z̃0(i/n), η1 + η2(i/n− t)b−1
n )− g(Z̃0(t), η1 + η2(i/n− t)b−1

n )‖1

≤ C̃
∞∑
i=1

χi‖X̃−i(i/n)− X̃−i(t)‖M ≤ C̃CB|χ|1bn.

Thus

‖B̂n(t, η)− B̃n(t, η)‖1

≤ (nbn)−1
n∑
i=1

|K̂bn(i/n− t)|

×‖g(Z̃i(i/n), η1 + η2(i/n− t)b−1
n )− g(Z̃i(t), η1 + η2(i/n− t)b−1

n )‖1
≤ C̃|K̂|∞CB(1 + |χ|1)bn.

Since K̂ is of bounded variation and θ 7→ Eg(Z̃0(t), θ) is Lipschitz continuous due to

g ∈ H(My,Mx, χ, C̄) and Lemma 7.1, a Riemannian sum argument yields

B̃n(t, η) = (nbn)−1
n∑
i=1

K̂bn(i/n− t)Eg(Z̃0(t), η1 + η2(i/n− t)b−1
n )

=

∫ (1−t)/bn

−t/bn
K̂(x)Eg(Z̃0(t), η1 + η2x)dx+O((nbn)−1),

uniformly in t ∈ (0, 1), η ∈ En.

(b) The proof is the same by using Lemma 7.3 with q = 1 instead of Lemma 7.1.
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Lemma 7.10. Let ηbn(t) = (θ(t)T, bnθ
′(t)T)T. Let Assumption 2.1 hold with r = 1 or let

Assumption 7.16 hold with r = 2 + ς, ς > 0.

(i) Then uniformly in t ∈ Tn,

(7.53) E∇η1L̂
◦
n,bn(t, ηbn(t)) = b2n

µK,2
2

V (t)θ′′(t) +O(b3n + (nbn)−1).

Furthermore, it holds uniformly in t ∈ (0, 1) that

(7.54)

E∇ηL̂◦n,bn(t, ηbn(t)) =
b2n
2

∫ (1−t)/bn

−t/bn
K(x)

(
x2

x3

)
dx⊗ [V (t)θ′′(t)] +O(b3n + (nbn)−1).

(ii) If Assumptions 2.1, 2.2 or Assumptions 7.16, 7.17 hold with the r specified above,

then uniformly in t ∈ Tn,

E∇η2L̂
◦
n,bn(t, ηbn(t)) = b3n

µK,4
2

V (t)bias(t) +O(b4n + (nbn)−1),

where bias(t) = 1
3θ

(3)(t) + V (t)−1E[∂t∇2
θ`(Z̃0(t), θ(t))] · θ′′(t), and the term O(b3n) in

(7.53) can be replaced by O(b4n).

Proof of Lemma 7.10. (i) Let Ui,n(t) = (Kbn(i/n− t),Kbn(i/n− t)(i/n− t)b−1
n )T. By

a Taylor expansion of θ(i/n) around t, we have

θ(i/n) = θ(t) + θ′(t)(i/n− t) + rn(t),

where rn(t) = θ′′(t) (i/n−t)2

2 + θ′′′(t̃) (i/n−t)3

6 and t̃ is between t and i/n. We conclude that

∇ηL̂◦n,bn(t, ηbn(t))− (nbn)−1
n∑
i=1

Ui,n(t)⊗∇θ`(Z̃i(i/n), θ(i/n))

= (nbn)−1
n∑
i=1

Ui,n(t)⊗
{∫ 1

0
∇2
θ`(Z̃i(i/n), θ(i/n) + srn(t))ds · rn(t)

}
.(7.55)

Using ∇2
θ` ∈ H(My,Mx, χ, C̄) (if Assumption 2.1 holds) or ∇2

θ` ∈ Hs(2My, 2Mx, χ, C̄) with

s > 0 small enough (if Assumption 7.16 holds), we obtain with Lemma 7.1 for |i/n−t| ≤ bn:

(7.56) ‖∇2
θ`(Z̃i(i/n), θ(i/n) + srn(t))−∇2

θ`(Z̃i(t), θ(t))‖1 = O(bn + n−1).
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Using (7.55), E∇θ`(Z̃i(i/n), θ(i/n)) = 0 (by Assumption 2.1(A1),(A3) or Assumption

7.16(A1’), (A3’)) and (7.56), we obtain

E∇ηL̂◦n,bn(t, ηbn(t))

= (nbn)−1
n∑
i=1

Ui,n(t)⊗
{
E∇2

θ`(Z̃i(t), θ(t)) · θ′′(t)
(i/n− t)2

2

}
+O(b3n + n−1)

=

(
b2n

µK,2
2 V (t)θ′′(t)

0

)
+O(b3n + n−1 + (nbn)−1),(7.57)

which shows (7.53).

(7.54) follows by a more careful examination of the above Riemannian sum: Under As-

sumption 2.2, we have rn(t) = θ′′(t) (i/n−t)2

2 + θ(3)(t) (i/n−t)3

6 + θ(4)(t̃) (i/n−t)4

24 , where t̃ is

between t and i/n. We now use a more precise Taylor argument as in (7.55). We have

∇ηL̂◦n,bn(t, ηbn(t))− (nbn)−1
n∑
i=1

Ui,n(t)⊗∇θ`(Z̃i(i/n), θ(i/n))

= (nbn)−1
n∑
i=1

Ui,n(t)⊗∇2
θ`(Z̃i(i/n), θ(i/n))rn(t)(7.58)

+(nbn)−1
n∑
i=1

Ui,n(t)⊗
{∫ 1

0
∇2
θ`(Z̃i(i/n), θ(i/n) + srn(t))

−∇2
θ`(Z̃i(i/n), θ(i/n))ds · rn(t)

}
.

Since ∇2
θ` ∈ H(My,Mx, χ, C̄) (if Assumption 2.1 holds) or ∇2

θ` ∈ Hs(2My, 2Mx, χ, C̄) for

s > 0 small enough (if Assumption 7.16 holds), we have by Lemma 7.1:

(7.59)
∥∥∇2

θ`(Z̃i(i/n), θ(i/n)+srn(t))−∇2
θ`(Z̃i(i/n), θ(i/n))

∥∥
1

= O(rn(t)) = O(|i/n−t|2).

This shows that the expectation of the second summand in (7.58) is O(b4n). We now discuss

the first term in (7.58). Put vi(t) := ∇2
θ`(Z̃i(t), θ(t)). By Assumption 2.2, t 7→ vi(t) is

continuously differentiable. By Taylor’s expansion, vi(i/n) = vi(t) + (i/n − t)∂tvi(t) +

(i/n− t)
∫ 1

0 ∂tvi(t+ s(i/n− t))− ∂tvi(t)ds. We have

(7.60) E
[
(nbn)−1

n∑
i=1

Ui,n(t)⊗ vi(t)rn(t)
]

=

(
b2n

µK,2
2 V (t)θ′′(t)

b3n
µK,4

6 V (t)θ(3)(t)

)
+O(n−1 + b4n),
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since K has bounded variation and
∫
K(x)x3dx = 0 by symmetry. Similarly,

E
[
(nbn)−1

n∑
i=1

Ui,n(t)⊗ ∂tvi(t)rn(t)
]

=

(
0

b3n
µK,4

2 E[∂t∇2
θ`(Z̃0(t), θ(t))]θ′′(t)

)
+O(n−1 + b4n).(7.61)

Finally, Lemma 7.4 applied to g = ∇2
θ` (use Assumption 2.2 or 7.17) yields:

(7.62) ‖∂tvi(t+ s(i/n− t))− ∂tvi(t)‖1 = O(|i/n− t|).

The results (7.60), (7.61) and (7.62) imply

E
[
(nbn)−1

n∑
i=1

Ui,n(t)⊗∇2
θ`(Z̃i(i/n), θ(i/n))rn(t)]

=

(
b2n

µK,2
2 V (t)θ′′(t)

b3nµK,4 ·
{

1
6V (t)θ(3)(t) + 1

2E[∂t∇2
θ`(Z̃0(t), θ(t))] · θ′′(t)

})+O(n−1 + b4n),

which together with (7.58) gives the result.

Lemma 7.11 (Lipschitz properties of Πn). Let s ≥ 0. Suppose that Assumption 2.1

holds with r ≥ 1 or Assumption 7.16 holds with r > 1. Define

Πn(t) := (nbn)−1
n∑
i=1

(M
(2)
i (t, i/n)− EM (2)

i (t, i/n)),

where

M
(2)
i (t, u) = K̂bn(u− t) ·

∫ 1

0
Mi(t, u)ds · du(t),

Mi(u, t) = ∇2
θ`(Z̃i(u), θ(t) + sdu(t)) and du(t) = θ(u)− θ(t)− (u− t)θ′(t). Then there exist

come constants C̃, ι′ > 0 such that∥∥∥ sup
t6=t′,|t−t′|<ι′

|Πn(t)−Πn(t′)|
|t− t′|1

∥∥∥
1
≤ C̃.

Proof of Lemma 7.11. We have

|M (2)
i (t, u)−M (2)

i (t′, u)|

≤ |K̂bn(u− t)− K̂bn(u− t′)| · |Mi(t, u)| · |du(t)|

+|K̂bn(u− t′)| · |Mi(t, u)−Mi(t
′, u)| · |du(t)|

+|K̂bn(u− t′)| · |Mi(t
′, u)| · |du(t)− du(t′)|.
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If Assumption 2.1 holds, we have

|Mi(t, u)| ≤ sup
θ∈Θ
|g(Z̃i(u), θ)|,

|Mi(t, u)−Mi(t
′, u)| ≤ sup

θ∈Θ

|g(Z̃i(u), θ)− g(Z̃i(u), θ′)|
|θ − θ′|1

· {|θ(t)− θ(t′)|1 + |du(t)− du(t′)|1},

As long as |t − u| < 1 and |t − t′| is small enough, we obtain |t′ − u| ≤ 1. So in the case

that either |t − u| < 1 or |t′ − u| < 1, Lipschitz continuity of θ(·), θ′(·) implies that there

exists some constant C̃ > 0 such that |du(t)− du(t′)|1 ≤ C̃|t− t′|, |θ(t)− θ(t′)|1 ≤ C̃|t− t′|,
|du(t)|1 ≤ C̃.

This implies

|M (2)
i (t, u)−M (2)

i (t′, u)| ≤ C̃b−1
n LK̂ sup

θ∈Θ
|g(Z̃i(u), θ)| · |t− t′|

+2|K̂|∞C̃2 · sup
θ∈Θ

|g(Z̃i(u), θ)− g(Z̃i(u), θ′)|
|θ − θ′|1

|t− t′|

+|K̂|∞C̃ · sup
θ∈Θ
|g(Z̃i(u), θ)| · |t− t′|.(7.63)

With Lemma 7.1(i) we obtain the result.

Suppose now that Assumption 7.16 holds. As long as |t − t′| is small enough and n is

large enough, |u − t| ≤ bn (or |u − t′| ≤ bn) and the twice differentiability of θ(·) imply

that supν∈[0,1] |θ(u)− (θ(t) + νdu(t))|1 < ι, supν∈[0,1] |θ(u)− (θ(t′) + νdu(t′))|1 < ι. We then

obtain

|Mi(t, u)| ≤ sup
|θ−θ(u)|1<ι

|g̃θ(u)(ζi, X̃i(u), θ)|,

|Mi(t, u)−Mi(t
′, u)| ≤ C̄ · sup

θ 6=θ′,|θ−θ(u)|1<ι,|θ′−θ(u)|1<ι

|g̃θ(u)(ζi, X̃i(u), θ)− g̃θ(u)(ζi, X̃i(u), θ′)|
|θ − θ′|1

×{|θ(t)− θ(t′)|1 + |du(t)− du(t′)|1,

giving appropriate results for (7.63) and thus the assertion with Lemma 7.3.

Lemma 7.12. Let Ui,n(t) := Kbn(i/n − t) · (1, (i/n − t)b−1
n )T. Let Assumption 2.1 or

7.16 hold with some r = 2 + ς, ς > 0. Then it holds that

sup
t∈(0,1)

∣∣∇ηL̂◦n,bn(t, ηbn(t))− E∇ηL̂◦n,bn(t, ηbn(t))

−(nbn)−1
n∑
i=1

Ui,n(t)⊗∇θ`(Z̃i(i/n), θ(i/n))
∣∣ = OP(βnb

2
n).
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Proof. Note that E∇θ`(Z̃i(i/n), θ(i/n)) = 0 by Assumption 2.1(A1),(A3) or Assump-

tion 7.16(A1’),(A3’). Put

Πn(t)

:= (nbn)−1
n∑
i=1

Ui,n(t)⊗
{

[∇θ`(Z̃i(i/n), θ(t) + (i/n− t)θ′(t))−∇θ`(Z̃i(i/n), θ(i/n))]

−E[∇θ`(Z̃i(i/n), θ(t) + (i/n− t)θ′(t))−∇θ`(Z̃i(i/n), θ(i/n))]}.

We have to prove that supt∈Tn
∣∣Πn(t)

∣∣ = OP(δnb
2
n). Define Mi(t, u) :=

∫ 1
0 ∇

2
θ`(Z̃i(u), θ(t) +

s(θ(u)−θ(t)−(u−t)θ′(t)))ds and M
(2)
i (t, u) = Ui,n(t)⊗

{
Mi(t, u){θ(u)−θ(t)−(u−t)θ′(t)}

}
.

By a Taylor expansion of ∇θ` w.r.t. θ, we have

Πn(t) = (nbn)−1
n∑
i=1

(M
(2)
i (t, i/n)− EM (2)

i (t, i/n)).

We now apply a similar technique as in the proof of Lemma 7.8(iii), namely we use a

chaining argument similar to (7.50) to prove

P
(

sup
t∈(0,1)

|Πn(t)| > Qβnb
2
n

)
→ 0,

for some Q > 0 large enough. Define the discretization Tn,r := {l/r : l = 1, . . . , r} with

r = n5. By Lemma 7.11, we have with Markov’s inequality for Q > 0:

P
(

sup
|t−t′|≤r−1

|Πn(t)−Πn(t′)| > Qβnb
2
n/2
)

= O
(b−2
n r−1

βnb2n

)
,

which converges to 0. Choose α = 1/2. By Lemma 7.5(iii) or Lemma 7.6(iii) applied with

q = 2 + s (s small enough), we obtain that supu ∆
supt |M(2)(t,u)|
2+s (k) = O(k−(1+γ)). Thus

W̃2+s,α := sup
u∈[0,1]

sup
t∈[0,1]

‖ sup
t,η
|M (2)

i (t, u)|‖2+ς,α = sup
m≥0

(m+ 1)α∆
supt |M(2)(t,u)|
2+s (m)

= O(b2n)(7.64)

(the constant being independent of n) and

W̃2,α := sup
t,u
‖M (2)

i (t, u)‖2,α = sup
m≥0

(m+ 1)α sup
u∈[0,1]

sup
t

∆
M(2)(t,u)
2 (m)

= O(b2n)(7.65)
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(the constant being independent of n). We now apply Theorem 6.2 of [61] (the proof therein

also works for the uniform functional dependence measure) with q = 2 + s, α = 1/2 to

(M
(2)
i (t, i/n))t∈Tn,r , where l = 1 ∨#(Tn,r) ≤ 5 log(n). For Q large enough, we obtain with

some constant Cα,s > 0:

P
(

sup
t′∈Tn,r

|Πn(t′)| ≥ Qβnb2n/2
)

≤
Cα,sn · l1+s/2W̃ 2+s

2+s,α

(Q/2)2+s(βnb2n(nbn))2+s
+ Cα,s exp

(
− Cα,s(Q/2)2(βnb

2
n(nbn))2

nW̃ 2
2,α

)
. n−ς/2 + exp

(
− (nbn)b−1

n log(n)

n

)
→ 0,

which finishes the proof.

7.2. Proofs and Lemmas for the SCB. From Lemma 1 in [63], we adopt the following

result:

Lemma 7.13. Let Fn(t) =
∑n

i=1 K̂bn(ti − t)Vi, where Vi, i ∈ Z are i.i.d. N(0, Is×s).

bn → 0 and nbn/ log2(n)→∞. Let m∗ = 1/bn. Then

(7.66) lim
n→∞

P
( 1

σK̂,0
√
nbn

sup
t∈Tn
|Fn(t)| −BK̂(m∗) ≤ u√

2 log(m∗)

)
= exp(−2 exp(−u)).

where BK̂ is defined in (3.11).

The following lemma is an analogue of Lemma 2 in [63]. Since we use other Gaussian

approximation rates from Theorem 3.3, we shortly state the proof for completeness.

Lemma 7.14. Let the assumptions and notations from Theorem 3.3 hold. Define

Dh̃(t) := (nbn)−1
n∑
i=1

K̂bn(i/n− t)h̃i(i/n).

Assume that Σh̃(t) is Lipschitz-continuous and that its smallest eigenvalue is bounded

away from 0 uniformly on [0, 1]. Assume that log(n)4
(
bnn

(2γ+ςγ−ς)/(ς+4γ+2γς)
)−1 → 0 and

bn log(n)3/2 → 0. Then

(7.67) lim
n→∞

P
(√nbn
σK̂,0

sup
t∈Tn

∣∣∣Σ−1

h̃
(t)Dh̃(t)

∣∣∣−BK̂(m∗) ≤ u√
2 log(m∗)

)
= exp(−2 exp(−u)),
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Proof of Lemma 7.14. By Theorem 3.3 and summation-by-parts, there exist i.i.d.

Vi ∼ N(0, Is×s) such that

(7.68)

sup
t∈(0,1)

|Dh̃(t)− Ξ(t)| = OP

(n 2ς+2γ+γς
2ς+8γ+4γς log(n)

2γ(3+ς)
ς+4γ+2γς

nbn

)
= OP

( log(n)2
(
bnn

2γ+ςγ−ς
ς+4γ+2γς

)−1/2

(nbn)1/2 log(n)1/2

)
,

where Ξ(t) = (nbn)−1
∑n

i=1 K̂bn(i/n− t)Σh̃(i/n)Vi. Here, (7.68) is oP((nbn)−1/2 log(n)−1/2)

due to

log(n)4
(
bnn

(2γ+ςγ−ς)/(ς+4γ+2γς)
)−1 → 0.

Since Σh̃(·) is Lipschitz continuous by Assumption (b), we can use a standard chaining argu-

ment in t (as it was done in Lemma 7.12 for Πn(t)) and the fact that (nbn)−1
∑n

i=1(Σh̃(i/n)−
Σh̃(t))K̂bn(i/n− t)Vi ∼ N(0, vn), with |vn|∞ ≤ C bn

n for some constant C > 0 to obtain

sup
t∈(0,1)

|Ξ(t)− (nbn)−1Σh̃(t)
n∑
i=1

K̂bn(i/n− t)Vi|

= sup
t∈(0,1)

∣∣(nbn)−1
n∑
i=1

K̂bn(i/n− t)(Σh̃(i/n)− Σh̃(t))Vi
∣∣

= OP

(bn log(n)

(nbn)1/2

)
= OP

( bn log(n)3/2

(nbn)1/2 log(n)1/2

)
,(7.69)

which is oP((nbn)−1/2 log(n)−1/2) due to bn log(n)3/2 → 0. So the result follows from Lemma

7.13 in view of (7.68) and (7.69).

Proof of Theorem 3.4. Let k̃i(t) := ∇θ`(Z̃i(t), θ(t)) and K̂(x) = K(x) or K̂(x) =

K(x)x, respectively. Define

ΩC(t) := (nbn)−1
n∑
i=1

K̂bn(i/n− t)AC(i/n)Tk̃i(i/n)

and Dk̃(t) = (nbn)−1
∑n

i=1 K̂bn(i/n − t)k̃i(i/n). Similar to the discussion of Πn(t) in the

proof of Lemma 7.12 (note that the rates in (7.64) and (7.65) then change to O(bn) instead

of O(b2n)), we can show that

(7.70) sup
t∈(0,1)

|ΩC(t)−AC(t)T ·Dk̃(t)| = OP(βnbn) = OP

( b
1/2
n log(n)

(nbn)1/2 log(n)1/2

)
,

which is oP((nbn)−1/2 log(n)−1/2) since bn log(n)2 → 0.
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h̃i(t) := AC(t)Tk̃i(t) is a locally stationary process with long-run variance Σ2
h̃
(t) = Σ2

C(t).

By the result of Lemma 7.14, we have that

(7.71) lim
n→∞

P
(√nbn
σK̂,0

sup
t∈Tn

∣∣Σ−1
C (t)ΩC(t)

∣∣−BK̂(m∗) ≤ u√
2 log(m∗)

)
= exp(−2 exp(−u)).

(i) By Theorem 3.2(i), we have

sup
t∈Tn

∣∣V (t){θ̂bn(t)− θ(t)} − b2n
µK,2

2
V (t)θ′′(t)−Dk̃(t)

∣∣
= OP

(
b3n + (nbn)−1b−1/2

n log(n)3/2 + (nbn)−1/2bn log(n)
)

= OP

((nb7n log(n))1/2 + (nb2n log(n)−4)−1/2 + bn log(n)3/2

(nbn)1/2 log(n)1/2

)
,(7.72)

which is oP((nbn)−1/2 log(n)−1/2) since nb7n log(n)→ 0, nb2n log(n)−4 →∞ and bn log(n)2 →
0. Together with (7.70) and (7.71) (with K̂ = K), this implies (3.9).

(ii) By Theorem 3.2(ii), we have

sup
t∈Tn

∣∣µK,2V (t)bn{θ̂′bn(t)− θ′(t)} − b3n
µK,4

2
V (t)bias(t)−Dk̃(t)

∣∣
= OP

(
b4n + (nbn)−1b−1/2

n log(n)3/2 + (nbn)−1/2bn log(n)
)

= oP((nbn)−1/2 log(n)−1/2),

as above. Together with (7.70) and (7.71) (with K̂(x) = K(x)x), this implies (3.10).

7.3. Proofs of Section 4.

Proof of Proposition 4.1. (i) Lemma 7.8(i),(iii), Lemma 7.9 and the notation therein

applied to g = ∇2
θ` imply

sup
t∈Tn
|µ̂K,0,bn(t)V̂bn(t)− µ̂K,0,bn(t)V (t)|

≤ sup
t∈Tn,η∈En

|Gcn(t, η)− Ĝn(t, η)|+ sup
t∈Tn,η∈En

|Ĝn(t, η)|

+ sup
t∈Tn,η∈En

|EB̂n(t, η)− V ◦(t, η)|+ sup
t∈Tn
|V ◦(t, η̂bn)− µ̂K,0,bn(t)V (t)|

= OP((nbn)−1) + oP(βn) +O(bn) + sup
t∈Tn
|V ◦(t, η̂bn)− µ̂K,0,bn(t)V (t)|.(7.73)

We obtain similar as in the proof of Theorem 3.2(i) ((7.24) therein) that

sup
t∈Tn
|η̂bn(t)− ηbn(t)| = OP((nbn)−1/2 log(n) + (nbn)−1 + βnb

2
n + b2n).
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Since η 7→ V ◦(t, η) is Lipschitz continuous by Lemma 7.1, the result follows from (7.73)

and bn log(n)→ 0.

(ii) follows similarly due to ∇θ` · ∇θ`T ∈ H(2My, 2My, χ,
¯̄C) with some ¯̄C > 0.

To prove Theorem 4.2, we adopt the methods used in [63]. Let us first assume that

θ(·) and the stationary approximation Z̃i(t) is known. Define Di := ∇θ`(Z̃i(i/n), θ(i/n)),

Qi :=
∑m

j=−mDi+j and Φi := QiQ
T
i /(2m + 1). Recall that τn is some bandwidth and

γn = τn + (m+ 1)/n. For t ∈ In = [γn, 1− γn] ⊂ (0, 1), define

Λ̂(t) :=

∑n
i=1Kτn(i/n− t)Φi∑n
i=1Kτn(i/n− t)

.

Note that Λ̂(t) is always positive semi-definite. We have the following convergence result.

Theorem 7.15. Suppose that Assumption 2.1 holds with r = 4. Assume that m =

mn →∞, m = O(n1/3), τn → 0 and nτn →∞. Then with ρ = 1,

(i) For fixed t ∈ (0, 1),

‖Λ̂(t)− Λ(t)‖2 = O
(√ m

nτn
+m−1 + τρn

)
.

(ii) We have

‖ sup
t∈In
|Λ̂(t)− Λ(t)|‖2 = O

(√ m

nτ2
n

+m−1 + τρn

)
.

If additionally Assumption 2.2(B1),(B3) is fulfilled with M ′ = 2M and ∇θ` is continuously

differentiable with ∂zj∇θ` ∈ H(My−1,Mx−1, χ′, χ̂jC̄) for all j ∈ N0, then one can choose

ρ = 2.

Proof of Theorem 7.15. Let D̃i(t) := ∇θ`(Z̃i(t), θ(t)). By Lemma 7.5(i) applied to

∇θ`, it holds that supt∈[0,1] δ
D̃(t)
4 (l) = O(l−(1+γ)). By Lemma 7.1, supt∈[0,1] ‖D̃0(t)‖4 <∞.

It is easily seen by Lemma 7.1 applied to ∇θ`∇θ`T ∈ H(2My, 2Mx, χ) that t 7→ Λ(t) is

Lipschitz-continuous. Thus Di = D̃i(i/n) has the same properties as Li in [63]. The proof

therefore is completely the same as the proof of Theorem 4 in [63] with a modified bias

term (ρ = 1) and is omitted.

Under the additional assumption, we have g = ∇θ`∇θ`T ∈ H(2My, 2Mx, χ, C̄
′) and

∂zj (∇θ`∇θ`) ∈ H(2My−1, 2My−1, (max{χ′i, χi})i∈N, C̄ ′χj) with some C̄ ′ > 0. Application
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of Lemma 7.4 to g shows that Λ(t) is continuously differentiable with Lipschitz continuous

derivative. This shows that in this case, one can choose ρ = 2.

Proof of Theorem 4.2. We follow the steps in the proof of Theorem 5 in [63]. Since

∇2
θ` ∈ H(My,Mx, χ, C̄), we have

sup
i=1,...,n

sup
θ∈Θ
|∇2

θ`(Z̃i(i/n), θ)|∞ ≤ 2 sup
θ∈Θ
|θ|∞ · sup

i=1,...,n
RMy ,Mx(Z̃i(i/n)).

Note that sup0≤t≤1 ‖Z̃0(t)‖4M <∞. By Lemma 7.1, we have supi=1,...,nRMy ,Mx(Z̃i(i/n)) =

OP(n1/4) and thus

(7.74) sup
i=1,...,n

sup
θ∈Θ
|∇2

θ`(Z̃i(i/n), θ)|∞ = OP(n1/4).

Put D#
i = ∇θ`(Z̃i(i/n), θ̂bn(i/n)) and define Q#

i , Φ#
i and Λ#(t) accordingly. Then we have

‖ sup
t∈In
|Λ̃(t)− Λ#(t)|‖1

≤ sup
t∈In

( n∑
i=1

Kτn(i/n− t)
)−1
· |K|∞

×
n∑

i=(m+1)n+τn

sup
j=−m,...,m

{
‖D̃i+j −D#

i+j‖2‖D̃i+j‖2 + ‖D̃i+j −D#
i+j‖2‖D

#
i+j‖2

}
.

By the results of Lemma 7.1 applied to ∇θ` ∈ H(My,Mx, χ, C̄), we obtain with some

constant C̃ > 0 that

sup
i,j
‖D̃i+j‖2 ≤ C̃, ‖D̃i+j −D#

i+j‖2 ≤ C̃
(
n−1 +

∞∑
l=i+j

χl
)
,

and thus ‖ supt∈In ‖Λ̃(t)− Λ#(t)|‖1 = O((nτn)−1).

Define β′n := (nbn)−1/2 log(n) + (nbn)−1 + βnb
2
n + b2n. Then by (7.74) and the fact that

θ̂bn(i/n)− θ(i/n) = OP(β′n) from (7.24), we have

(7.75) sup
i/n∈In

|Di − D̃i| ≤ sup
i/n∈I1

|∇2
θ`(Z̃i(i/n), θ̄(i/n))| · |θ̂bn(i/n)− θ(i/n)| = n1/4β′n.

Note that Qi/(2m + 1) is the Nadaraya-Watson-type smoother of the series Di with the

rectangle kernel and bandwidth b̃n = m/n. By using (7.21) in this context, we obtain

(7.76) sup
i/n∈In

1

2m+ 1
|Qi| = OP((nb̃n)−1/2 log(n)) = OP(m1/2 log(n)).
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Comparing Φi and Φ̃i we obtain

(2m+ 1)(Φi − Φ̃i) = (Qi − Q̃i)QT
i +Qi(Qi − Q̃i)T − (Qi − Q̃i)(Qi − Q̃i)T.

By equations (7.75) and (7.76), we have supi/n∈I1 |Φi − Φ̃i| = OP(ωn). This implies

sup
i/n∈In

|Λ̂(i/n)− Λ̃(i/n)| = OP(ωn).

The results from Theorem 7.15 now imply the assertion.

Proof of Proposition 4.4. Similar as in the proof of Theorem 3.2(i) by now using

the explicit result of Lemma 7.9(a) applied to g = ` (both for Assumption 2.1 and 7.16),

we obtain

sup
t∈(0,1)

sup
η∈En

|L◦n,bn(t, η)− L̃◦bn(t, η)| = OP(βn + (nbn)−1) +O(bn),

where L̃◦bn(t, η) =
∫ (1−t)/bn
−t/bn K(x)L(t, η1 + η2x)dx. By optimality of η̂bn(t),

0 ≤ L◦n,bn(t, θ(t))− L◦n,bn(t, η̂bn(t))

≤ L̃◦bn(t, θ(t))− L̃◦bn(t, η̂bn(t)) + 2 sup
η∈En

|L◦n,bn(t, η)− L̃◦bn(t, η)|.

This implies

min
{∫ 0

−1
K(x)

{
L(t, θ̂bn(t) + bnθ̂

′
bn(t)x)− L(t, θ(t))

}
dx,∫ 1

0
K(x)

{
L(t, θ̂bn(t) + bnθ̂

′
bn(t)x)− L(t, θ(t))

}
dx
}
≤ 2 sup

η∈En
|L◦n,bn(t, η)− L̃◦bn(t, η)|.(7.77)

Assume that for some ι > 0, lim supn→∞ supt∈(0,1) |η̂bn(t) − (θ(t)T, 0)T| ≥ ι. Then there

exists t ∈ (0, 1) such that either (c1)

|θ̂bn(t)− θ(t)| ≥ 1

2
|bnθ̂′bn(t)|

and thus |θ̂bn(t)− θ(t)| > ι/3, or (c2)

|θ̂bn(t)− θ(t)| < 1

2
|bnθ̂′bn(t)|,
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and thus |bnθ̂′bn(t)| > 2ι/3.

In case (c1), we have |θ̂bn(t) + bnθ̂
′
bn

(t)x − θ(t)| ≥ |θ̂bn(t) − θ(t)| − |x||bnθ̂′bn(t)| ≥ ι
6 for

x ∈ [0, 1
4 ], thus with some c0 > 0,∫ 1

0
K(x)

{
L(t, θ̂bn(t)+bnθ̂

′
bn(t)x)−L(t, θ(t))

}
dx ≥

∫ 1/4

0
K(x)

{
L(t, θ̂bn(t)+bnθ̂

′
bn(t)x)−L(t, θ(t))

}
dx ≥ c0

since θ 7→ L(t, θ) is continuous and attains its unique minimum at θ = θ(t).

In case (c2), we have |θ̂bn(t) + bnθ̂
′
bn

(t)x − θ(t)| ≥ |x||bnθ̂′bn(t)| − |θ̂bn(t) − θ(t)| ≥ ι
6 for

x ∈ [3
4 , 1], thus with some c0 > 0,∫ 1

0
K(x)

{
L(t, θ̂bn(t)+bnθ̂

′
bn(t)x)−L(t, θ(t))

}
dx ≥

∫ 1

3/4
K(x)

{
L(t, θ̂bn(t)+bnθ̂

′
bn(t)x)−L(t, θ(t))

}
dx ≥ c0.

In both cases, (7.77) becomes a contradiction. Therefore,

sup
t∈(0,1)

|η̂bn(t)− ηbn(t)| = oP(1).

Using summation-by-parts and Gaussian approximation similar to that presented in

Theorem 3.3 for the process ∇θ`(Z̃i(i/n), θ(i/n)), there exists i.i.d. V1, V2, . . . ∼ N(0, Is×s)

on a richer probability space such that, for πn as in (3.8)

(7.78)

sup
t∈(0,1)

∣∣(nbn)−1
n∑
i=1

Kbn(i/n−t)(∇θ`(Z̃i(i/n), θ(i/n))−Vi)
}
| = OP((nbn)−1πn) = OP((nbn)−1/2 log(n)).

Thus one can replace supt∈Tn by supt∈(0,1) in (7.21). A careful examination of the rest of

the proof of Theorem 3.2(i) (with Lemma 7.10(7.53) replaced by Lemma 7.10(7.54)) now

yields the result

(7.79) sup
t∈(0,1)

|Ṽ ◦bn(t) · (η̂bn(t)− ηbn(t))−∇ηL◦,cn,bn(t, ηbn(t))
∣∣ = OP(τ (1)

n ),

where (we shortly write µ̂K,j(t) = µ̂K,j,bn(t))

Ṽ ◦bn(t) =

(
µ̂K,0(t) µ̂K,1(t)

µ̂K,1(t) µ̂K,2(t)

)
⊗ V (t).
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By Lemma 7.8(i), Lemma 7.10 and Lemma 7.12, we obtain furthermore with Ui,n(t) =

(Kbn(i/n− t),Kbn(i/n− t) · (i/n− t)b−1
n )T:

sup
t∈(0,1)

∣∣∇ηL◦,cn,bn(t, ηbn(t))− b2n

(
µ̂K,2(t)

µ̂K,3(t)

)
⊗ [V (t)θ′′(t)]

−(nbn)−1
n∑
i=1

Ui,n(t)⊗∇θ`(Z̃i(i/n), θ(i/n))
∣∣ = OP(βnb

2
n + b3n + (nbn)−1).(7.80)

Recalling the proof of Lemma 7.14, (7.68) and (7.69) and the proof of Theorem 3.4, (7.70)

we see that there exist i.i.d. Vi ∼ N(0, Is×s) such that both for K̂ = K and K̂(x) = K(x)·x,

sup
t∈(0,1)

∣∣AC(t)T(nbn)−1
n∑
i=1

K̂bn(i/n− t)∇θ`(Z̃i(i/n), θ(i/n))− ΣC(t)(nbn)−1
n∑
i=1

K̂bn(i/n− t)Vi
∣∣

= OP

( log(n)2
(
bnn

2γ+ςγ−ς
ς+4γ+2γς

)−1/2

(nbn)1/2 log(n)1/2
+

bn log(n)3/2

(nbn)1/2 log(n)1/2
+

b
1/2
n log(n)

(nbn)1/2 log(n)1/2

)
=: OP(wn).(7.81)

With (7.79) and

Ṽ ◦bn(t)−1 =

(
µ̂K,0(t) µ̂K,1(t)

µ̂K,1(t) µ̂K,2(t)

)−1

⊗ V (t)−1

=
1

µ̂K,2(t)N
(0)
bn

(t)

(
µ̂K,2(t)V (t)−1 −µ̂K,1(t)V (t)−1

−µ̂K,1(t)V (t)−1 µ̂K,0(t)V (t)−1

)
,

we obtain:

sup
t∈(0,1)

∣∣∣N (0)
bn

(t) · {θ̂bn,C(t)− θC(t)}

−
[
AC(t)T∇η1L

◦,c
n,bn

(t, ηbn(t))−
µ̂K,1(t)

µ̂K,2(t)
AC(t)T∇η2L

◦,c
n,bn

(t, ηbn(t))
]∣∣∣ = OP(τ (1)

n ).

With (7.80) and (7.81), we have

sup
t∈(0,1)

∣∣∣N (0)
bn

(t) · {θ̂bn,C(t)− θC(t)}

+b2nN
(1)
bn

(t)θ′′C(t)− ΣC(t)
{
Q

(0)
bn

(t)−
µ̂K,1(t)

µ̂K,2(t)
Q

(1)
bn

(t)
}∣∣∣

= OP(τ (1)
n + (βnb

2
n + b3n + (nbn)−1) + wn),

which finishes the proof.
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7.4. Proofs of the examples in Section 5.

7.4.1. Recursively defined models.

Proof of Proposition 5.1. Choose 0 < ã < a small enough such that (5.3) holds

with ‖ζ0‖(2+ã)M replaced by ‖ζ0‖2M (this is possible due to continuity of the term in

ã = 0). Let q = (2 + ã)M . Let ν = (ν0, . . . , νl)
T and m = (m1, . . . ,mk)

T. As known from

Proposition 4.3 and Lemma 4.4 in [14] the process (Yi)i=1,...,n described by (5.1) exists and

fulfills Assumption 2.1(A5), (A7) with δYq (i) = O(ci) for some 0 < c < 1 and q ≥ 1 if the

recursion function Gζ(y, t) := µ(y, θ(t)) + σ(y, θ(t))ζ obeys

(7.82)
∥∥∥ sup
t∈[0,1]

sup
y 6=y′

|Gζ0(y, t)−Gζ0(y′, t)|
|y − y′|χ,1

∥∥∥
q
≤ 1

and

(7.83) sup
t∈[0,1]

‖C(X̃t(t))‖q <∞, C(y) := sup
t6=t′

‖Gζ0(y, t)−Gζ0(y, t′)‖q
|t− t′|

,

where |z|χ,1 :=
∑p

i=1 |zi|χi for some χ = (χi)i=1,...,p ∈ Rp≥0 with |χ|1 =
∑p

i=1 χi < 1. Here,

we can bound

(7.84) |µ(y, θ)− µ(y′, θ)| ≤
k∑
i=1

|αi||y − y′|κi·,1 ≤ |y − y′|κ(µ)(α),1,

where χ(µ)(α) :=
∑k

i=1 |αi|κi·. Furthermore,

|σ(y, θ)2 − σ(y′, θ)2| ≤
l∑

i=0

βi|νi(y)− νi(y′)|

≤
l∑

i=0

√
βi|y − y′|ρi·,1 ·

(√
βiνi(y) +

√
βiνi(y′)

)
≤

l∑
i=0

√
βi|y − y′|ρi·,1 ·

(
σ(y, θ) + σ(y′, θ)

)
,

i.e.

(7.85) |σ(y, θ)− σ(y′, θ)| ≤ |y − y′|χ(σ)(β),1,

where χ(σ)(β) :=
∑l

i=1

√
βiρi·. Define

χ
(µ,max)
j := sup

t
|χ(µ)(α(t))j |, χ

(σ,max)
j := sup

t
|χ(σ)(β(t))j |.
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Since θ(t) = (α(t)T, β(t)T)T ∈ Θ, we have that

p∑
j=1

(χ
(µ,max)
j + ‖ζ0‖qχ(σ,max)

j ) =

p∑
j=1

(
sup
t
|χ(µ)(α(t))j |+ ‖ζ0‖q sup

t
|χ(σ)(β(t))j |

)
< 1.

Define χj := χ
(µ,max)
j + ‖ζ0‖qχ(σ,max)

j . Then we have for all t, y 6= y′:

|µ(y, θ(t))− µ(y′, θ(t))|+ ‖ζ0‖q|σ(y, θ(t))− σ(y′, θ(t))| ≤ |y − y′|χ,1,

which implies (7.82). Proposition 4.3 from [14] now implies the existence of Yi, the station-

ary approximation Ỹi(t) and supt ‖Ỹ0(t)‖q <∞. By Lipschitz continuity of θ with constant

Lθ, we have

(7.86) |µ(y, θ(t))− µ(y, θ(t′))| ≤ Lθ|t− t′|
k∑
i=1

|mi(y)|,

and

|σ(y, θ(t))2 − σ(y, θ(t′))2| ≤ Lθ|t− t′|
l∑

i=0

√
νi(y)

1

2β
1/2
min

(√
βi(t)νi(y) +

√
βi(t′)νi(y)

)
≤ Lθ

2β
1/2
min

|t− t′|
l∑

i=0

√
νi(y)(σ(y, θ(t)) + σ(y, θ(t′))),

which shows that

(7.87) |σ(y, θ(t))− σ(y, θ(t′))| ≤ Lθ

2β
1/2
min

l∑
i=0

√
νi(y).

Note that (5.2) implies

mi(y),
√
νi(y) ≤ C1|y|1 + C2,

with some constants C1, C2 > 0. By (7.86), (7.87), we have for t 6= t′

‖Gζ0(y, t)−Gζ0(y, t′)‖q ≤ |µ(y, θ(t))− µ(y, θ(t′))|+ ‖ζ0‖q|σ(y, θ(t))− σ(y, θ(t′))|

≤ C3|t− t′|
(
1 + |y|1

)
,

with some constant C3 > 0. Since supt ‖Ỹ0(t)‖q <∞, (7.83) follows.

We now inspect the properties of the function `. First note that the recursion of the

stationary approximation,

Ỹi(t) = µ(X̃i(t), θ(t)) + σ(X̃i(t), θ(t))ζi,
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implies EỸ0(t) = 0 and EỸ0(t)2 = Eµ(X̃0(t), θ(t))2 + Eσ(X̃0(t), θ(t))2 ≥ βminνmin > 0.

Furthermore, for L(t, θ) := E`(Z̃0(t), θ) it holds that

L(t, θ)− L(t, θ(t)) = E
(µ(X̃0(t), θ)− µ(X̃0(t), θ(t))

σ(X̃0(t), θ)

)2

+E
[σ(X̃0(t), θ(t))2

σ(X̃0(t), θ)2
− log

σ(X̃0(t), θ(t))2

σ(X̃0(t), θ)2
− 1
]
.(7.88)

In the following we use the notation |x|2A := xTAx for a weighted vector norm. Note that

(7.89) E
(µ(X̃0(t), θ)− µ(X̃0(t), θ(t))

σ(X̃0(t), θ)

)2
≥ c0|α− α(t)|2M1(t),

with c0 = (maxθ∈Θ maxi θ
2
i )
−1 and M1(t) := E[m(X̃0(t))m(X̃0(t))T

1ν(X̃(t))ν(X̃(t))T1 ]. If M1(t) was not pos-

itive definite, this would imply that there exists v ∈ Rk such that v′M(t)v = 0, which

in turn would imply v′µ(X̃0(t))µ(X̃0(t))v = 0 a.s. and thus non-positive definiteness of

E[µ(X̃0(t))µ(X̃0(t))T] which is a contradiction to the assumption.

By a Taylor expansion of f(x) = x− log(x)− 1, we obtain

E
[σ(X̃0(t), θ(t))2

σ(X̃0(t), θ)2
− log

σ(X̃0(t), θ(t))2

σ(X̃0(t), θ)2
− 1
]

≥ 1

2
E
[ (σ(X̃0(t), θ)2 − σ(X̃0(t), θ(t))2)2

(σ(X̃0(t), θ)2 − σ(X̃0(t), θ(t))2)2 + σ(X̃0(t), θ)4

]
≥ c0

10
|β − β(t)|2M2(t),(7.90)

where M2(t) = E[ ν(X̃0(t))ν(X̃0(t))T

1ν(X̃(t))ν(X̃(t))T1 ] is positive definite by assumption (use a similar argu-

mentation as above). By (7.88), (7.89) and (7.90) we conclude that θ 7→ L(t, θ) is uniquely

minimized in θ = θ(t). This shows 2.1(A3).
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Omitting the arguments z = (y, x) and θ, we have

` =
1

2

[(y − 〈α,m〉)2

〈β, ν〉
+ log〈β, ν〉

]
,(7.91)

∇θ` = −∇θm
σ

(y −m
σ

)
+
∇θ(σ2)

2σ2

[
1−

(y −m
σ

)2]
=

(
−m
σ

(
y−m
σ

)
ν

2σ2

[
1−

(y−m
σ

)2]
)

=

(
m
〈β,ν〉(y − 〈α,m〉)
ν

2〈β,ν〉
(
1− (y−〈α,m〉)2

〈β,ν〉
)) ,(7.92)

∇2
θ` =

∇θm∇θmT

σ2
+
(y −m

σ

)
·
[∇θm∇θ(σ2)T +∇θ(σ2)∇θmT

σ3
−
∇2
θm

σ

]
+
∇2
θ(σ

2)

2σ2

[
1−

(y −m
σ

)2]
+
∇θ(σ2)∇θ(σ2)T

2σ4

[
2
(y −m

σ

)2 − 1
]

=

(
mmT

σ2
y−m
σ2 ·mνT

y−m
σ2 · νmT ννT

2σ4

[
2
(y−m

σ

)2 − 1
])

=

(
mmT

〈β,ν〉
y−〈α,m〉
〈β,ν〉2 ·mν

T

y−〈α,m〉
〈β,ν〉2 · νm

T ννT

2〈β,ν〉2
[
2 (y−〈α,m〉)2

〈β,ν〉 − 1
]) .(7.93)

Since ζ1 is independent of X̃0(t) ∈ F0 and Eζ1 = 0, Eζ2
1 = 1, we conclude that

E[∇θ`(Z̃0(t), θ(t))|Ft−1] = E
[
− µ(X̃j(t), θ(t))

σ(X̃0(t), θ(t))
ζ0 +

ν(X̃0(t), θ(t))

2σ(X̃j(t), θ(t))2
(1− ζ2

0 )
∣∣Ft−1

]
= 0,

i.e. ∇θ`(Z̃1(t), θ(t)) is a martingale difference sequence, showing that V (t) = Λ(t). We

furthermore have that (we omit the arguments (X̃0(t), θ(t)) of µ, σ in the following):

V (t) = E∇2
θ`(Z̃0(t), θ(t)) =

(
E
[
mmT

〈β,ν〉
]

0

0 E
[

ννT

2〈β,ν〉2
]) .

With a similar argumentation as above, we conclude that V (t) is positive definite (which

then implies by continuity that the smallest eigenvalue of V (t) is bounded away from 0

uniformly in t). By the martingale difference property, I(t) = Λ(t). Omitting the arguments

(X̃0(t), θ(t)),

I(t) = E[∇θ(Z̃j(t), θ(t))∇θ(Z̃0(t), θ(t))T]

=

(
E
[
mmT

σ2

]
E[ζ3

0 ] · E
[
mνT

2σ3

]
E[ζ3

0 ] · E
[
νmT

2σ3

] E[ζ4
0 ]−1
4 · E

[
ννT

σ4

])

= E
[ 1

σ2

(
m

E[ζ3
0 ]

2σ ν

)T(
m

E[ζ3
0 ]

2σ ν

)]
+

(
0 0

0
(E[ζ4

0 ]−E[ζ3
0 ]2−1

4

)
E
[
ννT

σ4

]) ,
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which is positive semidefinite since E[ζ3
0 ] = E[ζ0(ζ2

0 − 1)] ≤ E[ζ2
0 ]1/2E[(ζ2

0 − 1)2]1/2 =

(E[ζ4
0 ] − 1)1/2. Positive definiteness follows from the fact that (v1, v2)TI(t)(v1, v2) = 0

implies νTv2 = 0 a.s. from the last summand and vT1m +
E[ζ3

0 ]
2σ vT2 ν = 0 a.s. from the first

summand, i.e. vT1m = 0 a.s. which leads to a contradiction to either the positive definiteness

of E[ννT] or E[mmT]. So we obtain that Assumption 2.1(A4) is fulfilled.

A careful inspection of (7.91), (7.92) and (7.93) shows that `,∇θ`,∇2
θ` ∈ H(2, 3, χ̃, C̃)

with some C̃ > 0 and χ̃ = (1, . . . , 1, 0, 0, . . .) consisting of max{k, l} ones followed by zeros,

which shows Assumption 2.1(A1). In the special case µ(x, θ) ≡ 0, it seems as if no direct

improvement of the value M is possible. In the special case of σ(x, θ)2 ≡ β0, we have

` =
1

2

[(y − 〈α,m〉)2

β0
+ log β0

]
,

∇θ` =

(
m
β0

(y − 〈α,m〉)
1

2β0
(1− (y−〈α,m〉)2

β0
)

)
,

∇2
θ` =

 mmT

β0

y−〈α,m〉
β2

0
m

y−〈α,m〉
β2

0
mT 1

2β2
0

[
2 (y−〈α,m〉)2

β0
− 1
]
 ,

which implies that `,∇θ`,∇2
θ` ∈ H(2, 2, χ̃, C̃).

Now suppose that Assumption 2.2(B1) is fulfilled. We use results from Section 4 in [14]

to show that the first derivative process ∂tỸi(t) exists and fulfills a Lipschitz condition. By

assumption, with some constant C > 0,

|∂xjGζ0(x, t)− ∂xjGζ0(x′, t)|

≤ |〈α(t), ∂xjm(x)− ∂xjm(x′)〉|

+
∣∣ 〈β(t), ∂xjν(x)〉
2〈β(t), ν(x)〉1/2

−
〈β(t), ∂xjν(x′)〉
2〈β(t), ν(x′)〉1/2

∣∣ · |ζ0|

≤ |α(t)|∞C|x− x′|1

+|ζ0| ·
( 1

2β
1/2
min

|〈β(t), ∂xjν(x)− ∂xjν(x′)〉|

+
|〈β(t), ∂xjν(x′)〉|

2

|〈β(t), ν(x)− ν(x′)〉|
〈β(t), ν(x)〉1/2〈β(t), ν(x′)〉1/2(〈β(t), ν(x)〉1/2 + 〈β(t), ν(x′)〉1/2)

)
.

By assumption,

|〈β(t), ∂xjν(x)− ∂xjν(x′)〉| ≤ C|β(t)|∞|x− x′|1.
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Furthermore,

|〈β(t), ν(x)− ν(x′)〉| ≤
l∑

i=1

βi(t)|
√
νi(x)−

√
νi(x′)| · |

√
νi(x) +

√
νi(x′)|

≤ |β(t)|∞|x− x′|1
l∑

i=1

(√
νi(x) +

√
νi(x′)

)
.

Since each component of β(t) is lower bounded by βmin and therefore 〈β(t), ν(x)〉1/2 ≥
βmin

√
νi(x) for each i, we conclude that

|〈β(t), ν(x)− ν(x′)〉|
〈β(t), ν(x)〉1/2(〈β(t), ν(x)〉1/2 + 〈β(t), ν(x′)〉1/2)

≤ C|x− x′|1,

with some constant C > 0. Finally, let ej be the j-th unit vector in Rk. Notice that for all

i,
|∂xjνi(x)|
νi(x)1/2

= 2|∂xj
√
νi(x)| ≤ 2 lim

h→0

|
√
νi(x)−

√
νi(x+ hej)|
|h|

≤ lim
h→0

|hej |1
|h|

≤ 1.

This shows that
|〈β(t),∂xj ν(x′)〉|
〈β(t),ν(x′)〉1/2 is bounded and we obtain that for some constant > 0,

|∂xjGζ0(x, t)− ∂xjGζ0(x′, t)| ≤ C(1 + |ζ0|)|x− x′|1.

With similar but simpler arguments we obtain that

|∂tGζ0(x, t)− ∂tGζ0(x′, t)| ≤ C(1 + |ζ0|)|x− x′|1

and

|∂xjGζ0(x, t)− ∂xjGζ0(x, t′)|
|t− t′| · |x|1

≤ C(1 + |ζ0|),
|∂tGζ0(x, t)− ∂tGζ0(x, t′)|

|t− t′| · |x|1
≤ C(1 + |ζ0|).

By Theorem 4.8 and Proposition 4.11 in [14], we obtain 2.2(B3) with M2 = 2M .

Finally, straightforward calculations show that each component of ∂xj∇2
θ` and ∇3

θ` is in

H(M2,M2, χ̃, C̄) with χ̃ = (1, . . . , 1, 0, . . . , 0) consisting of p ones. This shows Assumption

2.2(B2).
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7.4.2. tvGARCH. To make use of independencies occuring in the analysis, let us intro-

duce the class Hmults,ι (My,Mx, χ, C̄) for s ≥ 0 which consists of functions g : R × RN × Θ

such that supθ∈Θ
|g(y,0,θ)|
1+|y|My ≤ C̄ and

sup
|θ−θ̃|1<ι

sup
y

sup
x 6=x′

|g(y, x, θ)− g(y, x′, θ)|
|x− x′|χ,1(RMy−1,Mx−1(1, x)1+s +RMy−1,Mx−1(1, x′)1+s)(1 + |y|M )

≤ C̄,

sup
x,y

sup
θ 6=θ′,|θ−θ̃|1<ι,|θ′−θ̃|1<ι

|g(y, x, θ)− g(y, x, θ′)|
|θ − θ′|1RMy ,Mx(1, x)1+s(1 + |y|My)

≤ C̄.

Let |x|χ,s := (
∑∞

j=1 χj |x|s)1/s.

Assumption 7.16 (Heteroscedastic recursively defined time series case). Let ζi, i ∈ Z
be an i.i.d. sequence. Assume that the stationary approximation Ỹi(t) of Yi evolves according

to

Ỹi(t) = F (X̃i(t), θ(t), ζi)

where X̃i(t) = (Ỹi−1(t), Ỹi−2(t), ...).

Let

˜̀̃
θ(y, x, θ) := `(F (x, θ̃, y), x, θ).

Suppose that for some r ≥ 2 and γ > 1,

(A1’) ` is twice continuously differentiable w.r.t. θ. There exists M ≥ 1 such that for each

s > 0, there exist χ(s) = (χ
(s)
j )j=1,2,... with χ

(s)
j = O(j−(1+γ)) and C̄(s) > 0, such that

• `,∇θ`,∇2
θ` ∈ Hs(2M, 2M,χ(s), C̄(s)).

•
(7.94)

sup
θ

sup
z 6=z′

|`(z, θ)− `(z′, θ)|
|z − z′|s

χ̂(s),s
(RM,M (z) +RM,M (z′)) + |z − z′|χ̂(s),1(RM−1,M−1(z)1+s +RM−1,M−1(z′)1+s)

≤ C̄(s).

• There exists ι > 0 such that ∇θ ˜̀,∇2
θ
˜̀∈ Hmults,ι (M,M,χ(s), C̄(s))

(A2’) (A2) holds,

(A3’) (A3) holds,

(A4’) (A4) holds,

(A5’) (A5) holds with (2.12) and ‖ζ0‖rM ≤ D.

(A6’) Xc
i = (Yi−1, Yi−2, ..., Y1, 0, 0, ...)
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(A7’) supt∈[0,1] δ
Ỹ (t)
rM (k) = O(ρk) with some ρ ∈ (0, 1).

Assumption 7.17 (Heteroscedastic recursively defined time series case). Suppose that

there exists M ′ ≥ 2 such that M ′ ≤ rM and for all s > 0 there exist absolutely summable

(χ′)(s) = ((χ′)
(s)
j )j=1,2,... and ι > 0 such that

(B1’) (B1) holds,

(B2’) ∇2
θ` is continuously differentiable. It holds that ∇3

θ
˜̀∈ Hmults,ι (M ′,M ′, χ(s), C̄(s)), and

for all i ∈ N0, ∂xl∇2
θ
˜̀∈ Hmults,ι (M ′ − 1,M ′ − 1, (χ′)(s), C̄(s)χ

(s)
l ).

(B3’) (B3) holds.

Proof of Proposition 5.2. We abbreviate Mi(t) := Mi(θ(t)). Note that (t, q̃) 7→
λmax(‖M0(t)‖q̃) is continuous; therefore there exists 0 < ã < a such that q := 2 + ã fulfills

sup
t∈[0,1]

λmax(‖M0(t)‖q) < 1.

Let M = 1. Fix t ∈ [0, 1]. Consider the recursion of the corresponding stationary approxi-

mation

Ỹi(t) = σ̃i(t)
2ζ2
i ,

σ̃i(t)
2 = α0(t) +

m∑
j=1

αj(t)Ỹi−j(t) +

l∑
j=1

βj(t)σ̃i−j(t)
2.(7.95)

Define

P̃i(t) := (Ỹi(t), . . . , Ỹi−m+1(t), σ̃i(t)
2, . . . , σ̃i−l+1(t)2)T,

ai(t) := (α0(t)ζ2
i , 0, . . . , 0, α0(t), 0, . . . , 0)T.

For brevity, let Mi(t) = Mi(θ(t)). Following Section 3.1 in [54], the model (7.95) admits

the representation

(7.96) P̃i(t) = Mi(t)P̃i−1(t) + ai(t).

Therefore, P̃i(t) = Gζi(P̃i−1(t), t) with Gζi(y, t) = Mi(t) · y + ai(t). Let Wn(y, t) :=

Gζn(Gζn−1(...Gζ1(y, t)...)). Then we have

Wn(y)−Wn(y′) = Mn(t)Mn−1(t) · ... ·M1(t) · (y − y′).
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For a vector v ∈ Rp and q ≥ 2 it holds that ‖|v|2‖q ≤ |‖v‖q|2. Thus we have (let | · |2 denote

the spectral norm of a matrix):

‖|Wn(y, t)−Wn(y′, t)|2‖q ≤ |‖M0(t)‖nq (y − y′)|2 ≤ |‖M0(t)‖nq |2|y − y′|2.

‖M0(t)‖q is diagonalizable over the complex numbers and therefore has a Jordan form.

Since supt∈[0,1] λmax(‖M0(t)‖q) < 1, we conclude that

(7.97) sup
t∈[0,1]

|‖M0(t)‖nq |2 ≤ C · cn

with some 0 < c < 1 and some constant C > 0. By Theorem 2 in [55], we obtain existence

and a.s. uniqueness of Ỹi(t) = H(t,Fi), supt∈[0,1] ‖Ỹ0(t)‖q < ∞ and supt∈[0,1] δ
Ỹ (t)
q (k) =

‖Ỹi(t)− Ỹi(t)∗‖q = O(ck). This shows Assumption 7.16(A7’).

(7.96) implies the explicit representation

(7.98) P̃i(t) =
∞∑
k=0

( k−1∏
j=0

Mi−j(t)
)
ai−k(t).

We therefore have for t, t′ ∈ [0, 1]:

‖P̃i(t)− P̃i(t′)‖q ≤
∞∑
k=0

k−1∑
l=0

( ∏
0≤j<l

‖Mi−j(t)‖q
)
‖Mi−l(t)−Mi−l(t

′)‖q

×
( ∏
l<j≤k−1

‖Mi−j(t)‖q
)
· ‖ai−k(t)‖q

+
∞∑
k=0

( k−1∏
j=0

‖Mi−j(t)‖q
)
‖ai−k(t)− ai−k(t′)‖q.(7.99)

By Lipschitz continuity of θ(·) and (7.97), we have

‖a0(t)− a0(t′)‖q = |α0(t)− α0(t′)|(‖ζ2
0‖q, 0, . . . , 0, 1, 0, . . . , 0)T = O(|t− t′|)

and

‖M0(t)−M0(t′)‖q = (‖ζ2
0‖q|f(θ(t))−f(θ(t′))|, 0, . . . , 0, |f(θ(t))−f(θ(t′))|, 0, . . . , 0)T = O(|t−t′|).

We conclude from the first component of (7.99), that for all t, t′ ∈ [0, 1]:

(7.100) ‖Ỹi(t)− Ỹi(t′)‖q ≤ C · |t− t′|,
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with some constant C > 0.

Put Pi = (Yi, . . . , Yi−m+1, σ
2
i , . . . , σ

2
i−l+1)T. Similarly to (7.96), we have

(7.101) Pi = Mi(i/n)Pi−1 + ai(i/n), i = 1, . . . , n.

Note that i iterations of (7.101) lead to P0 = P̃0(0), thus existence of Yi follows from

existence of Ỹi(0). We have

‖Pi − P̃i(i/n)‖q ≤ ‖Mi(i/n)‖q‖Pi−1 − P̃i−1(i/n)‖q
≤ ‖M0(i/n)‖q‖Pi−1 − P̃i−1((i− 1)/n)‖q

+‖M0(i/n)‖q‖P̃0(i/n)− P̃0((i− 1)/n)‖q.

Iteration of this inequality leads to

‖Pi − P̃i(i/n)‖q ≤
i∑

k=1

( k∏
j=0

‖M0((i− j)/n)‖q
)
‖P̃0((i− k)/n)− P̃0((i− k − 1)/n)‖q.

Due to (7.97) and (7.100), we conclude from the first component that ‖Yi − Ỹi(i/n)‖q =

O(n−1). This shows Assumption 7.16(A5’).

Let Σ(x, θ) := (σ(x, θ)2, . . . , σ(x(l−1)→, θ)
2)T and A(x, θ) := (α0 +

∑m
j=1 αjxj , . . . , α0 +∑m

j=1 αjxj+l−1)T, and

B(θ) =



β1 . . . . . . . . . βl

1 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 1 0


.

As said in Theorem 2.1 in [38], λmax(EM0(θ)⊗2) < 1 is a necessary and sufficient condi-

tion for the corresponding GARCH process with parameters θ to have 4-th moments. We

conclude that λmax(EM0(θ)) < 1 which by Proposition 1 in [23] implies λmax(B(θ)) < 1.

We have the explicit representation

(7.102) σ(x, θ)2 =
∞∑
k=0

(
B(θ)kA(xk→, θ)

)
1
.

Since A(0, θ) = (α0, 0, ..., 0)T, we have

σ(0, θ)2 = α0

∞∑
k=0

(B(θ)k)11.
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From (7.102) we also obtain that

(7.103) σ(x, θ)2 = c0(θ) +
∞∑
j=1

cj(θ) · xj ,

where cj(θ) ≥ 0 satisfies

(7.104) sup
θ∈Θ
|cj(θ)| ≤ C · ρj

with some ρ ∈ (0, 1) and c0(θ) ≥ σ2
min > 0 (due to α0 ≥ αmin > 0). Due to the explicit

representation (7.102) with geometrically decaying summands, it is easy to see that σ(x, θ)2

is four times continuously differentiable w.r.t. θ with

(7.105) ∇kθ(σ(x, θ)2) = ∇kθc0(θ) +
∞∑
j=1

∇kθcj(θ) · xj , k ∈ {0, 1, 2, 3, 4},

where (∇kθcj(θ))j is still geometrically decaying with supθ∈Θ |∇kθcj(θ)|∞ ≤ C · ρj , say.

From (7.105) we conclude that (component-wise) for k = 0, 1, 2, 3:

|∇kθ(σ(x, θ)2)−∇kθ(σ(x′, θ)2)| ≤ C|x− x′|(ρj)j ,1,(7.106)

|∇kθ(σ(x, θ)2)−∇kθ(σ(x, θ′)2)| ≤ |θ − θ′|1 · sup
θ∈Θ
|∇k+1

θ (σ(x, θ)2)|∞ ≤ C|θ − θ′|1 · |x|(ρj)j ,1.(7.107)

We obtain that `(y, x, θ) is four times continuously differentiable and

`(y, x, θ) =
1

2

( y

σ(x, θ)2
+ log(σ(x, θ)2)

)
,

∇θ`(y, x, θ) =
∇θ(σ(x, θ)2)

2σ(x, θ)2

(
1− y

σ(x, θ)2

)
,

∇2
θ`(y, x, θ) =

[
− ∇θ(σ(x, θ)2)∇θ(σ(x, θ)2)T

2σ(x, θ)4
+
∇2
θ(σ(x, θ)2)

2σ(x, θ)2

](
1− y

σ(x, θ)2

)
+
∇θ(σ(x, θ)2)∇θ(σ(x, θ)2)T

2σ(x, θ)4
· y

σ(x, θ)2
.

It was shown in the proof of Theorem 2.1 in [23], that θ 7→ L(t, θ) = E`(Z̃0(t), θ) is uniquely

minimized in θ = θ(t), which shows Assumption 7.16(A3’). As in the proof of Example 5.1,

we obtain that

V (t) = E
[∇θ(σ(X̃0(t), θ(t))2)∇θ(σ(X̃0(t), θ(t))2)T

2σ(X̃0(t), θ(t))4

]
= I(t)

2

Eζ4
0 − 1

.
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Furthermore,

∇θ`(Z̃i(t), θ(t)) =
∇θ(σ(X̃i(t), θ(t))

2)

2σ(X̃i(t), θ(t))2
{1− ζ2

i },

which shows that ∇θ`(Z̃i(t), θ(t)) is a martingale difference sequence w.r.t. Fi. Thus Λ(t) =

I(t). It was shown in the proof of Theorem 2.2 in [23] that V (t) is positive definite for each

t ∈ [0, 1]. By continuity, we conclude that Assumption 7.16(A4’) is fulfilled.

Proof of Assumption 7.16(A1’): It holds that

2|`(y, x, θ)−`(y′, x′, θ)| ≤ |y−y′|· 1

σ(x, θ)2
+|y′|·

∣∣∣ 1

σ(x, θ)2
− 1

σ(x′, θ)2

∣∣∣+| log(σ(x, θ)2)−log(σ(x′, θ)2)|.

Since σ(x, θ)2 ≥ σ2
min > 0, Lipschitz continuity of log on [σmin,∞) and (7.104), there exists

some constant C ′ > 0 such that

(7.108) 2|`(y, x, θ)− `(y′, x′, θ)| ≤ C ′(|y− y′|+ |x−x′|(ρj)j ,1) + |y′| ·
∣∣∣ 1

σ(x, θ)2
− 1

σ(x′, θ)2

∣∣∣.
Note that∣∣∣ 1

σ(x, θ)2
− 1

σ(x′, θ)2

∣∣∣ ≤ ∑∞j=0 cj(θ)|xj .x′j |
σ(x, θ)2σ(x′, θ)2

≤
∞∑
j=1

cj(θ)|xj − x′j |
(σ2
min + cj(θ)xj)(σ2

min + cj(θ)x′j)

≤ 1

σ2
min

∞∑
j=1

cj(θ)|xj − x′j |
σ2
min + cj(θ)|xj − x′j |.

The last step holds due to the following argument: It holds either |xj−x′j | ≤ xj or |xj−x′j | ≤
x′j since xj , x

′
j ≥ 0. Therefore, one factor in the denominator can be lower bounded by σmin

and the other one by σmin + cj(θ)|xj −x′j |. Following the ideas of [23], for arbitrarily small

s > 0 we use the inequality x
1+x ≤ x

s to obtain∣∣∣ 1

σ(x, θ)2
− 1

σ(x′, θ)2

∣∣∣ ≤ 1

σ4+2s
min

∞∑
j=1

cj(θ)
s|xj − x′j |s ≤

C

σ4+2s
min

|x− x|(ρjs)j ,s

Together with (7.108), we obtain (7.94).

Using directly (7.108) and (7.106), we obtain

sup
θ∈Θ

sup
z 6=z′

|`(z, θ)− `(z′, θ)|
|z − z′|(ρj)j ,1 · (1 +R2M−1,2M−1(z) +R2M−1,2M−1(z′))

<∞.

Note that with some constant C ′ > 0,

2|`(z, θ)− `(z, θ′)| ≤ |y| ·
[ 1

σ(x, θ)2
− 1

σ(x, θ′)2

]
+ | log(σ(x, θ)2)− log(σ(x, θ′)2)|

≤ C ′(1 + |y|) · |σ(x, θ)2 − σ(x, θ′)2|.
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Together with (7.107), we obtain

sup
θ 6=θ′

sup
z

|`(z, θ)− `(z, θ′)|
|θ − θ′|1 · (1 +R2M,2M (z) +R2M,2M (z′))

<∞.

This shows ` ∈ H0(2M, 2M, (ρj)j , C̄) with some suitably chosen C̄ > 0.

Let s > 0 be arbitrary. It was shown in [23], (4.25) therein that with some small ι > 0

only depending on s,Θ, it holds that

(7.109) sup
|θ̃−θ|<ι

σ(x, θ̃)2

σ(x, θ)2
≤ C̄(1 + |x|s(ρjs)j ,s).

Similarly, one can obtain for k = 1, 2, 3 that

(7.110) sup
|θ̃−θ|<ι

∇kθσ(x, θ̃)2

σ(x, θ)2
≤ C̄(1 + |x|s(ρjs)j ,s).

In the following we show that ∇θ` ∈ Hs(2M, 2M, (ρj)j , C̄) with some suitably chosen

C̄ > 0. We have (component-wise):

2|∇θ`(y, x, θ)−∇θ`(y′, x′, θ)|

≤ |y − y′| · 1

σ2
min

|∇θ(σ(x, θ)2)|
σ(x, θ)2

+ |y′| ·
∣∣∣ 1

σ(x, θ)2
− 1

σ(x′, θ)

∣∣∣ · |∇θ(σ(x, θ)2)|
σ(x, θ)2

+
(

1 +
|y′|
σ2
min

)
·
( |∇θ(σ(x, θ)2)−∇θ(σ(x′, θ)2)|

σ2
min

+
|∇θ(σ(x′, θ)2)|
σ(x′, θ)2σ2

min

|σ(x, θ)2 − σ(x, θ′)2|
)
.

Using (7.106) and (7.110), we obtain (component-wise) with some suitably chosen C̄ > 0:

(7.111)

2|∇θ`(y, x, θ)−∇θ`(y′, x′, θ)| ≤ C̄|z− z′|(ρj)j ,1 · (1 +R2M−1,2M−1(z) +R2M−1,2M−1(z′))1+s.

We have (component-wise):

2|∇θ`(z, θ)−∇θ`(z, θ′)|

≤ |y| ·
∣∣∣ 1

σ(x, θ)2
− 1

σ(x, θ′)

∣∣∣ · |∇θ(σ(x, θ)2)|
σ(x, θ)2

+
(

1 +
|y|
σ2
min

)
·
( |∇θ(σ(x, θ)2)−∇θ(σ(x, θ′)2)|

σ2
min

+
|∇θ(σ(x, θ′)2)|
σ(x, θ′)2σ2

min

|σ(x, θ)2 − σ(x, θ′)2|
)
.

Using (7.106) and (7.110), we obtain (component-wise) with some suitably chosen C̄ > 0:

(7.112) 2|∇θ`(z, θ)−∇θ`(z, θ′)| ≤ C̄|θ − θ′|1 · (1 +R2M,2M (z) +R2M,2M (z′))1+s.
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We conclude from (7.111) and (7.112) that ∇θ` ∈ Hs(2M, 2M, (ρj)j , C̄). The proof for ∇2
θ`

is similar in view of (7.106), (7.107) and (7.110) and therefore omitted.

Let s > 0 be arbitrary and ι > 0 such that (7.109) and (7.110) hold. In the following we

show that ∇θ ˜̀∈ Hmults,ι (M,M, (ρj)j , C̄) with some suitable chosen C̄ > 0. It holds that

∇θ ˜̀̃
θ(y, x, θ) =

∇θ(σ(x, θ)2)

2σ(x, θ)2

(
1− yσ(x, θ̃)2

σ(x, θ)2

)
.

We have for |θ − θ̃|1 < ι:

2|∇θ ˜̀̃
θ(y, x, θ)−∇θ ˜̀̃

θ(y, x
′, θ)|

≤ |y| ·
[ |σ(x, θ̃)2 − σ(x′, θ̃)2|

σ2
min

+
σ(x′, θ̃)2

σ(x′, θ)2σ2
min

|σ(x, θ)2 − σ(x′, θ)2|
]
· |∇θ(σ(x, θ)2)|

σ(x, θ)2

+
(

1 + |y| · σ(x′, θ̃)2

σ(x′, θ)2

)
·
( |∇θ(σ(x, θ)2)−∇θ(σ(x′, θ)2)|

σ2
min

+
|∇θ(σ(x′, θ)2)|
σ(x′, θ)2σ2

min

|σ(x, θ)2 − σ(x, θ′)2|
)
.

Using (7.106) and (7.110), we obtain (component-wise) with some suitably chosen C̄ > 0:

(7.113) 2|∇θ ˜̀̃
θ(y, x, θ)−∇θ ˜̀̃

θ(y, x
′, θ)| ≤ C̄(1 + |y|) · |x− x′|(ρj)j ,1 · |x|

s
(ρjs)j ,s

.

We have for |θ − θ̃|1, |θ′ − θ̃|1 < ι:

2|∇θ ˜̀̃
θ(y, x, θ)−∇θ ˜̀̃

θ(y, x, θ
′)|

≤ |y| · σ(x, θ̃)2

σ(x, θ)2σ2
min

|σ(x, θ)2 − σ(x, θ′)2| · |∇θ(σ(x, θ)2)|
σ(x, θ)2

+
(

1 + |y| · σ(x, θ̃)2

σ(x, θ′)2

)
·
( |∇θ(σ(x, θ)2)−∇θ(σ(x, θ′)2)|

σ2
min

+
|∇θ(σ(x, θ′)2)|
σ(x, θ′)2σ2

min

|σ(x, θ)2 − σ(x, θ′)2|
)
.

Using (7.107) and (7.110), we obtain (component-wise) with some suitably chosen C̄ > 0:

(7.114) 2|∇θ ˜̀̃
θ(y, x, θ)−∇θ ˜̀̃

θ(y, x, θ
′)| ≤ C̄(1 + |y|) · |θ − θ′|1 ·RM,M (1, x) · |x|s(ρjs)j ,s.

We conclude from (7.113) and (7.114) that ∇θ ˜̀ ∈ Hmults,ι (M,M, (ρj)j , C̄). The proof for

∇2
θ
˜̀ is similar in view of (7.106), (7.107) and (7.110) and therefore omitted.

Regarding Assumption 2.2, notice that from the explicit representation (7.98) and the

geometric decay (7.97) uniformly in t we have that

∂tP̃i(t) =
∞∑
k=0

k−1∑
l=0

( ∏
0≤j<l

Mi−j(t)
)
∂tMi−l(t)

( ∏
l<j≤k−1

Mi−j(t)
)
ai−k(t)

+

∞∑
k=0

( k−1∏
j=0

Mi−j(t)
)
∂tai−k(t)
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exists a.s. and has q-th moments, so does its first component ∂tỸt(t). Similar arguments

that were used to prove (7.100) can be applied here and yield for t, t′ ∈ [0, 1]:

‖∂tỸi(t)− ∂tỸi(t′)‖q ≤ C ′ · |t− t′|,

with some constant C ′ > 0, i.e. Assumption 7.17(B3’) is shown.

From (7.103) and supθ∈Θ λmax(B(θ)) < 1, it follows that xi 7→ σ(x, θ)2 is differentiable

for all i ∈ N and

∂xi∇kθ(σ(x, θ)2) = ∇kθci(θ), k = 0, 1, 2.

Let M ′ = 1. Similar as above it can be seen that ∇3
θ
˜̀∈ Hmults,ι (M ′,M ′, (ρj)j , C̄). Note that

∂xi∇2
θ
˜̀̃
θ(y, x, θ) =

[
− ∇θci(θ)
σ(x, θ)2

∇θ(σ(x, θ)2)T

2σ(x, θ)2
− ∇θ(2σ(x, θ)2)

σ(x, θ)2
· ∇θci(θ)

T

σ(x, θ)2

+
ci(θ)

σ(x, θ)2

∇θ(σ(x, θ)2)∇θ(σ(x, θ)2)T

σ(x, θ)4

+
∇2
θci(θ)

2σ(x, θ)2
− ci(θ)

σ(x, θ)2

∇2
θ(σ(x, θ)2)

2σ(x, θ)2

]
· (1− yσ(x, θ̃)2

σ(x, θ)2

)
+
[
− ∇θ(σ(x, θ)2)∇θ(σ(x, θ)2)T

2σ(x, θ)4
+
∇2
θ(σ(x, θ)2)

2σ(x, θ)2

]
· ci(θ)

σ(x, θ)2

σ(x, θ̃)2

σ(x, θ)2
· y

+similar terms (derivative of second summand)

Each summand contains a factor ∇kθci(θ) which is geometrically decaying by (7.110). Sim-

ilar as above one can therefore see that ∇2
θ
˜̀̃
θ ∈ H

mult
s,ι (M ′,M ′, (ρj)j , C̄ρ

i). This shows

Assumption 7.17(B2’).

7.4.3. Logistic Regression.

Proof of Example 5.3. Define Ỹi(t) :=
∑m

j=1 1{ζi,j≤π(X̃i(t)Tθ(t))}. Put My = 1. The

model follows (2.1) with Fi(x, θ) =
∑m

j=1 1{ξi,j≤π(xTθ(i/n))}. We have

‖Fi(x, θ)− Fi(x′, θ)‖1

≤
m∑
j=1

‖1{ζi,j≤π(xTθ(t))} − 1{ζi,j≤π(xTθ(t′))}‖1

≤ m{P(π(xTθ) ≤ ξi,1 ≤ π((x′)Tθ)) + P(π((x′)Tθ) ≤ ξi,1 ≤ π(xTθ))}

≤ 2m|π(xTθ)− π((x′)Tθ)|.
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Since |∂wπ(w)| ≤ 1
4 , we conclude that

‖Fi(x, θ)− Fi(x′, θ)‖1 ≤
m

2
sup
j

sup
θ∈Θ
|θj | · |x− x′|1,

i.e. (2.13) and thus Assumption 2.1(A5), (A7) is fulfilled.

Note that for fixed c ∈ (0, 1), f(w) = log(1+ew)−c ·w is strongly convex with minimum

at w0 defined by c = ew0

1+ew0 . It holds that

L(t, θ) := E`(Ỹ0(t), X̃0(t), θ) = m · E
[

log
(

1 + exp
(
X̃0(t)Tθ

))
− π(X̃0(t)Tθ(t)) · X̃0(t)Tθ

]
.

By a Taylor expansion of f around w0, we obtain f(w) = f(w0) + 1
2(w − w0)2∂wf(w̃).

Since f ′′(w) = ew

(1+ew)2 is increasing for w < 0 and decreasing for w > 0, f ′′(w̃) ≥
min{π(w), π(w0)}. In the following we use the notation |x|2A := xTAx for a weighted vector

norm. We obtain that

L(t, θ)− L(t, θ(t)) ≥ |θ − θ(t)|2
Ṽ (t,θ)

,

with Ṽ (t, θ) = E
[

min{π(X̃0(t)Tθ), π(X̃0(t)Tθ(t))}X̃0X̃0(t)T
]
. If Ṽ (t, θ) was not positive

definite for one θ, there would exist v ∈ Rp such that v′Ṽ (t, θ)v = 0 which would im-

ply that either v′X̃0(t) = 0 a.s. or min{π(X̃0(t), θ(t)), π(X̃0(t), θ)} = 0 a.s.. But it holds

π(X̃0(t), θ) ∈ (0, 1) a.s. since supj=1,...,p |X̃0j(t)| <∞ a.s. and Θ is compact. Furthermore,

v′X̃0(t) = 0 a.s. is a contradication to the positive definiteness of E[X̃0(t)X̃0(t)T]. Thus

Ṽ (t, θ) is positive definite for each θ and we conclude that L(t, θ) is uniquely minimized by

θ = θ(t). This shows Assumption 2.1(A3). We furthermore have

∇θ`(z, θ) = mπ(xTθ)x− yx,

∇2
θ`(z, θ) = m

exp(xTθ)

(1 + exp(xTθ))2
· xxT.

It is easy to see that ` ∈ H(1, 1, χ, C̃), ∇θ` ∈ H(1, 2, χ, C̃) and ∇θ` ∈ H(1, 2, χ, C̃) with

some C̃ > 0 and χ = (1, . . . , 1, 0, 0, . . .), a vector with p ones followed from zeros, i.e.

Assumption 2.1(A1).

Since Ỹi(t) given X̃i(t) is binomial distributed with parameters (m,π(X̃0(t)Tθ(t))), we

have

E[∇θ`(Z̃0(t), θ(t))|X̃0(t)] = mπ(X̃0(t)Tθ)X̃0(t)−mπ(X̃0(t)Tθ)X̃0(t) = 0.

Furthermore, (∇θ`(Z̃i(t), θ(t)))i is an uncorrelated sequence, thus we have Λ(t) = I(t).

Here,

V (t) = E∇2
θ`(Z̃0(t), θ(t)) = mE

[ π(X̃0(t)Tθ(t))

1 + exp(X̃0(t)Tθ(t))
· X̃0(t)TX̃0(t)

]
,
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which is positive definite by a similar argumentation as it was done for Ṽ (t, θ). Finally, since

Ỹ0(t) is binomial distributed with parameters (m,π(X̃0(t)Tθ(t))) given X̃0(t), we obtain

I(t) = E[∇θ`(Z̃0(t), θ(t))∇θ`(Z̃0(t), θ(t))T]

= E
[(
mπ(X̃0(t)Tθ(t))− Ỹ0(t)

)2
X̃0(t)X̃0(t)T

]
= mE[π(X̃0(t)Tθ(t))(1− π(X̃0(t)Tθ(t)))X̃0(t)X̃0(t)T] = V (t),

and thus its positive definiteness and Assumption 2.1(A4).


	Introduction
	Model assumptions and estimators
	The model
	The estimator
	The functional dependence measure
	The class H(My,Mx,chi,C)
	Assumptions

	Main results
	Consistency and asymptotic normality
	A weak Bahadur representation for thetaest,theta'est
	Simultaneous confidence bands for thetaest,theta'est

	Implementational issues
	Bias correction
	Estimation of the covariance matrix SigmaC(t)
	Bandwidth selection
	Bootstrap method
	Boundary considerations


	Examples
	Simulation results and applications
	Simulations
	Applications
	Real data application I: USD/GBP rates
	Real data application II: Merval index data


	References
	Proofs
	Proofs of Section 3
	Proofs and Lemmas for the SCB
	Proofs of Section 4
	Proofs of the examples in Section 5
	Recursively defined models
	tvGARCH
	Logistic Regression



