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Abstract. We obtain an optimal bound for Gaussian approximation of a large class

of vector-valued random processes. Our results substantially generalize earlier ones

which assume independence and/or stationarity. Based on the decay rate of functional

dependence measure, we quantify the error bound of the Gaussian approximation

which can range from the worst n1/2 to the optimal n1/p rate.
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1. Introduction Functional central limit theorem (FCLT) or invariance princi-

ple plays an important role in statistics. Let Xi, i ≥ 1, be independent and identically

distributed (i.i.d.) random vectors in Rd with mean 0 and covariance matrix Σ, and

Sj =
∑j

i=1Xi. The FCLT asserts that

{n−1/2Sbnuc, 0 ≤ u ≤ 1} ⇒ {Σ1/2IB(u), 0 ≤ u ≤ 1}, (1.1)

where btc = max{i ∈ Z : i ≤ t} and IB is the standard Brownian motion in Rd,

namely it has independent increments and IB(u+ v)− IB(u) ∼ N(0, vId), u, v ≥ 0.
1
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In this paper we should substantially generalize (1.1) by developing a convergence

rate of (1.1) for multiple time series which can be dependent and non-identically

distributed.

The invariance principle was introduced by Erdös and Kac (1946, [9]). Doob (1949,

[4]), Donsker (1952, [3]) and Prohorov (1956, [20]) furthered their ideas, which led

to the theory of weak convergence of probability measures. There is an extensive

literature concerning Gaussian approximation when the dimension d = 1. In this

case optimal rates for independent random variables were obtained in [11] and [21],

among others. When d = 1 and Xi are i.i.d. with mean 0, variance σ2 and have finite

p-th moment, p > 2, Komlós, Major and Tusnády (1975, 76, [11, 12]) established the

very deep result

max
1≤i≤n

|S ′i − σB(i)| = oa.s.(τn), (1.2)

where B(·) is the standard Brownian motion and S ′n is constructed on a richer space

such that (Si)i≤n
D
= (S ′i)i≤n, and the approximation rate τn = n1/p is optimal. Re-

sults of type (1.2) have many applications in statistics since one can use functionals

involving Gaussian processes to approximate statistics of (Xi)
n
i=1 and thus exploit

properties of Gaussian processes. Their result was generalized to independent random

vectors by Einmahl (1987a, [6]; 1987b, [7]; 1989, [8]), Zaitsev (2001, [30]; 2002a, [31];

2002b, [32]) and Götze and Zaitsev (2008, [10]), where optimal and nearly optimal

results were obtained.

To generalize (1.2) to multiple time series, we shall consider the possibly non-
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stationary, d-dimensional, mean 0, vector-valued process

Xi = (Xi1, . . . , Xid)
T = Hi(Fi) = Hi(εi, εi−1, . . .), i ∈ Z, (1.3)

where T denotes matrix transpose, Fi = (εi, εi−1, . . .) and εi, i ∈ Z, are i.i.d. random

variables. Here, Hi(·) is a measurable function so that Xi is well-defined. We allow

Hi to be possibly non-linear in its argument (εi, εi−1, . . .) to capture a much larger

class of processes. If Hi(·) ≡ H(·) does not depend on i, (1.3) defines a stationary

causal process. The latter framework is very general; see [23, 25, 19] among others.

When d = 1, Wiener [24] considered representing stationary processes by functionals

of i.i.d. random variables.

Lütkepohl [16] presented many applications of functional central limit theorems for

multiple time series analysis. Wu and Zhao (2007, [28]) and Zhou and Wu (2010, [33])

applied Gaussian approximation results with sub-optimal approximation rates to

trend estimation and functional regression models. For the class of weakly dependent

processes (1.3), we shall show that there exists a probability space (Ωc, Ac, Pc), on

which we can define random vectors Xc
i with the partial sum process Sci =

∑i
t=1X

c
t

and a Gaussian process Gc
i =

∑i
t=1 Y

c
t with Y c

t being mean 0 independent Gaussian

vectors such that (Sci )1≤i≤n
D
= (Si)1≤i≤n and

max
i≤n
|Sci −Gc

i | = oP (τn) in (Ωc, Ac, Pc), (1.4)

where the approximation bound τn is related with the dependence decaying rates.

Our result is useful for asymptotic inference for multiple time series. As a primary
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contribution, we generalize and improve the existing results for Gaussian approxi-

mations in several directions. For some p > 2, we assume uniform integrability of

pth moment and obtain an approximation bound τn in terms of p and the decay

rate of functional dependence measure. In particular, if the dependence decays fast

enough, for τn, we are able to achieve the optimal oP (n1/p) bound. In the current

literature, optimal results were obtained for some special cases only. We start with

a brief overview of them.

For stationary processes with d = 1, a sub-optimal rate was derived in Wu (2007,

[26]) where the martingale approximation is applied. Berkes, Liu and Wu (2014, [2])

considered causal stationary process (1.3) above and obtained the n1/p bound for p >

2. It is considerably more challenging to deal with vector-valued processes. Eberlein

(1986, [5]) obtained a Gaussian approximation result for dependent random vectors

with approximation error O(n1/2−κ), for some small κ > 0. The latter bound can be

too crude for many statistical applications. The martingale approximation approach

in [26] can not be applied to vector-valued processes since Strassen’s embedding

generally fails for vector-valued martingales [17]. For a stationary multiple time series

with additional constraints, Liu and Lin (2009, [13]) obtained an important result

on strong invariance principles for stationary processes with bounds of the order

n1/p with 2 < p < 4. Wu and Zhou (2011, [29]) obtained sub-optimal rates for a

multiple non-stationary time series. A critical limitation of the result by [29, 13] was

the restriction 2 < p < 4. It is an open problem on whether the bound n1/p can be
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achieved when p ≥ 4.

In this paper, we show that under proper decaying conditions on functional depen-

dence measures for the process (1.3), we can indeed obtain the optimal bound n1/p for

p ≥ 4. Our condition is stated in the form of (2.3), which involves two parameters χ

and A to formulate the temporal dependence of the process. With proper conditions

on A, we find optimal τn = τn(χ) for a general χ > 0. In Corollary 2.1 in Berkes,

Liu and Wu (2014, [2]) the authors discussed univariate and stationary processes.

However, their focus was on larger values of χ that allows them to obtain τn = n1/p.

In Theorem 2.1 we obtain a rate for any χ > 0 and show that if χ increases from 0

to a certain number χ0, we obtain the optimal τn varying from the worst, n1/2, to

the optimal, n1/p. This work is substantially useful for processes where dependence

does not decay fast enough. For the borderline case χ = χ0, we can have oP (n1/p)

rate for 2 < p < 4 and for p ≥ 4 we have oP (n1/p log n) rate. However, if χ > χ0 we

can obtain the optimal oP (n1/p) bound for all p > 2.

Our sharp Gaussian approximation result is quite useful for simultaneous inference

of curves where the unknown function is not even Lipschitz continuous. There is a

huge literature of curve estimation assuming smooth or regular behavior of a function

but not so much for functions that are not differentiable or not Lipschitz continu-

ous. Our Gaussian approximation can play a key role in weakening the smoothness

assumption and thus enlarging the scope of doing statistical inference. Some ap-

plications are mentioned in Karmakar and Wu (2017). Moreover, since the optimal
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oP (n1/p) bound for 2 < p < 4 and stationary processes obtained in [13] has remained

a popular choice over the past few years for a multivariate Gaussian approximation,

we can apply our sharper invariance principle that generalize ([13])’s one in multiple

directions and give optimal rates when p ≥ 4.

The rest of the article is organized as follows. In Section 2, we introduce the

functional dependence measure and present the main result. Theorem 2.1 is proved

in Sections 4 and 5. The proof of Theorem 2.2 is given in Section 6. Applications

to covariance processes and locally stationary processes are given in Section 3. In

Section 4 we discuss the proof strategy briefly to give the readers a basic idea of our

long and involved derivation. Some useful results are collected in Section 7.

We now introduce some notation. For a random vector Y , write Y ∈ Lp, p > 0,

if ‖Y ‖p := E(|Y |p)1/p < ∞. If Y ∈ L2, V ar(Y ) denotes the covariance matrix. For

L2 norm write ‖ · ‖ = ‖ · ‖2. Throughout the text, we use cp for constants that

depend only on p and c for universal constants. These might take different values

in different lines unless otherwise specified. For two positive sequences an and bn,

if an/bn → 0 (resp. an/bn → ∞), write an � bn (resp. an � bn). Write an . bn

if an ≤ cbn for some c < ∞. The d-variate normal distribution with mean µ and

covariance matrix Σ is denoted by N(µ,Σ). Denote by Id the d× d identity matrix.

For a matrix A = (aij), we define its Frobenius norm as |A| = (
∑
a2ij)

1/2. For a

positive semi-definite matrix A with spectral decomposition A = QDQT , where Q is

orthonormal and D = (λ1, . . . , λd) with λ1 ≥ . . . ≥ λd, write the Grammian square
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root A1/2 = QD1/2QT , ρ∗(A) = λd and ρ∗(A) = λ1.

2. Main Results We first introduce uniform functional dependence measure on

the underlying process using the idea of coupling. Let ε′i, εj, i, j ∈ Z, be i.i.d. random

variables. Assume Xi ∈ Lp, p > 0. For j ≥ 0, 0 < r ≤ p, define the functional

dependence measure

δj,r = sup
i
‖Xi −Xi,(i−j)‖r = sup

i
‖Hi(Fi)−Hi(Fi,(i−j))‖r, (2.1)

where Fi,(k) is the coupled version of Fi with εk in Fi replaced by an i.i.d. copy ε′k,

Fi,(k) = (εi, εi−1, . . . , ε
′
k, εk−1, . . .) and Xi,(i−j) = Hi(Fi,(i−j)).

Also, Fi,(k) = Fi if k > i. Note that, ‖Hi(Fi)−Hi(Fi,(i−j))‖r measures the dependence

of Xi on εi−j. Since the physical mechanism function Hi can possibly be different

for a non-stationary process, we choose to define the functional dependence measure

in an uniform manner. The quantity δj,r measures the uniform j-lag dependence in

terms of the rth moment. Assume throughout the paper that

Θ0,p =
∞∑
i=0

δi,p <∞. (2.2)

This condition implies short range dependence in the sense that the cumulative

dependence of (Xj)j≥k on εk is finite. For presentational clarity, in this paper we

assume there exists χ > 0, A > 0 such that the tail cumulative dependence measure

Θi,p =
∞∑
j=i

δj,p = O
(
i−χ(log i)−A

)
. (2.3)
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Larger χ or A implies weaker dependence. Our Gaussian approximation rate τn (cf

Theorems 2.1 and 2.2) depends on χ and A. Define functions fj(·, ·) by

f1 = f1(p, χ) = p2χ2 + p2χ, f2 = 2pχ2 + 3pχ− 2χ, (2.4)

f3 = p3(1 + χ)2 + 6f1 + 4pχ− 2, f4 = 2p(2pχ2 + 3pχ+ p− 2),

f5 = p2(p2 + 4p− 12)χ2 + 2p(p3 + p2 − 4p− 4)χ+ (p2 − p− 2)2.

Assume that the process (1.3) satisfies the uniform integrability and the regularity

condition on the covariance structure. The latter is frequently imposed in study of

multiple time series.

(2.A) The series (|Xi|p)i≥1 is uniformly integrable: supi≥1E(|Xi|p1|Xi|≥u)→ 0 as u→

∞;

(2.B) (Lower bound on eigenvalues of covariance matrices of increment processes)

There exists λ∗ > 0 and l∗ ∈ N, such that for all t ≥ 1, l ≥ l∗,

ρ∗(V ar(St+l − St)) ≥ λ∗l.

Theorem 2.1. Assume E(Xi) = 0, (2.A)-(2.B) and (2.3) holds with

0 < χ < χ0 =
p2 − 4 + (p− 2)

√
p2 + 20p+ 4

8p
, (2.5)

A >
(2p+ p2)χ+ p2 + 3p+ 2 + f

1/2
5

p(1 + p+ 2χ)
. (2.6)

Then (1.4) holds with the approximation bound τn = n1/r, where

1

r
=
f1 + p2χ+ p2 − 2p+ f2 − χ

√
(p− 2)(f3 − 3p)

f4
. (2.7)
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Theorem 2.2. Assume E(Xi) = 0, (2.A)-(2.B), (2.3). Recall (2.5) for χ0. (i)

If χ > χ0, and A > 0, we can achieve (1.4) with τn = n1/p for all p > 2. For χ = χ0,

assume that A satisfies (2.6). (ii) If 2 < p < 4, we have τn = n1/p; (iii) if p ≥ 4, we

have τn = n1/p log n.

Theorems 2.1 and 2.2 concern the two cases χ < χ0 and χ ≥ χ0, respectively, and

they are proved in Sections 4 and 6. The proof of Theorem 2.2 requires a more refined

treatment so that the optimal rate can be derived. For Theorem 2.1 and Theorem

2.2(i) and (iii), we apply Götze and Zaitsev (2008, [10]); see Proposition 7.1, while for

Theorem 2.2(ii), Proposition 1 from Einmahl (1987, [6]) is applied. The expression

of r is complicated. Figure 1 plots the power max(1/r, 1/p). As χ → 0, r → 2, and

r = p if χ = χ0.

Remark 2.3. The lower bound of A for the case χ = χ0 can be further simplified

to

A >
p2 + 8p+ 4 + (p− 2)

√
p2 + 20p+ 4

6p
.

3. Applications

3.1. Covariance Processes: Assuming that Xi is a vector linear process

Xi =
∞∑
j=0

Bjεi−j, (3.1)

where Bj are d × d coefficient matrix, and εi = (εi1, . . . , εid)
T , εir are i.i.d. random

variables with mean 0 and finite qth moment, q > 4. Let the d(d+ 1)/2 dimensional
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Fig 1. Optimal bound as a function of χ

vector Wi = (XirXis)1≤r≤s≤d. Then W̄n :=
∑n

i=1Wi/n gives sample covariances of

(Xi)
n
i=1. Assume

∞∑
j=t

|Bj| = O(t−χ(log t)−A), (3.2)

where A satisfies (2.6). Write p = q/2. Let Σ =
∑∞

k=−∞Cov(W0,Wk) be the long-run

covariance matrix of (Wi). By Theorems 2.1 and 2.2, we have

max
i≤n
|iW̄i − iE(W1)− Σ1/2IB(i)| = oP (τn), (3.3)

where τn takes the value n1/r (see (2.7)), and n1/p based on χ < χ0 and χ > χ0

respectively, IB is a centered standard Brownian motion. Result (3.3) is helpful for

change point inference for multiple time series based on covariances; see [1, 22] among

others.
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3.2. Nonlinear Non-stationary Time Series: Consider the process

Xi = F (Xi−1, εi, θ(i/n)), 1 ≤ i ≤ n,

where εi are i.i.d. random variables, F is a measurable function, θ : [0, 1] → R is a

parametric function such that max0≤u≤1 ‖F (x0, εi, θ(u))‖p <∞, and

sup
0≤u≤1

sup
x 6=x′

‖F (x, εi, θ(u))− Fi(x′, εi, θ(u))‖p
|x− x′|

< 1. (3.4)

Then the process (Xi) satisfies the Geometric moment contraction: for some 0 < β <

1,

δi,p = O(βi). (3.5)

Thus (2.3) holds for any χ > 0 and Theorem 2.2 is applicable with rate τn = n1/p. This

facilitates inference for the unknown parametric function θ. Time-varying ARCH and

GARCH are prominent examples in this large class of models.

4. Proof of Theorem 2.1 The proof of Theorem 2.1 is quite involved. Here

we discuss the major components of the proof. Some technical details are given in

Section 5.

4.1. Preparation:-Truncation, m-dependence and blocking approximations: The

first part of our proof consists of series of approximations to create almost indepen-

dent blocks. The first of them, the truncation approximation will ensure the optimal

n1/p bound. Secondly, we use the m−dependence approximation for a suitably cho-

sen sequence mn in terms of the decay rate χ. Lastly, the blocking approximation
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requires some sharp Rosenthal-type inequality that needs γth moment of the block-

sums in the numerator with γ > p. It is essential to use a power higher than p to

obtain a better rate.

To maintain clarity, we defer the exact choice of γ and mn in terms of χ and A to

Subsection 4.4. Instead, in this subsection we come up with conditions (4.9), (4.13)

and (4.14) to ensure n1/r rate and solve γ,mn and r later to obtain the best possible

choices for this sequences. Henceforth, we drop the suffix of mn for our convenience.

4.1.1. Truncation approximation: Truncation approximation is necessary to al-

low higher moments manipulations. Additionally, we need a very slowly converging

sequence tn → 0 based on the uniform integrability condition (2.A). For every t > 0,

we have

sup
i

1

tp
E(|Xi|p1|Xi|>tn1/p) = 0 and n sup

i
Emin(

|Xi|γ

tγnγ/p
, 1)→ 0 as n→∞, (4.1)

where γ > p. The second relation follows from Lemma 7.2. Clearly (4.1) implies that

sup
i

1

tpn
E(|Xi|p1|Xi|>tnn1/p) + n sup

i
Emin(

|Xi|γ

tγnnγ/p
, 1)→ 0 as n→∞, (4.2)

holds for a sequence tn → 0 very slowly. Without loss of generality we can let

tn log log n→∞ (4.3)

since otherwise we can replace tn by max(tn, (log log n)−1/2) (say). For b > 0 and

v = (v1, . . . , vd)
T ∈ Rd, define

Tb(v) = (Tb(v1), . . . , Tb(vd))
T , where Tb(w) = min(max(w,−b), b). (4.4)
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The truncation operator Tb is Lipschitz continuous with Lipschitz constant 1. Let

Rc,l =
l+c∑

i=1+c

X⊕i =
l+c∑

i=1+c

[Ttnn1/p(Xi)− ETtnn1/p(Xi)]. (4.5)

Proposition 4.1. Assume Condition (2.A). For tn satisfying (4.2), we have

max
1≤i≤n

|Si − S⊕i | = oP (n1/p), where S⊕l = R0,l =
l∑

i=1

X⊕i . (4.6)

Proof. By (4.2), we have P (maxi≤n |Si −
∑i

j=1 Ttnn1/p(Xj)| = 0)→ 1 in view of

sup
j
P
(
|Xj| > tnn

1/p
)
≤ sup

j

1

ntpn
E
(
|Xj|pI

(
|Xj| > tnn

1/p
))

= o(1/n).

Also by (4.2), maxj≤n |E(Xj − Ttnn1/p(Xj))| = o(n1/p−1). Hence (4.6) follows.

4.1.2. m-dependence approximation: The m-dependence approximation is a very

important tool that is extensively used in literature; see for example the Gaussian

approximation in Liu and Lin (2009, [13]) and Berkes, Liu and Wu (2014, [2]). For

a suitably chosen sequence m, we look at the conditional mean E(Xi|εi, . . . εi−m).

This gives a very simple yet effective way to handle the original process in terms of

a collection of εi’s. As the dependence of Xi and Xi+k slowly decrease as k grows,

if we can divide the partial sum process in blocks of sufficiently long, their behavior

is close to that of a block-independent process. This strategy allows us to apply the

existing Gaussian approximation results in the literature suitable for independent

process. Define the partial sum process

R̃c,l =
l+c∑

i=1+c

X̃j, where X̃j = E(Ttnn1/p(Xj)|εj, . . . , εj−m)− E(Ttnn1/p(Xj)). (4.7)
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Write R̃0,i = S̃i. From Lemma A1 in Liu and Lin (2009, [13]), we have

‖ max
1≤l≤n

|S⊕l − S̃l|‖r ≤ crn
1/2Θ1+m,r. (4.8)

The proofs in [13] are for stationary processes. Since our δj,r in (2.1) is defined in an

uniform manner, the proof goes through for the non-stationary case as well. Assume

n1/2−1/rΘm,r → 0. (4.9)

By (4.8) and (4.9), we have n1/r convergence in the m-dependence approximation

step

max
1≤i≤n

|S⊕i − S̃i| = oP (n1/r). (4.10)

4.1.3. Blocking approximation: We now define functional dependence measure for

the truncated process (Ttnn1/p(Xi))i≤n as

δ⊕j,l = sup
i
‖Ttnn1/p(Xi)− Ttnn1/p(Xi,(i−j))‖l, where l ≥ 2.

Similarly, define the functional dependence measure for the m-dependent process

(X̃i) as

δ̃j,l = sup
i
‖X̃i − X̃i,(i−j)‖l.

For these dependence measures, the following inequality holds for all l ≥ 2:

δ̃j,l ≤ δ⊕j,l ≤ δj,l. (4.11)
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Proposition 4.2 gives the blocking approximation result. For j ≥ 0, define

Aj+1 =

(2k0j+2k0)m∑
i=2jk0m+1

X̃i, where k0 = bΘ2
0,2/λ∗c+ 2. (4.12)

In the blocking approximation step, we shall approximate the partial sum process

S̃i by sums of Aj. To this end, we will need the following two conditions, for some

γ > p,

n1−γ/rmγ/2−1 → 0, (4.13)

n1/p−1/γ
∞∑

j=m+1

δ
p/γ
j,p → 0. (4.14)

We need another condition for the blocking approximation (see (7.4) in the proof

of Lemma 7.4). However, we skip it here and choose m and γ such that conditions

(4.9), (4.13) and (4.14) are met. These will automatically imply this fourth one in

view of (2.3). We assume an almost polynomial rate for m: for some 0 < L < 1,

m = bnLtknc, 0 < k < (γ − p)/(γ/2− 1). (4.15)

Proposition 4.2. Assume (4.13) and (4.14) for some γ > p. Moreover, assume

(4.15) for the m-sequence and (2.3) for the decay rate of Θi,p with some A > γ/p.

Then

max
1≤i≤n

|S̃i − S�i | = oP (n1/r), where S�i =

qi∑
j=1

Aj, qi = bi/(2k0m)c. (4.16)
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Proof. Let S = {2ik0m, 0 ≤ i ≤ qn} and φn = (n1−γ/rmγ/2−1)1/(2γ). Then

P

max
1≤l≤n

|R̃0,l −
bl/(2k0m)c∑

j=1

Aj| ≥ φnn
1/r

 ≤ n

2k0m
max
c∈S

P ( max
1≤l≤2k0m

|R̃c,l| ≥ φnn
1/r)

≤ nmax
c∈S

E(max1≤l≤2k0m |R̃c,l|γ)
2k0mφ

γ
nnγ/r

= O(φγn),

from the assumption (4.13) and Lemma 7.4. Since φn → 0, (4.16) follows.

Summarizing (4.6), (4.10) and (4.17), we can work on S�i in view of

max
1≤i≤n

|Si − S�i | = oP (n1/r). (4.17)

In the next steps, we obtain a Gaussian approximation for S�n; see backgrounds in

Sections 4.2 and 4.3 and detailed argument in Section 5.

4.2. Conditioning and Gaussian Approximation: The blocks created in the first

steps are not independent because two successive blocks share some εi’s in their

shared border. In this second stage, we look at the partial sum process conditioned

on these borderline εi’s, which implies conditional independence. Berkes, Liu and Wu

(2014, [2]) did a similar treatment with triadic decomposition for stationary scalar

processes and applied Sakhanenko’s (2006, [21]) Gaussian Approximation result on

the conditioned process.

Since the result from Sakhanenko (2006, [21]) is only valid for d = 1, we need to use

the Gaussian approximation result from Götze and Zaitsev (2008, [10]) (see Propo-

sition 7.1) for d ≥ 2. This comes with the cost of verifying a very technical sufficient

condition on the covariance matrices of the independent vectors. Verification of such



17

a condition is quite involved in our case since we are dealing with the conditional

process. We opt for a k-dic decomposition instead of the triadic decomposition in

[2]. This is necessary to accommodate the non-stationarity of the process. We need

k0 > Θ2
0,2/λ∗ (cf. (4.12)), where λ∗ is mentioned in Condition 2.B.

4.3. Removing the conditioning and regrouping: In the last part of our proof, we

obtain the Gaussian approximation for the unconditional process by applying Propo-

sition 7.1 one more time. In the second part of our proof, we look at the conditional

variance (cf Vj(ā2k0j, ā2k0j+2k0) = V ar(Yj(ā2k0j, ā2k0j+2k0)) in (5.3) of Subsection 5.1)

of the blocks. These conditional variances are 1-dependent. In order to apply Götze

and Zaitsev (2008, [10])’s result, we rearrange the sums of these variances into sums

of independent blocks (cf 5.5 in Subsection 5.1). Due to the non-stationarity, this

regrouping is completely different and much more involved than Berkes, Liu and

Wu (2014, [2]). In particular, the regrouping procedure leads to matrices that may

not be positive definite hence cannot be used directly as possible covariance ma-

trices of Gaussian processes. We overcome this obstacle by introducing a positive-

definitization that does not affect the optimal rate.

4.4. Conclusion of the Proof: This subsection discusses the specific choice of the

sequence m, γ and the rate τn = n1/r starting from (4.9), (4.13) and (4.14). Elemen-

tary calculations show that r < p for χ < χ0. Provided 1 − (χ + 1)p/γ < 0, we
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have

∞∑
j=m+1

δ
p/γ
j,p ≤

∞∑
i=blog2mc

2i+1−1∑
j=2i

δ
p/γ
j,p ≤

∞∑
i=blog2mc

2i(1−p/γ)Θ
p/γ

2i,p
(4.18)

=
∞∑

i=blog2mc

2i(1−p/γ)O(2−χip/γi−Ap/γ) = O(m1−p/γ−χp/γ(logm)−Ap/γ).

By (4.3) and (4.15) logm � log n. Assume that,

1/2− 1/r − χL = 0, A > γ/p, (4.19)

1− γ/r + L(γ/2− 1) = 0, 0 < k < (γ/2− 1)−1(γ − p) (4.20)

1/p− 1/γ + (1− (χ+ 1)p/γ)L = 0. (4.21)

Then conditions (4.9), (4.13) and (4.14) hold. Solving equations in (4.19), (4.20) and

(4.21), we obtain r given in (2.7),

γ =
(2p+ p2)χ+ p2 + 3p+ 2 + f

1/2
5

2 + 2p+ 4χ
,

L =
f1 − f2 + χ

√
(p− 2)(f3 − 3p)

χf4
,

with f1, . . . , f5 given in (2.4). Moreover, we specifically choose A > 2γ/p for a crucial

step in the proof of our Gaussian approximation; see (5.21).

Remark 4.3. Figure 2 depicts how γ and L change with p and χ for χ < χ0.

Note that in Figure 2, L, the power of n in the expression of m is close to 1 if χ is

small. This is intuitive since if dependence decays very slowly, to make blocks of size

m or a multiple of m behave almost independently, one needs a larger L.
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(a) (b)

Fig 2. (a) γ as a function of χ, (b) L as a function of χ

5. Remaining Steps of the Proof of Theorem 2.1 In this section we shall

provide details of the arguments for steps mentioned in Sections 4.2 and 4.3. Section

5.1 presents the conditional Gaussian approximation, where we shall apply Proposi-

tion 7.1 stated in Section 7. Section 5.2 deals with unconditional Gaussian approxi-

mation and regrouping.

5.1. Conditional Gaussian Approximation: The blocks Aj created in (4.12) after

the blocking approximation are weakly independent; except they share some depen-

dence on the border. In this subsection, we look at the conditional process given the

εi the blocks share in their borders. Demeaning the conditional process, we apply

the Proposition 7.1 for the Gaussian approximation. For 1 ≤ i ≤ n, let H̃i be a
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measurable function such that

X̃i = H̃i(εi, . . . , εi−m). (5.1)

Recall Proposition 4.2 for the definition of qi. Let q = qn. For j = 1, . . . , q, define

ā2k0j = {a(2k0j−1)m+1, . . . , a2k0jm} and a = {. . . , ā0, ā2k0 , ā4k0 , . . .}.

Given a, define, for 2k0jm+ 1 ≤ i ≤ (2k0j + 1)m,

X̃i(ā2k0j) = H̃i(εi, . . . , ε2k0jm+1, a2k0jm, . . . , ai−m)

and for (2k0j + 2k0 − 1)m+ 1 ≤ i ≤ (2k0j + 2k0)m,

X̃i(ā2k0j+2k0) = H̃i(ai, . . . , a(2k0j+2k0−1)m+1, ε(2k0j+2k0−1)m, . . . , εi−m).

Further, define the blocks as following,

F4j+1(ā2k0j) =

(2k0j+1)m∑
i=2k0jm+1

X̃i(ā2k0j), (5.2)

F4j+2 =

(2k0j+k0)m∑
i=(2k0j+1)m+1

X̃i, F4j+3 =

(2k0j+2k0−1)m∑
i=(2k0j+k0)m+1

X̃i,

F4j+4(ā2k0j+2k0) =

(2k0j+2k0)m∑
i=(2k0j+2k0−1)m+1

X̃i(ā2k0j+2k0).

Similarly, for j = 1, . . . , q, define

ϑ̄2k0j = {ε(2k0j−1)m+1, . . . , ε2k0jm} and ϑ = {. . . , ϑ̄0, ϑ̄2k0 , ϑ̄4k0 , . . .}.
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Recall Aj from (4.12). We have

Aj+1 = F4j+1(ϑ̄2k0j) + F4j+2 + F4j+3 + F4j+4(ϑ̄2k0j+2k0).

Define the mean functions

Λ4j+1(ā2k0j) = E∗(F4j+1(ā2k0j)) and Λ4j+4(ā2k0j+2k0) = E∗(F4j+4(ā2k0j+2k0)),

where E∗ refers to the conditional moment given a. In the sequel, with slight abuse

of notation, we will simply use the usual E to denote moments of random variables

conditioned on a. Introduce the centered process

Yj(ā2k0j, ā2k0j+2k0) = F4j+1(ā2k0j)− Λ4j+1(ā2k0j) + F4j+2 (5.3)

+F4j+3 + F4j+4(ā2k0j+2k0)− Λ4j+4(ā2k0j+2k0).

Following the definition of S�n, we let

Si(a) =

qi−1∑
j=0

Yj(ā2k0j, ā2k0j+2k0).

The mean and variance function of Si(a) are respectively denoted by

Mi(a) =

qi−1∑
j=0

[Λ4j+1(ā2k0j) + Λ4j+4(ā2k0j+2k0)],

Qi(a) =

qi−1∑
j=0

Vj(ā2k0j, ā2k0j+2k0),

where Vj(ā2k0j, ā2k0j+2k0) is the dispersion matrix of Yj(ā2k0j, ā2k0j+2k0). Define

Vj0(ā2k0j) = E(F4j−2F
T
4j−1 + F4j−1F

T
4j−2) + V ar(F4j−1 + F4j(ā2k0j)− Λ4j(ā2k0j))
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+V ar(F4j+1(ā2k0j)− Λ4j+1(ā2k0j) + F4j+2). (5.4)

Note that, the following identity holds for all t:

t∑
j=0

Vj(ā2k0j, ā2k0j+2k0) = L(ā0) +
t−1∑
j=1

Vj0(ā2k0j) + Ut(ā2k0t+2k0), (5.5)

where L(ā0) = V ar(F1(ā0) + F2) and

Ut−1(ā2k0t) = E(F4t−2F
T
4t−1+F4t−1F

T
4t−2)+V ar(F4t−1+F4t(ā2k0t)−Λ4t(ā2k0t)). (5.6)

Define

Laγ =

q−1∑
j=0

E(|Yj(ā2k0j, ā2k0j+2k0)|γ).

In the sequel, we suppress Yj(ā2k0j, ā2k0j+2k0), Yj(ϑ̄2k0j, ϑ̄2k0j+2k0), Vj(ā2k0j, ā2k0j+2k0),

Vj0(ā2k0j), Vj(ϑ̄2k0j, ϑ̄2k0j+2k0) and Vj0(ϑ̄2k0j) as just Y a
j ,Y ϑ

j , V a
j , V a

j0, V
ϑ
j and V ϑ

j0 re-

spectively. We apply Proposition 7.1 to the independent mean 0 random vectors Y a
j .

We need to find a suitable sequence ηk that allows us to get constants C1, C2 in (7.1)

and C3 in (7.2). There are roughly q = n/(2k0m) many Y a
j random variables. Define

l = bq2/γ/ log2 qc. (5.7)

To apply Proposition 7.1, we choose the sequence ηk = kl and s � q/l. This choice

is justified by proving the following series of propositions.

Proposition 5.1. Recall λ∗ and Aj from (2.B) and (4.12) respectively. There

exists a constant δ > 0 such that

2(λ∗ + δ)k0m ≤ ρ∗(V ar(Aj)) ≤ ρ∗(V ar(Aj)) ≤ ‖Aj‖2 ≤ 2k0mΘ2
0,2.
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Proposition 5.2. We can get positive constants c1 and c2 such that for all j,

c1m ≤ ρ∗(V ar(Y
ϑ
j )) ≤ ρ∗(V ar(Y ϑ

j )) ≤ E(|Y ϑ
j |2) ≤ c2m. (5.8)

Proposition 5.3. For l in (5.7), there exists constant c3 such that,

P

 max
1≤t≤q/l

|V ar

 tl−1∑
j=(t−1)l

Y a
j

− E
V ar

 tl−1∑
j=(t−1)l

Y a
j

 | ≥ c3lm

→ 0.

Proposition 5.4. We can get constants c4 and c5 such that

P (c4q
2/γm ≤ (Laγ)

2/γ ≤ c5q
2/γm)→ 1.

Proposition 5.5. Choose ηk = kl with l being defined in (5.7). Then we can get

C1 and C2 such that (7.1) is satisfied. Moreover, with l in (5.7), we can get C3 such

that (7.2) holds.

Thus, we use Proposition 7.1 to construct d-variate mean 0 normal random vectors

Na
j and random vectors Ea

j such that

Ea
j
D
= Y a

j and V ar(Na
j ) = V ar(Y a

j ), 0 ≤ j ≤ q − 1,

Pa

(
max
1≤i≤n

|Πa
i −Da

i | ≥ c0z

)
≤ C

Laγ
zγ
, where Πa

i =

qi−1∑
j=0

Ea
j , D

a
i =

qi−1∑
j=0

Na
j (5.9)

and C is a constant depending on γ, c1, . . . , c5 and C3. These constants are free of

a. We can create a set A with P (A) → 1 so that a ∈ A implies the statements in

Proposition 5.4 and Proposition 5.3 hold. Putting z = n1/r above in (5.9), by Lemma

7.4 and the restriction (4.20), we have, as n→∞,

E(Laγn
−γ/r) ≤ q

nγ/r
cγ max

c
E(|R̃c,2k0m|γ) = O(n1−γ/rmγ/2−1)→ 0, (5.10)



24

using

E(|Yj(ϑ̄2k0j, ϑ̄2k0j+2k0)|γ) ≤ cγ max
c
E(|R̃c,2k0m|γ) = O(mγ/2).

Hence, conditioning on whether a lies in A or not, from (5.10) we obtain,

max
i≤n
|Πϑ

i −Dϑ
i | = oP (n1/r). (5.11)

5.2. Unconditional Gaussian Approximation and Regrouping: Here we shall work

with the processes Πϑ
i , µ

ϑ
i andDϑ

i . Note that, Vj0(ā2k0j) defined in (5.4) is a function of

ϑ and might not be positive definite in an uniform fashion. For a constant 0 < δ∗ < λ∗,

let

Vj1(ā2k0j) =


Vj0(ā2k0j) if ρ∗(V

a
j0) ≥ δ∗m,

(δ∗m)Id otherwise,

(5.12)

which is a positive-definitized version of Vj0(ā2k0j). The following proposition shows

that partial sums of Vj0(ā2k0j) and Vj1(ā2k0j) are close to each other.

Proposition 5.6. For some ι > 0, we have

max
i≤n

E

∣∣∣∣∣∣
max(1,qi−1)∑

j=1

(Vj0(ā2k0j)− Vj1(ā2k0j))

∣∣∣∣∣∣
 = oP (n2/r−ι).

Henceforth in the sequel we will slightly abuse max(1, qi−1) = max(1, bi/(2k0m)c−

1) and simply use qi − 1 = bi/(2k0m)c − 1 for presentational clarity.

Proof. of Proposition 5.6. Recall (5.2) for the definition of F4j+1(.), F4j+2 etc.

Define

F21 =
2m∑

i=m+1

X̃i.
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Define the projection operator Pi by

PiY = E(Y |Fi)− E(Y |Fi−1), Y ∈ L1.

For 1 ≤ j ≤ m, ‖PjF21‖ ≤
∑m

i=m+1−j δi,2. Since ‖E(F T
21|Fm)‖2 =

∑m
j=1 ‖PjF21‖2, we

have

|E(F1(ā0)F
T
2 )| = |E(F1(ā0)F

T
21)| = |E(F1(ā0)E(F T

21|Fm))|

≤ ‖F1(ā0)‖(
m∑
j=1

(
m∑

i=m+1−j

δi,2)
2)1/2. (5.13)

Under the decay condition on Θi,p in (2.3), we have

E(|E(F1(ā0)F
T
21)|γ) = O(mmax(γ/2,γ−χγ)).

We expand the last term of Vj0(ā2k0j) (see (5.4)). Also note that,

|E(F4j−2F
T
4j−1) + E(F4j−1F

T
4j−2)| � m and ρ∗(V ar(F4j+2)) ≥ (k0 − 1)λ∗m.

Then Proposition 5.6 follows from the fact that our solution of γ from (4.19), (4.20),

and (4.21) satisfy γ > max(2, 4χ) for χ ≤ χ0 and

nmax
j
P
(
ρ∗(V

a
j0) < δ∗m

)
≤ 2nmax

j
P (|E(F4j+1(ā2k0j)F

T
4j+2)| ≥ −θm/2)

= O(n)
mmax(γ/2,γ−χγ)

mγ
= o(n2/r−ι),

for some ι > 0 since we can choose δ∗ such that θ = (k0 − 1)λ∗ − δ∗ > 0.

Recall (5.6) for the definition of Uj. By Lemma 7.4 and Jensen’s inequality, we obtain
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maxj ‖Uj(ϑ̄2k0j+2k0)‖γ/2 = O(m1/2). By (4.20), φn := q1/γm1/2n−1/r → 0. Then

P

(
max

0≤j≤q−1
|Uj(ϑ̄2k0j+2k0)| ≥ φnn

2/r

)
≤

q−1∑
j=0

P
(
|Uj(ϑ̄2k0j+2k0)| ≥ φnn

2/r
)

= O(φ−γ/2n n1−γ/rmγ/2−1) = O(φγ/2n )→ 0.

Similarly, |L(ϑ̄0)| = oP (n2/r). Thus, by (5.5) and Proposition 5.6, since V ar(Y a
j ) =

V ar(Na
j ), one can construct i.i.d. N(0, Id) normal vectors Za

l , l ∈ Z, such that

max
i≤n
|Dϑ

i − ςi(ϑ)| = oP (n1/r), where ςi(a) =

qi−1∑
j=1

V 0
j1(ā2k0j)

1/2Za
j .

By (5.11), we have

max
i≤n
|Πϑ

i − ςi(ϑ)| = oP (n1/r).

Let Z∗l , l ∈ Z, independent of (εj)j∈Z, be i.i.d. N(0, Id) and define

Ψi =

qi−1∑
j=1

Vj1(ϑ̄2k0j)
1/2Z∗j .

From the distributional equality,

(Πϑ
i +Mi(ϑ))1≤i≤n

D
= (S�i )1≤i≤n, (5.14)

we need to prove Gaussian approximation for the process Ψi +Mi(ϑ). Define

Bj = Vj1(ϑ̄2k0j)
1/2Z∗j + Λ4j(ϑ̄2k0j) + Λ4j+1(ϑ̄2k0j),

which are independent random vectors for j = 1, . . . , q and let

S]i =

qi−1∑
j=1

Bj and W ]
i = Ψi +Mi(ϑ)− S]i .
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Note that,

max
i≤n
|W ]

i | = max
i≤n
|Λ4qi(ϑ2k0qi) + Λ1(ϑ0)| = oP (n1/r). (5.15)

Conditions (7.1) and (7.2) can be verified easily with this unconditional process (S)]i

to use the Proposition 7.1. Thus, there exists Bnew
j and Gaussian random variable

Bgau
j , such that (Bnew

j )j≤q−1
D
= (Bj)j≤q−1 and corresponding Bgau

j ∼ N(0, V ar(Bj)),

such that

max
i≤n
|
bi/2k0mc−1∑

j=1

Bnew
j −

bi/2k0mc−1∑
j=1

Bgau
j | = oP (n1/r). (5.16)

By (4.17), (5.14), (5.15) and (5.16), we can construct a process Sci and Bc
j such that

(Sci )i≤n
D
= (Si)i≤n and (Bc

j)j≤q−1
D
= (Bgau

j )j≤q−1 and

max
i≤n
|Sci −

bi/(2k0m)c−1∑
j=1

Bc
j | = oP (n1/r). (5.17)

Relabel this final Gaussian process as

Gc
i =

bi/2k0mc−1∑
j=1

(V ar(Bj))
1/2Y c

j ,

where Y c
j are i.i.d. N(0, Id). This concludes the proof of Theorem 2.1.

Proof. of Proposition 5.1. Without loss of generality, we prove it for j = 1. Note

that

2k0mλ∗ ≤ ρ∗(V ar(S2k0m)) ≤ ρ∗(V ar(S2k0m)) ≤ ‖
2k0m∑
i=1

Xi‖2 ≤ 2k0mΘ2
0,2. (5.18)
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Recall X⊕i and X̃i from (4.5) and (4.7). The same upper bound works for S⊕i and

S̃i. Note that, ‖S⊕2k0m − S2k0m‖ = o(m) and from [14], we have

‖A1 − S⊕2k0m‖ = O(
√

2k0mΘm,2) = o(
√

2k0m).

This concludes the proof using the Cauchy-Schwartz inequality.

Proof. of Proposition 5.2. As Aj is the block sum of the m-dependent processes

with length 2k0m, we have, using (5.18), for all j,

2k0m(λ∗ + δ) ≤ E(|Aj|2) ≤ 2k0mΘ2
0,2,

for some small δ > 0. We conclude the proof by using

|E(|Y ϑ
j |2)− E(|Aj+1|2)| = |Λ4j+1(ϑ̄2k0j)|2 + |Λ4j+4(ϑ̄2k0j+2k0)|2 ≤ 2mΘ2

0,2

and k0 > Θ2
0,2/λ∗ + 1. Using similar arguments, (5.8) follows.

Proof. of Proposition 5.3. Note that, without loss of generality, we can assume

V a
j to be independent for different j since otherwise we can always break the proba-

bility statement in even and odd blocks and prove the statement separately. We use

Corollary 1.6 and Corollary 1.7 from Nagaev (1979, [18]) respectively for the case

γ < 4 and γ ≥ 4 on |V a
j − E(V a

j )| to deduce that it suffices to show the following

q max
1≤t≤q/l

max
t(l−1)+1≤j≤tl

P (|V a
j − E(V a

j )| ≥ lm)→ 0. (5.19)
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We expand and write V a
j as follows:

V a
j = V ar(F4j+1(ā2k0j)− Λ4j+1(ā2k0j)) + V ar(F4j+2 + F4j+3) (5.20)

+ E((F4j+1(ā2k0j)− Λ4j+1(ā2k0j))F
T
4j+2) + E(F4j+2(F4j+1(ā2k0j)− Λ4j+1(ā2k0j))

T )

+ E(F4j+3(F4j+4(ā2k0j+2k0)− Λ4j+4(ā2k0j+2k0))
T )

+ E((F4j+4(ā2k0j+2k0)− Λ4j+4(ā2k0j+2k0))F
T
4j+3)

+ V ar(F4j+4(ā2k0j+2k0)− Λ4j+4(ā2k0j+2k0)).

Using derivation similar to (5.13), it suffices to show (5.19) for only the first and

last term in (5.20). Moreover, we assume d = 1 and j = 1 to simplify notations.

The proofs and the theorems used can be easily extended to vector-valued processes.

Denote by S̃m,{j} for the sum S̃m with εj replaced by an i.i.d. copy ε′j. For the first

term, by Burkholder’s inequality,

E(|V ar(F1(ā0))− E(V ar(F1(ā0)))|γ/2) = E(|E(S̃2
m|a1−m, . . . , a0)− E(S̃2

m)|γ/2)

= ‖
0∑

j=−m

PjS̃
2
m‖

γ/2
γ/2 ≤ cγ(

0∑
j=−m

‖PjS̃2
m‖2γ/2)γ/4

For −m ≤ j ≤ 0, ‖PjS̃2
m‖γ/2 ≤ ‖S̃2

m − S̃2
m,{j}‖γ/2 ≤ ‖S̃m − S̃m,{j}‖γ‖S̃m + S̃m,{j}‖γ.

Note that ‖S̃m‖γ = O(m1/2) and ‖S̃m − S̃m,{j}‖γ ≤
∑m

r=1 δ̃r−j,γ. By Lemma 7.3,

δ̃k,γ ≤ 2n1/p−1/γt
1−p/γ
n δ

p/γ
k,p . Then since 3 > 2(χ+ 1)p/γ for χ ≤ χ0, we have

0∑
j=−m

‖PjS̃2
m‖2γ/2 = O(m)

0∑
j=−m

m∑
r=1

(δ̃r−j,γ)
2 (5.21)

= O(m)n2/p−2/γt2−2p/γn

m∑
j=0

(
m∑
r=1

δ
p/γ
r+j,p)

2

= O(m)n2/p−2/γt2−2p/γn m3−2(χ+1)p/γ(logm)−2Ap/γ,
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by (2.3) and the Hölder inequality. Then, since A > 2γ/p and logm � log q � log n,

qE(|V ar(F1(ā0))− E(V ar(F1(ā0)))|γ/2) (5.22)

. qmγ−(χ+1)p/2nγ/2p−1/2tγ/2−p/2n (log n)−Ap/2 = o((lm)γ/2),

using (4.3), (4.21) and the choice of l in (5.7). For the last term in (5.20), we view

E(F4(ā2k0)
2) as

E(F4(ā2k0)
2) = E((S̃2k0m − S̃(2k0−1)m)2|a(2k0−1)m+1, . . . a2k0m)

and show that it is close to (S̃2k0m − S̃(2k0−1)m)2. Let Fmj = (εj, . . . , εm). Note that,

‖S̃2
m − E(S̃2

m|am, . . . , a1)‖
γ/2
γ/2 . (

0∑
j=−m−1

‖E(S̃2
m|Fmj )− E(S̃2

m|Fmj+1)‖2γ/2)γ/4 (5.23)

≤ cmγ−(χ+1)p/2nγ/2p−1/2tγ/2−p/2n (logm)−Ap/2

= o(q−1(lm)γ/2),

similar to the derivation in (5.21). By (5.22) and (5.23), it suffices to show that

n

m
P (|S̃m| ≥

√
lm)→ 0. (5.24)

Using the Nagaev-type inequality from Wu and Wu (2016, [27]) we obtain

P (|S̃m| ≥
√
lm) ≤ C1

mmax{1,p(1/2−χ)}

(lm)p/2
+ C2 exp(−C3l), (5.25)

where C1, C2 and C3 depend on χ and p. The second term in (5.25) is o(m/n) since

e−l → 0 very fast. For the first term in (5.25), if χ < 1/2− 1/p, then

n

m

mp(1/2−χ)

(lm)p/2
= (log n)pn1−p/γ+L(p/γ−pχ−1)tk(p/γ−pχ−1)n = o(1),



31

as from (4.21) we have 1 − p/γ + L(p/γ − pχ − 1) = L(p/γ − 1)(χp + p + 1) < 0.

If 1/2 − 1/p ≤ χ < χ0 and consequently r < p, then we have, for the first term in

(5.25),

n

m

m

(lm)p/2
= (log n)pnp(1/p−1/γ+L(1/γ−1/2))tk(p/γ−p/2)n = o(1), (5.26)

using (4.3), r < p and the fact that r satisfy 1/r − 1/γ + L(1/γ − 1/2) = 0.

Proof. of Proposition 5.4. By Lemma 7.4, E(Laγ) � qmγ/2. Then it suffices to

prove

P (|Laγ − E(Laγ)| ≥ cqmγ/2/ log q)→ 0, (5.27)

holds for some constant c > 0. Note that E(|Y a
j |γ) are even indices j (also for odd

indices j). Thus we can prove the statement separately by breaking Laγ in sum of even

and odd E(|Y a
j |γ). Without loss of generality, we assume all E(|Y a

j |γ) are independent

and proceed. Define Jj = (2k0m)−γ/2E(|S̃2k0mj− S̃2k0m(j−1)|γ|ā2k0(j−1), ā2k0j) and θ =

lγ/2 = q/(log q)γ. Recall the truncation operator T from (4.4). Noting E(Jj) = O(1)

from Lemma 7.4, we have

P (|
q∑
j=1

Tθ(Jj)− E(Tθ(Jj))| ≥ φ) ≤ q

φ2
max
j
E(Tθ(Jj)

2) = O(θq/φ2) = o(1),

where φ = q/ log q, and

max
j
P (Jj ≥ θ) ≤ max

j
P (E(|S̃2k0mj − S̃2k0m(j−1)|2|ā2k0(j−1), ā2k0j) ≥ 2k0lm) = o(q−1),

from (5.22), (5.23) and (5.24). Thus P (|
∑q

j=1 Jj −
∑q

j=1E(Jj)| ≥ φ)→ 0 which is a

restatement of (5.27).
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Proof. of Proposition 5.5. We showed in Proposition 5.4 that

P (cqmγ/2 ≤ Lγ ≤ Cqmγ/2)→ 1,

for some constants c and C. Let l be as given in (5.7). Let S = {0, l, 2l, · · · }. Propo-

sition 5.2 and Proposition 5.3 show that, for some constants c and C,

P (clk0m ≤ min
i∈S

ρ∗

(
V ar

(
i+l−1∑
j=i

Y a
j

))
≤ max

i∈S
ρ∗

(
V ar

(
i+l−1∑
j=i

Y a
j

))
≤ Clk0m)→ 1.

We choose ηk = kl and s � q/l. Starting with the conditional block sum process

Y a
j for 0 ≤ j ≤ q − 1, this choice of ηk satisfies (7.1) for a given a with probability

going to 1. The other condition, (7.2) can be easily verified for such a choice of η-

sequence using ideas similar to the proof of Proposition 5.4. We skip the details of

that derivation.

6. Proof of Theorem 2.2

Proof. Case 1 (χ > χ0):- Note that the optimal power γ and the optimal bound

1/r increases and decreases with χ respectively (see also Figures 1 and 2). This is

a motivation behind tweaking our proof for the verification of (7.1) to handle the

(log n) term in choice of l in (5.7). While using the Nagaev inequality to show (5.24),

we use a power γ′ > γ while keeping the choice of l (cf 5.7) same as before. We form
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a set of new equations

1/2 + 1/p− 2/r′ + L′(1− (χ+ 1)p/r′) = 0, (6.1)

1/p− 1/γ′ + L′ − L′(χ+ 1)p/γ′ = 0,

1− γ′/r′ + L′(γ′/2− 1) = 0.

The intuition behind the first of these equations is to use a higher power than p in

the m-dependence approximation. However, we only defined moments up to p. So

we use Lemma 7.3 to obtain a new equation corresponding to the m-dependence

approximation using a power r′ that is little higher than p. The solution of (6.1) has

the property

γ′ < 2(1 + p+ pχ)/3. (6.2)

for χ > χ0. Also we observe L′ < L(χ0) (cf Figure 2) and hence m1−γ′/2 � m′1−γ
′/2

where m′ is taken as nL
′
tkn following (4.15). We apply the following version of Nagaev-

type inequality from Liu, Xiao and Wu (2013, [15]) to obtain

P (|S̃m| ≥
√
lm) .

m

(lm)γ′/2
νγ
′+1

R +
R∑
r=1

exp

(
−cγ′

λ2rl

θ̃2r,2

)
+
mγ′/2Θ̃γ′

m+1,γ′

(lm)γ′/2
(6.3)

+
m supi ‖Ttnn1/p(Xi)‖γ

′

γ′

(lm)γ′/2
+ exp

(
− cγ′l

supi ‖Ttnn1/p(Xi)‖22

)
,

where νR =
∑R

r=1 µr, µr = (τ
γ′/2−1
r θ̃γ

′

r,γ′)
1/(γ′+1), λr = µr/νR, θ̃r,t =

∑τr
i=1+τr−1

δ̃i,t

for some sequence 0 = τ0 < τ1 < . . . < τR = m. For the choice τr = 2r−1 for

1 ≤ r ≤ R− 1 = blog2mc, we obtain νγ
′+1

R = O(nγ
′/p−1tγ

′−p
n ) using (6.2), (4.2) under

the decay condition on Θi,p in (2.3). The third term and the exponential terms are
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straightforward to deal with. The fourth term is dealt similar to (7.6). Combining

these in the view of our new set of equations in (6.1), we get P (|S̃m| ≥
√
lm) =

o(m/n) which is sufficient to conclude the proof as proposed in (5.24).

The positive-definitization technique introduced in (5.12) is validated in Proposi-

tion 5.6. This step requires γ > 4χ for the case χ > max(1/2, χ0). We observe that

γ′ − 4χ = 0 has a root χ1 > χ0. This allows us to replace χ in the decay condition

of Θi,p by min(χ, χ1) and the proof goes through. The arguments for the rest of the

proof of Theorem 2.1 remains valid.

Case 2 (χ = χ0, 2 < p < 4):- We shall apply Proposition 1 from Einmahl (1987,

[6]). He proved a Gaussian approximation result for independent but not necessarily

identical vectors with diagonal covariance matrix. The two remarks following the

proposition mention that the diagonal nature of every covariance matrix can be

relaxed if these matrices have bounded eigenvalues. A careful check of his proof

reveals that it can be further relaxed to the assumption of bounded eigenvalues of

the covariance matrix of a normalized block sum only. This allows us to replace the l

(see (5.7)) to use the conclusion of Proposition 7.1 by l′ without the logarithm term

(log n) in the denominator and without the condition (7.2). Thus we obtain oP (n1/p)

rate for all 2 < p < 4.

Case 3 (χ = χ0, p ≥ 4):- In this case we do not have a similar optimal Gaussian

approximation result for independent but not identically distributed random vectors.

Instead we shall apply Proposition 7.1 again. The sufficient conditions in that result
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lead to an unavoidable (log n) term in choice of l (see 5.7). This, in turn leads to

oP (n1/p log n) rate. Note that, χ0 > 1/2 − 1/p for all p > 2. From the proof for the

case 0 < χ < χ0, consider (5.26), observe that if χ = χ0, then

n

m
P (|S̃m| ≥

√
lm) = O((log n)ptk(p/γ−p/2)n ),

which may diverge to ∞. To deal with this difficulty in this special case, we choose

a different m sequence. Our new set of conditions with τn = n1/p(log n)δ are

n1/2−1/pm−χ(log n)−A−δ → 0,

n1/p−1/γm1−(χ+1)p/γ(log n)−Ap/γ → 0,

n1−γ/p(log n)−γδmγ/2−1 → 0,

(log n)γm1−γ/2nγ/p−1tγ−pn → 0.

where the last one is obtained using γth moment in (6.3). Letm = bnL(log n)2γ/(γ−2)tknc

with 0 < k < (γ/2 − 1)−1(γ − p), we can achieve δ = 1. We still have the same set

of equations for L, γ and r as (4.19), (4.20) and (4.21). A careful check reveals that

the rest of the proof goes through with this modified m sequence.

7. Some Useful Results Proposition 7.1 concerns Gaussian approximation for

independent vectors. There are several types of Gaussian approximations in literature

for independent vectors. We find the following result by Götze and Zaitsev (2008,

[10]) particularly useful since it provides an explicit and good approximation bound

for the partial sums. This has been used several times in our proof.
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Proposition 7.1. Let ξ1, . . . , ξn be independent Rd-valued mean 0 random vec-

tors. Assume that there exist s ∈ N and a strictly increasing sequence of non-negative

integers η0 = 0 < η1 < . . . < ηs = n satisfying the following conditions. Let

ζk = ξηk−1+1 + . . .+ ξηk , V ar(ζk) = Bk, k = 1, . . . , s

and Lγ =
∑n

j=1E(|ξj|γ), γ ≥ 2, and assume that, for all k = 1, . . . , s,

C1w
2 ≤ ρ∗(Bk) ≤ ρ∗(Bk) ≤ C2w

2, (7.1)

where w = (Lγ)
1/γ/ log∗ s, with some positive constants C1 and C2. Suppose the

quantities

λk,γ =

ηk∑
j=ηk−1+1

E‖ξj‖γ, k = 1, . . . s,

satisfy, for some 0 < ε < 1 and constant C3,

C3d
γ/2sε(log∗ s)γ+3 max

1≤k≤s
λk,γ ≤ Lγ. (7.2)

Then one can construct on a probability space independent random vectors X1, . . . , Xn

and a corresponding set of independent Gaussian vectors Y1, . . . , Yn so that (Xj)
n
j=1

D
=

(ξj)
n
j=1, E(Yj) = 0, V ar(Yj) = V ar(Xj), 1 ≤ j ≤ n, and for any z > 0,

P

(
max
t≤n
|

t∑
i=1

Xi −
t∑
i=1

Yi| ≥ z

)
≤ C∗Lγz

−γ.

where C∗ is a constant that depends on d, γ, C1, C2 and C3.

Lemma 7.2. Let p < γ. Assume (2.A). Then supiEmin{|Xi|γn−γ/p, 1} = o(n−1).
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Proof. Choose kn = b2(log n)/((p+γ) log 2)c. Then n = o(2γkn) and 2pkn = o(n).

Let Z = |Xi|n−1/p. The lemma follows from

E(min{Zγ, 1}) ≤ P (Z ≥ 1) +
kn∑
k=0

2−kγP (2−1−k ≤ Z < 2−k) + 2−γ(kn+1)

≤ E(Zp1Z≥1) +
kn∑
k=0

2p(k+1)−kγE(Zp1Z≥2−1−k) + 2−γ(kn+1) = o(n−1),

in view of the uniform integrability condition (2.A) and n1/2/2kn →∞.

Lemma 7.3. The functional dependence measures defined on the truncated pro-

cess (X⊕i ) and the m-dependent process (X̃i), satisfy δ̃j,γ ≤ δ⊕j,γ ≤ 2n1/p−1/γt
1−p/γ
n δ

p/γ
j,p .

Proof. Since the truncation operator T is Lipschitz continuous,

(δ⊕j,γ)
γ = sup

i
E(|Ttnn1/p(Xi)− Ttnn1/p(Xi,(i−j))|γ)

= nγ/ptγn sup
i
E

(∣∣∣∣min

(
2,

∣∣∣∣Xi −Xi,(i−j)

tnn1/p

∣∣∣∣)∣∣∣∣γ) ≤ 2γnγ/p−1tγ−pn δpj,p.

The first inequality δ̃j,γ ≤ δ⊕j,γ follows from (4.11).

Lemma 7.4. Rosenthal Type Moment Bound Recall (4.2) and (4.3) for tn. As-

sume (4.9), (4.13), (4.14) along with (2.6) on A related to the restriction on Θi,p

as mentioned in (2.3). Moreover, assume m = bnLtknc with k satisfying k < (γ/2 −

1)−1(γ − p). Then, we have

max
t
E( max

1≤l≤m
|R̃t,l|γ) = O(mγ/2). (7.3)

Proof. Since the functional dependence measure is defined in an uniform manner,

we can ignore the maxt in (7.3) and use the Rosenthal-type inequality for stationary
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processes in Liu, Xiao and Wu (2013, [15]). By [15], there is a constant c, depending

only on γ, such that

‖ max
1≤l≤m

|R̃t,l|‖γ ≤ cm1/2[
m∑
j=1

δ̃j,2 +
∞∑

j=1+m

δ̃j,γ + sup
i
‖Ttnn1/p(Xi)‖]

+cm1/γ[
m∑
j=1

j1/2−1/γ δ̃j,γ + sup
i
‖Ttnn1/p(Xi)‖γ]

≤ c(I + II + III + IV ),

where

I = m1/2

m∑
j=1

δ̃j,2 +m1/2‖X1‖2,

II = m1/2

∞∑
j=m+1

δ̃j,γ, III = m1/γ

∞∑
j=1

j1/2−1/γ δ̃j,γ,

IV = m1/γ sup
i
‖Ttnn1/p(Xi)‖γ.

For the first term I, since
∑∞

j=1 δj,2 + supi ‖Xi‖2 ≤ 2Θ0,2 and δ̃j,2 ≤ δj,2, we have

I = O(m1/2). Starting with II, we apply Lemma 7.3 to obtain

II = m1/2

∞∑
j=m+1

δ̃j,γ . m1/2n1/p−1/γt1−p/γn

∞∑
j=m+1

δ
p/γ
j,p .

The rest follows from the derivation in (4.18) and (4.21). For the third term, we have

III . m1/γn1/p−1/γt1−p/γn

m∑
j=1

j1/2−1/γδ
p/γ
j,p (7.4)

≤ m1/γn1/p−1/γt1−p/γn

blog2mc+1∑
l=1

2l−1∑
j=2l−1

j1/2−1/γδ
p/γ
j,p

≤ m1/γn1/p−1/γt1−p/γn

blog2mc+1∑
l=1

2l(3/2−1/γ−p/γ)O(2−lχp/γl−Ap/γ).
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Recall the definition of χ0 from (2.5). If χ ≤ χ0, then our solution for γ satisfies

3/2− 1/γ − (χ+ 1)p/γ ≥ 0,

with equality holding only for χ = χ0. Hence, if χ < χ0, we have

m−1/2III = m1−(χ+1)p/γn1/p−1/γt1−p/γn (log n)−Ap/γO(1) = o(1),

from (4.21), (4.15) and (4.3). If χ = χ0, since A > γ/p from (2.6) [The lower bound

for A there is just 2γ/p as mentioned in (4.19)], we have

m−1/2III = m1/γ−1/2n1/p−1/γt1−p/γn O(1) = o(1), (7.5)

since (4.20) is true. Also for the case of χ > χ0 in the proof of Theorem 2.2, the way we

define our three conditions in (6.1) the new solution also satisfy γ′ = 2(1 + p+ pχ)/3

and thus (7.5) holds. For the fourth term IV , we use (4.2) to derive

m−γ/2IV γ = m1−γ/2 sup
i
‖Ttnn1/p(Xi)‖γ (7.6)

≤ m1−γ/2tγnn
γ/p sup

i
E

(
min{ |Xi|γ

tγnnγ/p
, 1}
)

= m1−γ/2tγnn
γ/p−1o(1) = o(1),

in the light of (4.20).
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