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M. Chudý · S. Karmakar · W.B. Wu

Received: date / Accepted: date

Abstract We construct long-term prediction intervals for time-aggregated future values of uni-
variate economic time series. We propose computational adjustments of existing methods to
improve coverage probability under a small sample constraint. A pseudo-out-of-sample evalu-
ation shows that our methods perform at least as well as selected alternative methods based
on model-implied Bayesian approaches and bootstrapping. Our most successful method yields
prediction intervals for eight macroeconomic indicators over a horizon spanning several decades.
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1 Introduction

Long-term predictions of economic time series are published yearly by the U.S. Congressional
Budget Office (CBO) in its Long-term Budget and Economic Outlook1. In this report, the CBO
predicts US federal spending and revenue growth in the coming decades under the assumption
of stable tax and spending policies. However, structural changes occur over the long-run (taking
the turbulent period after the Great Moderation as an example), and not only as a result of
changes in legislation. The CBO stated in its January 2000 Budget and Economic Outlook that
the baseline projections allow for an average recession within the next ten years (2000-2010).
Today, we know that the 2008 recession was more severe than the predicted average recession.
Moreover, in its 2011 report2 the U.S. Financial Crisis Inquiry Commission concluded that the
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crisis was avoidable if timely preventive measures were introduced. We do not link the absence
of these measures with the CBO’s projections from 18 years ago, but we do believe that accurate
long-term economic predictions can trigger right and timely decisions. Economic predictions for
several decades ahead are crucial for strategic decisions made by trust funds, pension management
and insurance companies, portfolio management of specific derivatives (Kitsul and Wright, 2013)
and assets (see Bansal et al., 2016). Several facts hamper the long-term prediction of economic
time series: small sample size because most post-WWII economic indicators are reported on
monthly/quarterly bases, (anti)-persistence3 (see Diebold and Rudebusch, 1989; Baillie, 1996;
Diebold and Linder, 1996, who also give PIs), heteroscedasticity and structural changes (Cheng
et al., 2016), the latter of which is inevitable in the long-run (Stock and Watson, 2005).

Sometimes, decision-makers call for predictions of boundaries [L,U ] covering the future value
of interest with a certain probability. Unlike point forecasts, prediction intervals (PIs) can capture
the uncertainty surrounding predictions. As a proxy for this uncertainty, one can look at the
widths of different PIs. Most software packages offer PIs as part of their standard output. PIs
from exponential smoothing, for instance, are readily available without any strict assumptions,
but then as the forecast horizon grows, these PIs often become too wide to be informative (see
Chatfield, 1993, for more background). By contrast, PIs implied by arma-garch models often turn
out to be too narrow because they ignore distributional, parameter and model uncertainty (see
Pastor and Stambaugh, 2012). Pascual et al. (2004, 2006) therefore compute predictive densities
using bootstrapping without the usual distributional assumptions while incorporating parameter
uncertainty. Using Bayesian methods, one can account for both model and parameter uncertainty,
but the preassigned coverage of PIs is attained only on average relative to the specified prior.
Müller and Watson (2016) construct Bayes PIs for temporal averages of economic series’ growth
rates over horizon of 10 to 75 years. Using a so-called “least favorable distribution” solves the
problem above with the preassigned coverage and makes their PIs more conservative. Zhou
et al. (2010) provide theoretically valid long-term PIs for the same type of target as Müller and
Watson (2016), i.e., the temporal aggregate of series over a long horizon. As opposed to Müller
and Watson (2016), Zhou et al. (2010) do not require any model fitting (at least in our univariate
set-up) and thus provide a very simple alternative. While both papers allow for the presence of a
long-memory component in the data-generating process (DGP), Zhou et al. (2010) did not apply
their methods to economic time series nor has either of the papers compared themselves with
any benchmark. These facts pave the way for the following empirical research:

- First, since Zhou et al. (2010) evaluate their PIs using only simulated data, we find it necessary
to verify their results using real data.

- Second, the methods of Zhou et al. (2010), although theoretically valid, do not to account for
some characteristics of economic time series. Therefore, we propose computational adjustments
of the PIs of Zhou et al. (2010) that lead to better predictive performance for small samples
and long horizons. Our adjustments employ a stationary bootstrap (Politis and Romano, 1994)
and kernel quantile estimators (Sheather and Marron, 1990).

- Third, since neither Zhou et al. (2010) nor Müller and Watson (2016) compare their PIs to any
benchmark, we take over this responsibility and conduct an extensive pseudo-out-of-sample
(POOS) comparison. We augment the comparison with PIs implied by arfima-garch models
computed as one of the following: (i) forecasts for time-aggregated series or (ii) time-aggregated
forecasts of disaggregated series. To compute (i) and (ii) we use both analytic formulas and
bootstrap path-simulations (Pascual et al., 2006).

The main results of our paper may be summarized as follows:

3 Anti-persistence can be observed as well, often as result of (over-)differencing.
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- First, our simulation study reveals that the PIs of Zhou et al. (2010) fail to achieve their nominal
coverage rate under a growing horizon as a result of rapidly shrinking width. Particularly under
long-memory DGP, the coverage rate reaches only half of the nominal level.

- Second, using the proposed computational adjustments, we achieved an improvement in the
coverage rate of 20pp, which may, however, still be below the nominal level.

- Third, based on real data (S&P 500 returns and US 3-months TB interest rates), the adjusted
PIs of Zhou et al. (2010) provide a valid competitor for Müller and Watson (2016). Particularly
in case of asset returns, the PIs of Müller and Watson (2016) provide higher coverage but
less precision (larger width), while for assets’ volatility, the roles are switched. In both cases,
adjusted Zhou et al. (2010) PIs outperform the bootstrap PIs of Pascual et al. (2006).

- Fourth, with the adjusted method of Zhou et al. (2010), we construct long-term prediction
intervals for selected U.S. macroeconomic time series including GDP growth, total factor pro-
ductivity, inflation, population, and others. These PIs provide an alternative for PIs given by
Müller and Watson (2016) in Table 5 on pages 1731-1732 in the referenced paper.

Our article is organized as follows: In Section 2 we review the methods discussed above with a
focus on their scope and implementation. We further describe our computational adjustments of
both methods of Zhou et al. (2010) and justify them using simulations. Section 3 summarizes
the empirical comparison of all previously discussed methods. Section 4 provides PIs for eight
macro-indicators over the horizon of up to seven decades from now. Section 5 contains concluding
remarks. Plots and details concerning implementation and underlying theory are available in the
supplementary appendix.

2 Methods and simulations

In this section, we first briefly discuss the three selected approaches for computing of PIs fol-
lowed by their merits and demerits. Then we propose computational adjustments of the methods
proposed by the Zhou et al. (2010). Next, our simulations show that these adjustments improve
the coverage when the horizon m is large compared to the sample size T , for example when
m = T/2. In the following, assume that we observe y1, . . . , yT and we want to provide a PI for
the temporal average (yT+1 + · · · + yT+m)/m. For the rest of the paper, we use the following
notation (and analogous for the process of innovations et)

ȳ =
1

T

T∑
t=1

yt, ȳ+1:m =
1

m

T+m∑
t=T+1

yt, ȳt(m) =
1

m

m∑
j=1

yt−j+1. (2.1)

2.1 Methods for computing prediction intervals of temporal averages

2.1.1 Bootstrap prediction intervals by Pascual et al. (2004, 2006)

For a specific description of their approach, let us assume a weakly stationary arma(1,1)-
garch(1,1) process of the form

yt = φyt−1 + et + θet−1, et = σtεt, εt ∼WN, σ2
t = ω + αe2

t−1 + βσ2
t−1. (2.2)

In order to obtain PIs for yT+m, one typically uses the estimated MSE predictors of yT+m and
σT+m given the past observations

ŷT,T+m = φ̂myT + φ̂m−1θ̂êT , (2.3)

σ̂2
T,T+m =

ω̂

1− α̂− β̂
+
(
α̂+ β̂

)m−1
(
σ̂2
T+1 −

ω̂

1− α̂− β̂

)
. (2.4)
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The resulting (analytic) PIs have the form

[L,U ] = ŷT,T+m + [QN (α/2), QN (1− α/2)]

 m∑
j=1

σ̂2
T,T+jΨ̂

2
m−j

1/2

, (2.5)

where Ψ̂0 = 1 and Ψ̂j , j = 1, . . . ,m− 1 are the estimates of coefficients from the causal represen-
tation of yt. Q

N denotes normal quantile. Beside the fact that these PIs ignore the parameter
uncertainty, they would be inappropriate for heavy-tailed processes or when the innovations
distribution is asymmetric. In order to deal with these issues, Pascual et al. (2004) introduce a
re-sampling strategy using the estimated innovations in order to simulate yt, t = T +1, . . . , T +m
and then compute the conditional distribution of yT+m directly, avoiding strict distributional as-
sumptions on the innovations. Their approach does not need a backward representation, and
thus captures garch-type processes. They also show the validity of their PIs for arima processes.
However, we are not aware of any extension of these results for arfima. Computationally, it is
simple to obtain both the analytic and bootstrap PIs implied by arfima models, since all neces-
sary ingredients are readily available in rugarch R-package (see Ghalanos, 2017) which efficiently
implements the bootstrap PIs of Pascual et al. (2004, 2006). While the re-sampling can also
incorporate parameter uncertainty, Pascual et al. (2006) show that for the garch models, cover-
age of PIs is similar whether one accounts for parameter uncertainty or not. The superiority of
bootstrap PIs over the analytic PIs (2.5) prevails especially when the innovations distribution is
asymmetric.

In order to obtain PIs for ȳ+1:m with arfima-garch type models, we can either (i) use av-
erages of the in-sample observations ȳt(m), as defined above or (ii) average the forecasts of yt,
over t = T + 1, . . . , T + m. In both cases, we fit arfima(p, d, q)-garch(P,Q) models to the data
with the rugarch R-package. As already mentioned, the full re-sampling scheme takes into ac-
count the parameter uncertainty, however, for minor improvement of performance and high cost
concerning computation time. Therefore, we use a partial re-sampling scheme which accounts
for the uncertainty due to the unknown distribution of innovations. The fractional parameter
d ∈ [0, 0.5) is, depending on the series, either fixed to 0 (only for stock returns, see Section 3)
or estimated by maximum likelihood (ML). The arma orders are restricted to p, q ∈ {1, . . . , 4}
and are selected by aic. The garch orders are restricted to (P,Q) ∈ {(0, 0), (1, 1)}. The details
for our implementation follow:

Fitting arfima-garch to averaged in-sample observations (avg-series):
1. Compute the series of overlapping rolling averages ȳt(m) = m−1

∑m
i=1 yt−i+1, for t = m, . . . , T .

2. Fit the selected arfima-garch model to the series of ȳt(m).
3. Compute

(anlt) m-step ahead MSE forecasts ˆ̄yT,T+m and ˆ̄σ2
T,T+m analogously to (2.3) by substituting

the observations yt by rolling averages ȳt(m). Then, PIs are given by (2.5)4.

(boot) residuals êt, t = 1, . . . , T and generate b = 1, . . . , B future paths ˆ̄ybT (m),t, t = T +

1, . . . , T+m, recursively using (2.5) and the parameter estimates from the original sample.
Obtain the PIs by inverting the empirical distribution of ˆ̄ybT,T+m, b = 1, . . . , B.

Fitting arfima-garch to original series and averaging forecasts (avg-forecasts):
1. Fit the selected arfima-garch model to the series yt.
2. Compute

(anlt) ˆ̄yT,+1:m = m−1
∑m
i=1 ŷT,T+i, with ŷT,T+i the i-step-ahead analytic forecast from (2.3).

The scaling factor in PI [L,U ] = ˆ̄yT,+1:m + [Qt(α/2), Qt(1 − α/2)]âsT,+1:m is derived in
the supplementary Appendix C.

4 Instead of the normal quantiles, we rather utilize student-t where df is estimated by ML
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(boot) residuals êt, t = 1, . . . , T and generate b = 1, . . . , B future paths ŷbT,t, t = T+1, . . . , T+
m, recursively using (2.5) and the parameter estimates from the original sample. Compute
the temporal averages ¯̂ybT,+1:m, as estimators of ȳbT,+1:m, b = 1, . . . , B. We obtain the PIs

by inverting the empirical distribution of ¯̂ybT,+1:m, b = 1, . . . , B.

2.1.2 Robust Bayes prediction intervals by Müller and Watson (2016)

With both the sample size and horizon growing proportionally, Müller and Watson (2016) provide
asymptotically valid long-term PIs under a rich class of models for series with long memory
under a unified spectral representation. In order to capture a larger scope of long-run dynamics
in economic time series beyond those described by arfima models, Müller and Watson (2016)
consider two additional models, namely (i) the local-level model

yt = y1t + (bT )−1
t∑

s=1

y2s, where {y1t} , {y2t} are mutually independent I(0) processes (2.6)

and (ii) the local to unity ar(1) model defined by:

yt = (1− c/T )yt−1 + y1t, where {y1t} is an I(0) process. (2.7)

The former captures varying “local means” arising, e.g., from stochastic breaks while the latter
is useful for modeling highly persistent series. In (i) the role of the persistent component is
determined by the parameter b while in (ii) it is driven by c. The arfima models with fractional
integration parameter d complete the triple of models in Müller and Watson (2016) who design a
unified spectral representation of their long-run dynamics using the parametrization ϑ = (b, c, d).

A natural way of how to incorporate the uncertainty about ϑ, which is crucial for the asymp-
totic predictive distribution of ȳ+1:m, is to assume a prior for ϑ. A practical drawback of such
an approach is that the preassigned coverage holds only on average relative to the prior. Hence,
Müller and Watson (2016) further robustify their Bayes PIs in order to attain “frequentist cov-
erage”, i.e., coverage that holds over the whole parameter space.

The main idea behind their approach is to extract the long-run information from selected low-
frequency projections of yt, t = 1, . . . , T . Assume that the set of predictors for ȳ+1:m consists of q

low-frequency cosine transformations X = (X1, . . . , Xq)
T

of yt. Then the asymptotic conditional
density of ȳ+1:m is a function of the covariance matrix of (X1, . . . , Xq, ȳ+1:m) denoted as Σ,
which in turn can be expressed as a function of properly scaled spectra S(m/T, q, ϑ). When the
number of frequencies q is kept small, the high-frequency noise is filtered out, thus providing
more robustness. For fixed ϑ = (0, 0, 0) the conditional distribution of ȳ+1:m turns out to be
student-t with q degrees of freedom and the PIs take the form

[L,U ] = ȳ + [Qtq(α/2), Qtq(1− α/2)]

√
m+ T

mq
XTX. (2.8)

These (naive) PIs implied by fixed ϑ = (0, 0, 0) can be enhanced by imposing a uniform prior
on ϑ, giving equal weight to all combinations of parameters −0.4 ≤ d ≤ 1, b, c ≥ 0, and using
standard Bayesian procedure to obtain posterior predictive density, which is no longer a simple t-
distribution but rather a mixture of different t-distributions. We denote the implied PIs as (bayes)
PIs. Finally, the (robust) PIs additionally guarantee the correct coverage uniformly across the
parameter space Θ and simultaneously have optimal (mean) width. We conclude by giving our
implementation steps for the (bayes) PIs, leaving the additional steps necessary for computing
the (robust) PIs to our supplementary Appendix B.

Bayes PIs (bayes):
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1. Set q small and compute the cosine transformations X = (X1, , Xq) of the target series yt.

Standardize them as Z = (Z1, · · · , , Zq) = X/
√
X ’X.

2. For a chosen grid of parameter values ϑ = (b, c, d) satisfying, −0.4 ≤ d ≤ 1; b, c ≥ 0 compute
the matrices Σ(m/T, q, ϑ) following the formulas (9) and (20) from Müller and Watson (2016)
and using, e.g., a numerical integration algorithm (details are given in the supplementary
appendix of the original paper).

3. Choose a prior for ϑ = (b, c, d) and compute the posterior covariance matrix Σ =
(
ΣZZ ΣZē

ΣZē Σēē

)
.

4. Obtain the covariance matrix of the residuals as ΣUU = Σēē −Σ
′

Zē(Σ
−1
ZZ)ΣZē.

5. Compute the quantiles Qtmix
q (α/2), Qtmix

q (1−α/2) of the conditional (mixture-t) distribution
of ȳ+1:m using, e.g., sequential bisection approximation (details are given in the supplementary
appendix of the original paper).

6. The PIs are given by [L,U ] = ȳ + [Qtmix
q (α/2), Qtmix

q (1− α/2)]
√
X ’X.

2.1.3 Prediction intervals by Zhou et al. (2010)

For presentational clarity of their approach, assume

yt = µ+ et, (2.9)

where et is a mean-zero stationary process, and µ is the unknown deterministic mean. The PI
for yt process will be constructed via that of the êt = yt− µ̂ process by adding the µ̂ = ȳ to both
components of the intervals. It is common practice and can also be proved to have the correct
coverage using standard arguments. We first provide a summary of the two methods proposed
in Zhou et al. (2010) and then we discuss their consistency.

CLT method (clt): If the process et shows short-range dependence and light-tailed behavior,
then in the light of a quenched CLT, Zhou et al. (2010) propose the following PI for ē+1:m

[L,U ] = [QN (α/2), QN (1− α/2)]
σ√
m
, (2.10)

where σ is the long-run standard deviation (sd) of et. However, since σ is unknown, it must
be estimated. One popular choice is the lag window estimator

σ̂2 =

kT∑
k=−kT

γ̂k =

kT∑
k=−kT

1

T

T−|k|∑
t=1

(êt − ¯̂e)(êt+k − ¯̂e). (2.11)

The PI for ȳ+1:m with nominal coverage 100(1− α)% is given by

[L,U ] = ȳ + [QN (α/2), QN (1− α/2)]
σ̂√
m
. (2.12)

Quantile method (qtl): If we allow for heavy tails and long memory, the PI for ȳ+1:m with nom-
inal coverage 100(1− α)% can be obtained by

[L,U ] = ȳ + [Q̂(α/2), Q̂(1− α/2)], (2.13)

where Q̂(·) is the respective empirical quantile of ¯̂et(m), t = m, . . . , T .
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The clt method is applicable only for processes with light-tailed behavior and short-range de-
pendence. Let St =

∑
1≤j≤t ej . Under stationarity, the problem of predicting ē+1:m = (ST+m −

ST )/m after observing e1, . . . , eT can be analogically thought of as predicting Sm/
√
m after ob-

serving . . . , e−1, e0. Let F0 be the σ-field generated by . . . , e−1, e0. Assume E(|et|p) < ∞ for
some p > 2. Wu and Woodroofe (2004) proved that, if for some q > 5/2,

‖E(Sm|F0)‖ = O

( √
m

logqm

)
, (2.14)

then we have the a.s. convergence

∆(P(Sm/
√
m ≤ ·|F0), N(0, σ2)) = 0 a.s., (2.15)

where ∆ denotes the Levy distance, m → ∞ and σ2 = limm→∞ ‖Sm‖2/m is the long-run
variance. Verifying (2.14) is elementary for many well-known time series models. We postpone a
discussion on the verification of such a result for a linear and non-linear process for the interested
reader to Appendix D.

The qtl method is based on the intuitive fact that for the horizon m growing to ∞ and in the
light of weak dependence,

P
(
a ≤ eT+1 + · · · eT+m

m
≤ b|e1, . . . , eT

)
≈ P

(
a ≤ eT+1 + · · · eT+m

m
≤ b
)
, (2.16)

if m/T is not too small. Thus it suffices to estimate the quantiles of ēT (m) = (eT+1 + · · · +
eT+m)/m using, e.g., empirical quantiles of ēt(m), t = m, . . . , T . The power of this method lies
in its applicability to heavy-tailed error process. Zhou et al. (2010) provided a consistency result
for this method for the sub-class of linear processes (See Theorem 2 in our Appendix section D).

2.1.4 Practical comparison of the previously discussed methods

Pros and cons of Pascual et al. (2004, 2006): When comparing the bootstrap PIs to the casual
analytic PIs, the former provide the advantage of including the uncertainty due to the unknown
distribution of the residuals and unknown parameters into the uncertainty about the target. In
cases when the distribution of the residuals is asymmetric and doubts about the proximity of
the estimated model to the true DGP exist, the bootstrap approach dominates the analytic.
Furthermore, regarding the implementation, the analytic PIs are more difficult to obtain since
we deal with a non-standard target. By contrast, the bootstrap PIs are readily available in the R-
package rugarch. Hence their estimation is cheap. Concerning the two ways of fitting the models
to data, i.e., (i) using the series of rolling temporal averages or (ii) using the original series and
averaging the forecasts; there are pros and cons for each approach regarding the implementation
and effective use of our relatively small sample. The literature (e.g., page 302 in Lütkepohl,
2006; Marcellino, 1999) does not provide any conclusion about the superiority of (i) over (ii), or
vice-versa. Therefore, we include both (i) and (ii) in the POOS comparison in Section 3.

Pros and cons of Müller and Watson (2016): Their methods represent the state-of-the-art, being
robust against stylized peculiarities of economic time series. Their Bayesian approach accounts
for both model and parameter uncertainty, but the focus is only on those parameters ruling the
persistence, which is in contrast with the previously discussed bootstrap approach where the
focus is on the short-term dynamics. To date, no package implementation has been available,
which makes the approach less attractive to practitioners. Moreover, the PIs depend on several



8 M. Chudý et al.

forecaster-made choices, such as the number of frequencies q to keep, the grid of values for
parameters, the choice of prior. Even with these inputs fixed, the computation takes longer
due to multiple advanced numerical approximations required for the (bayes) PIs and further
optimization to attain the “frequentist coverage”. PIs for fixed parameters q = 12 and 0.075 ≤
m/T ≤ 1.5 used in their paper (and also in the current paper) are available faster thanks to
some pre-computed inputs available from the replication files5.

Pros and cons of Zhou et al. (2010): Their methods provide a simple alternative to the previously
discussed ones. As to their scope of applicability: the clt method does not require any specific
rate of how fast the horizon can grow compared to the sample size. However, the predictive
performance heavily depends on the estimator of the long-term volatility σ. Furthermore, for
some processes with heavy-tailed innovations or long-range dependence, the notion of the long-
run variance σ2 does not exist, and thus this method is not applicable. The attractive feature
of the qtl PIs is the simplicity and more general applicability than the clt. Their computation
requires almost no optimization (at least in our univariate case) and is straightforward. Pascual
et al. (2004, 2006) and Müller and Watson (2016) assume that the DGP of yt is (possibly long-
memory and heteroscedastic version of) an arma process. Zhou et al. (2010) does not apriori
assume any parametrization for the dynamics of yt, but argues that both qtl and clt PIs are valid
for arma processes whereas only the former should be used for processes with a long memory. The
simulations of Zhou et al. (2010) confirm their claims. However, as we demonstrate next, the qtl
PIs under-perform when T is small and m/T ≈ 1/2. Therefore, we propose some computational
adjustment and provide a simulation-based justification of their superiority over the original clt
and qtl.

2.2 Zhou et al. (2010) under small sample: adjustment and simulations

2.2.1 Computational adjustments

The simulation set-up in Zhou et al. (2010), page 1440, assumes T = 6000 and horizon m =
168. By contrast, in an economic forecasting set-up, one typically has only a few hundred of
observations while our horizon m stays approximately the same. Here we show how one can easily
modify the computation of clt and qtl PIs in order to enhance their performance. In particular,
for qtl, we use a stationary bootstrap (Politis and Romano, 1994) with optimal window width
as proposed by Politis and White (2004) and Patton et al. (2009) to obtain a set of replicated
series. Next kernel quantile estimators (see Silverman, 1986; Sheather and Marron, 1990) are used
instead of sample quantiles. In order to improve the clt method, we employ a different estimator
(cf. 2.18) of σ than (2.11) and account for the estimation uncertainty. These three modifications
are then shown to improve the empirical coverage using simulations.

Stationary bootstrap: The procedure starts with the decomposition of the original sample into
blocks by choosing the starting point i and the length of block Li from a uniform and geometric
distribution respectively that are independent of the data. For every starting point and length,
we re-sample from the blocks of the original series. The resulting blocks are then concatenated.
As proposed by Politis and Romano (1994) in their seminal paper, this way of re-sampling retains
the weak stationarity and is less sensitive to the choice of block size than moving block bootstrap
(Künsch, 1989). It also retains the dependence structure asymptotically since every block contains
consecutive elements of the original series. The two re-sampling schemes differ in the way how

5 The replication files for these methods are available in Matlab from M. Watson’s homepage.
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they deal with the end-effects. Under mixing conditions, the consistency of stationary bootstrap
for the centered and normalized mean process has been studied in the literature. Gonçalves and
de Jong (2003) show that under some mild moment conditions, for some suitable cT → 0,

sup
x
|P∗(
√
T (ȳ∗ − ȳ) ≤ x)− P(

√
T (ȳ − µ) ≤ x)| = oP(cT ) (2.17)

holds where ȳ∗ and P∗ refer to the re-sampled mean and the probability measure induced by
the bootstrap. We conjecture that, along the same line of proof shown by Zhou et al. (2010),
it is easy to show consistency results for the bootstrapped versions of the rolling averages of m
consecutive realizations. This is immediate for linear processes. For non-linear processes, one can
use the functional dependence measure introduced by Wu (2005) and obtain analogous results.
To keep our focus on empirical evaluations, we leave the proof of the consistency for our future
work. Interested readers can also look at the arguments by Sun and Lahiri (2006) for moving
block bootstrap and the corresponding changes as suggested in Lahiri (2013) to get an idea
how to show quantile consistency result. For time series forecasting and quantile regression, the
stationary bootstrap has been used by White (2000) and Han et al. (2016) among others.

Kernel quantile estimation: The efficiency of kernel quantile estimators over the usual sample
quantiles has been proved in Falk (1984) and was extended to several variants by Sheather
and Marron (1990). As proposed in the latter, the improvement in MSE is a constant order of∫
uK(u)K−1(u)du for the used symmetric kernel K. The theorems mentioned in Section 2 are

easily extendable to these kernel quantile estimators. We conjecture that one can use the Bahadur
type representations for the kernel quantile estimators as shown in Falk (1985) and obtain similar
results of consistency for at least linear processes. We used the popular Epanechnikov kernel
K(x) = 0.75(1− x2)+ for our computations because of its efficiency in terms of mean integrated
square error.

Estimation of σ and degrees of freedom As mentioned above, Zhou et al. (2010) used clt as in
(2.12) with normal quantiles. For many applications in economics and finance, the normal distri-
bution fails to describe the possibly heavy-tailed behavior. Therefore, we propose to substitute
the normal with the student t-distribution, given the fact that σ has to be estimated. Accounting
for the estimation uncertainty indeed gives a student t-distribution of ē+1:m in the limit. The
question remains, how many degrees of freedom (df) we should use. Rather than some arbitrary
choice such as 5, as used by default in many software packages, or ML estimated df which would
be very noisy given the small sample, we link them to the estimator of σ. This would not be
trivial for the lag-window estimator (2.11). Instead, we use the sub-sampling block estimator (see
eq. (2), page 142 in Dehling et al., 2013)

σ̃ =

√
πl/2

T

κ∑
i=1

∣∣∣∣∣∣
il∑

t=(i−1)l+1

êt

∣∣∣∣∣∣ , (2.18)

with the block length l and number of blocks κ = dT/le. Then the adjusted clt p = 100(1−α)%
PI for ȳ+1:m is given by

[L,U ] = ȳ + [Qtκ−1(α/2), Qtκ−1(1− α/2)]
σ̃√
m
, (2.19)

where Qtκ−1(·) denotes a quantile of student-t distribution with κ − 1 degrees of freedom. Note
that, since we used non-overlapping blocks, under short-range dependence, these blocks behave
almost independently and thus σ̃2 with proper normalization constant behaves similarly to a
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χ2 distribution with κ − 1 degrees of freedom. Below, we give the implementation steps for the
adjusted qtl (kernel-boot):
1. Replicate series et, B times obtaining ebt , t = 1, . . . , T , b = 1, . . . , B.
2. Compute (ēbt(m)) = m−1

∑m
i=1 e

b
t−i+1, t = m, . . . T from every replicated series.

3. Estimate the α/2th and (1−α/2)th quantile Q̂(α/2) and Q̂(1−α/2) using the Epanechnikov
kernel density estimator from ēbT (m), b = 1, . . . , B.

4. The PI for ȳ+1:m is [L,U ] = ȳ + [Q̂(α/2), Q̂(1− α/2)].
Similarly, the implementation of the adjusted clt method (clt-tdist):
1. Estimate the long-run standard deviation from et, t = 1, . . . , T , using the sub-sampling

estimator (2.18) with block-length as proposed by Carlstein (1986).
2. The PI is given by [L,U ] = ȳ + [Qtκ−1(α/2), Qtκ−1(1− α/2)]σ̃/

√
m.

2.2.2 Simulations

An extensive out-of-sample forecasting evaluation based on independent samples is possible only
with artificial data. Our simulation set-up is designed to assess the performance of the original
methods of Zhou et al. (2010) as described in Section 2.1.3 and the computational modifications
described in 2.2.1. The simulation results provide evidence for the usefulness of these modifi-
cations in an artificial set-up based on possibly long-memory arma-like processes. This set-up
would provide an advantage for approaches described in 2.1.1 and 2.1.2, should we challenge
them. We leave this task for the next section and real data.

We adopt the following four scenarios for the et process from Zhou et al. (2010):
(i) et = 0.6et−1 + σεt, for i.i.d mixture-normal εt ∼ 0.5N(0, 1) + 0.5N(0, 1.25),
(ii) et = σ

∑∞
j=0(j + 1)−0.8εt−j , with noise as in (i),

(iii) et = 0.6et−1 + σεt, for stable εt with heavy tail index 1.5 and scale 1,
(iv) et = σ

∑∞
j=0(j + 1)−0.8εt−j , with noise as in (iii),

which correspond to (i) light tail and short memory, (ii) light tail and long memory, (iii) heavy tail
and short memory, and (iv) heavy tail and long memory DGPs. For each scenario, we generate
pseudo-data of length T + m, using the first T observations for estimation and the last m for
evaluation. The experiment is repeated Ntrials = 10 000 times for each scenario.

The choice of parameters6 T = 260,m = 20, 30, 40, 60, 90, 130 and σ = 1.31 mimics our set-up
for the real-data experiment in the next section. Following Müller and Watson (2016), we run
our simulation for the nominal coverage probabilities p = 1 − α = 90% (see Table 1A) resp.
= 67% (see Table 1B) and compute the empirical coverage probability

p̂ =
1

Ntrials

Ntrials∑
i=1

I ([L,U ]i 3 ēi,+1:m) , (2.20)

where I for the i-th trial is 1 when the future mean for the i-th trial ēi,+1:m is covered by the
[L,U ]i and 0 otherwise. Furthermore, we report the relative median width

ŵ = median
(
|U − L|1 , . . . , |U − L|Ntrials

)
/
(
Q̂(1− α/2)− Q̂(α/2)

)
, (2.21)

where Q̂(·) denotes the corresponding quantile of the empirical distribution of ē+1:m, estimated
from ēi,+1:m, i = 1, . . . , Ntrials.

We focus on the evaluation under the longest horizon m = 130.

6 The value of σ was obtained from an ar(1) model fitted to the full data set of S&P 500 returns.
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Scenario (i) When m = 130 the original qtl covers the future realizations in only around 48%
of cases while the nominal coverage is 90%. Employing the kernel quantile adjustment on qtl
increases this number by 4 percent points (pp) and when combined with the adjustment based on
bootstrapping it yields an additional 26pp on top. Intuitively, using student-t quantiles (instead
of normal) leads to a higher coverage probability for the clt. As expected, the two methods
perform similarly well in this particular scenario.

Scenario (ii) Long memory of the DGP has a strongly negative impact on both methods. The
combined kernel-bootstrap adjustment increases the coverage of qtl by 20pp, which is, however,
still very low. The same holds for the performance of clt under t-quantile adjustment.

Scenario (iii) Heavy-tailed noise has also a negative impact on the original clt (coverage prob-
ability falls by 13pp compared to the light-tailed case) whereas qtl, as expected, is more robust
(falls by 4 − 6pp). The kernel-bootstrap adjustment increases coverage probability by 27pp for
the qtl whereas the clt- tdist yields only negligible improvement compared to the original clt.

Scenario (iv) The combined effect of (ii) and (iii) cuts the coverage probabilities further down -
below 45%. The proposed adjustments increase the coverage probabilities by up to 10pp.

Overall, for the short and medium horizon, i.e., m = 20, . . . , 60, we corroborate the conclusion
from Zhou et al. (2010) that the (original) clt loses against the (original) qtl. However, both
original methods exhibit rapid decay in their coverage probabilities as the forecasting horizon
grows. For instance, in the scenario (iv) the gap between horizon m = 20 and m = 130 for the qtl
is 47pp. Concerning the width of the PIs, we can see that both adjusted and original methods
underestimate the dispersion and the gap between the width of PIs and the width of the empirical
inter-quantile range increases with the horizon. However, our computational adjustments improve
the original methods consistently over all scenarios. The improvement is most remarkable for the
combined adjustment (kernel-boot).

3 Forecast comparison with long financial time series

This section summarizes a real-data POOS forecasting comparison for:
(zxw) adjusted PIs by Zhou et al. (2010),
(mw) robust Bayes PIs by Müller and Watson (2016),
(prr) bootstrap PIs by Pascual et al. (2004, 2006) augmented by their analytical counterpart.

Data and set-up for POOS exercise The data on univariate time series yt are sampled at equidis-
tant times t = 1, . . . , T . We forecast the average of m future values ȳ+1:m = m−1

∑m
t=1 yT+t. We

design our POOS comparison using the following three time series (plots of the series are given
in the supplementary Appendix A),
(spret) S&P 500 value weighted daily returns including dividends available from 1/2/1926 till

12/31/2014 with a total of 23 535 observations,
(spret2) squared daily returns, with the same period and
(tb3m) nominal interest rates for 3-month U.S. Treasury Bills available from 4/1/1954 till

8/13/2015 with a total of 15 396 observations.
The sample size for post-WWII quarterly macroeconomic time series is 4 × 68 = 272 ob-

servations. We mimic the macroeconomic forecasting set-up in that we use a rolling sample
estimation with sample size T = 260 days, (i.e., one year of daily data), and forecasting horizon
m = 20, 30, 40, 60, 90 and 130 days. The rolling samples are overlapping in the last (resp. first)
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T−m observations, so that, e.g., for m = 130, the consecutive samples share half the observations.
Hence for the returns time series and for m = 130 (resp. m = 20), we get Ntrials = 178 (resp.
1163) non-overlapping in-or-out POOS trials. All models are selected and parameters estimated
anew at each forecast origin.

The simulation results in Section 2.2.2 have shown that zxw PIs have decent coverage for
short-memory et ∼ I(0), but lose the coverage rapidly if the process has long memory. As a
remedy, we apply an appropriate transformation before we use re-sampling and perform the
reversed transformation immediately before the estimation of the kernel-quantiles (see supple-
mentary Appendix B). The re-sampling scheme also benefits from the prior transformation, since
the stationary bootstrap is suitable for weakly dependent series. For zxw, we assume spret∼ I(0),
spret2∼ I(d) with d = 0.5 (see Andersen et al., 2003) and tb3m∼ I(1), and we replace et by re-
spective differences det = (1−L)det, (with L as lag operator). Concerning the bootstrap/analytic
PIs for arfima(p,d,q)-garch(P,Q), we report only the best empirical coverage probability p̂ and
corresponding relative width ŵ among two choices of (P,Q) ∈ {(0, 0), (1, 1)}.
POOS results: Similarly as in Section 2.2.2, we evaluate the coverage probability (2.20) and
relative median width (2.21), for nominal coverage probabilities 90% (see Table 2A) and 67%
(see Table 2B). Overall, the results show tight competition between mw and zxw. Better coverage
probability is generally compensated by a larger width, hence less precision. Only for tb3m, zxw
performs better in both aspects. The prr PIs show mixed performance, and it is difficult to draw
any general conclusion whether one should prefer averaging of series (series) or averaging the
forecasts (4cast) and whether to use analytic formulas (anlt) rather than bootstrapping (boot)
to obtain PIs. We keep our focus on the coverage yield for the longer horizons.

spret: Based on the simulation results for short-memory and heavy-tailed series, we expect that
both methods of zxw should give decent coverage probability close to the nominal level. The real-
data performance is better than suggested using artificial data, with an average drop of 9 resp.
12pp for kernel-boot resp. clt-tdist below the nominal level. On the other hand, mw exceed the
nominal coverage even with the naive method. The difference in coverage probability between
robust and kernel-boot reaches 15pp. The zxw provide advantage regarding the width, as the
robust has twice the width of kernel-boot for m = 130. The prr gives decent coverage only for
short horizon. For medium and long horizons, both the coverage and the width of prr exhibit a
rapid decay. Averaging series dominates over averaging forecasts by 10pp. To our surprise, the
bootstrap PIs do not outperform the analytic PIs. Regarding the width, the mw are by 40pp
more conservative than the empirical inter-quantile range of the out-of-sample mean-returns,
whereas zxw resp. prr are 23− 30pp resp. 31− 43pp below the inter-quantile range width.

spret2: Realized volatility is known for the persistence and heavy tails. The mw give slightly
lower coverage probabilities than zxw compensated by a relatively smaller width, thus better
precision. With the growing horizon all prr methods suffer a drop in coverage, at least 40pp
below the nominal level, accompanied by the largest reduction of width among all methods. The
bootstrap PIs dominate over analytic and the competition between 4cast and series is tight.
Concerning the relative width, when compared to the previous case of returns, all methods
provide very narrow PIs. We believe that the seemingly shrinking width of PIs is caused by
a larger dispersion of the entire spret2 (entering the denominator of (2.21)) compared to the
dispersion of each local average (the nominator in (2.21)). Note that for spret2 the denominator
in (2.21) does not provide adequate scale and the discrepancy will become even worse for more
persistent tb3m.

tb3m: Interest rates exhibit strong persistence, and for enhanced performance of zxw, we again
apply differencing, but with d = 1. Note that the naive PIs have coverage probabilities as low
as 25%. The coverage probabilities of all methods are lower than for the last two series, but zxw
performs better than mw for all horizons. Moreover, zxw gives better results in terms of width.
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The coverage probability for prr falls far below the nominal level as the horizon grows. Here,
series dominates 4cast, and bootstrap PIs are inferior to the analytic PIs, even though with only
half the nominal coverage.

Except spret, clt-tdist gives slightly higher coverage probabilities than kernel-boot correspond-
ing to smaller precision. Eventually, we prefer the kernel-boot method and use it in the following
section for computing PIs for eight economic time series and S&P 500 returns.

4 Prediction intervals for economic series’ growth rates and S&P 500 returns

Müller and Watson (2016), in Table 5 on pages 1731-1732, gave their long-run PIs for eight quar-
terly post-WWII US economic time series and quarterly returns. Since our kernel-boot method
performed well in the last real-data POOS comparison, we employ this method in order to obtain
alternative PIs for these series. We report these PIs in Tables 3 and 4. Müller and Watson (2016)
compare their PIs to those published by CBO. They conclude that some similarities between
their PIs for series such as GDP are due to a combination of (i) CBO’s ignorance for parameter
uncertainty and (ii) CBO’s ignorance of possible anti-persistence of GDP during Great moder-
ation. Since the effects of (i) and (ii) on the PIs width is the opposite, they eventually seem to
cancel out.

The eight economic time series are: real per capita GDP, real per capita consumption ex-
penditures, total factor productivity, labor productivity, population, inflation (PCE7), inflation
(CPI8) and Japanese inflation (CPI) - all transformed into log-differences (plots are given in the
supplementary Appendix A). The data are available from 1Q-1947 till 4Q-2014, and we forecast
them over next m = 10, 25 and 50 years. For a subset of these series, we report results based
on longer (yearly) sample starting in 1Q-1920, and we add the horizon m = 75 years for these
yearly series.

For per capita real GDP, per capita consumption and productivity, we use differencing with
d = 0.5 for the kernel-boot PIs. Thus these intervals are wider than in Müller and Watson
(2016), especially those for GDP. This case is similar to the case of realized volatility in the
previous section. Wide PIs are often considered as a failure of the forecasting method or model.
On the other hand, it can also reflect the higher uncertainty about the series future. The width
of PIs for GDP is not surprising given that similar as CBO, we do not account for the possible
anti-persistence during the Great Moderation. With the longer yearly sample, our PIs get even
wider, as a result of higher volatility in the early 20th century. Interestingly, the growth in Labor
production seems to be higher in general than reported by Müller and Watson (2016).

Consumption, population and inflation are well known as quite persistent. Therefore, we
would expect that similarly as in case of interest rates, kernel-boot could give better coverage
and possibly narrower PIs than robust. The uncertainty is similarly large according to both our
kernel-boot and robust, but the location is generally shifted downwards, especially for inflation,
where the shift is about −2pp compared to Müller and Watson (2016).

Finally, for the quarterly returns, we might expect kernel-boot to give less conservative thus
narrow estimates, and we see this happening with discrepancy growing with the forecasting
horizons. It is clear that robust is very conservative in uncertainty about positive returns, where
the difference from kernel-boot reached 11pp. Employing the longer yearly time series makes the
difference fall to 3pp. On the other hand, 3pp is a lot from an investors perspective.

7 personal consumption expenditure deflator.
8 consumer price index.



14 M. Chudý et al.

5 Discussion

We have constructed prediction intervals for univariate economic time series. Our forecasting
comparison shows that even the simple methods of Zhou et al. (2010) provide a valid alternative
for sophisticated prediction intervals designed specifically for the economic framework by Müller
and Watson (2016). However, based on our simulation results, we emphasize that both the
methods and the series need to be suitably adjusted, especially under the small sample constraint,
which, on the other hand, is quite common in practice. Based on the comparison results, we
eventually provided alternative long-run prediction intervals for eights US economic indicators.

Forecasting average growth of economic series over the coming decades is a very ambitious
task, and naturally, there are doubts about its usefulness in practice. The test of Breitung and
Knüppel (2018), whether a forecast is informative, is based on the prediction error variance. They
conclude that economic forecasts beyond a horizon of several quarters become uninformative. At
first sight, such a claim seem to be an argument against following the research of Müller and
Watson (2016) and Zhou et al. (2010). However, there are some differences in the assumptions
and targets which have to be carefully analyzed before we make such statements. The assumption
of a long-memory component is crucial, and it is hard to verify and distinguish it from a possible
structural break. In our paper, we did not tackle the issue of whether long-term predictions are
informative or not. We instead probed into the existing methods and provided new empirical
comparison results.

Throughout this paper, we focused on PIs estimated from historical data on the predicted
series. A multivariate or high-dimensional extension would, of course, be attractive. It is widely
recognized that big data contain additional forecasting power. Unfortunately, in the economic
literature, the boom of forecasting with many predictors (e.g., Stock and Watson, 2012; Elliott
et al., 2013; Kim and Swanson, 2014) is mainly focused on short horizons and point-forecasting
(for an exception see Bai and Ng, 2006). This is not a coincidence. Many economic time series
exhibit persistence (of varying degrees) and this is their essential property in the long-run. These
long-term effects, combined over many series, are difficult to understand, partially due to their
dependence on unknown nuisance parameters (see Elliott et al., 2015). The role of cointegration
in long-run forecasting is investigated by Christoffersen and Diebold (1998).

We do not use some methods such as quantile (auto-) regression (Koenker, 2005) in the
current study, and the out-of-sample forecasting comparison could be enhanced by statistical
tests (see Clements and Taylor, 2003; Gneiting and Raftery, 2007, e.g.).

An extension (including the theory) of Zhou et al. (2010) into a high dimensional regression
framework using the LASSO estimator is currently being developed. Even more challenging is a
case of multivariate target series and subsequent construction of simultaneous prediction intervals
which can have interesting implications for market trading strategies.
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p̂ = 67% p̂ = 90%

horizon (years) 10 25 50 10 25 50

GDP/Pop [-0.88 , 4.65] [-1.11 , 4.76] [-0.87 , 4.68] [-2.97 , 6.78] [-2.96 , 6.59] [-2.86 , 6.48]
Cons/Pop [0.56 , 3.45] [0.60 , 3.45] [0.59 , 3.49] [-0.54 , 4.53] [-0.43 , 4.38] [-0.40 , 4.55]
TF prod. [-0.46 , 2.92] [-0.37 , 2.96] [-0.40 , 2.76] [-1.61 , 4.16] [-1.55 , 4.02] [-1.49 , 3.83]
Labour prod. [0.89 , 3.42] [0.84 , 3.24] [0.90 , 3.37] [-0.11 , 4.35] [0.06 , 4.11] [0.08 , 4.15]
Population [0.44 , 0.95] [0.25 , 1.00] [-0.11 , 0.90] [0.24 , 1.17] [-0.06 , 1.35] [-0.50 , 1.35]
PCE infl. [-4.06 , 2.32] [-6.01 , 3.83] [-9.50 , 5.15] [-7.39 , 4.70] [-9.74 , 7.40] [-14.38 , 9.86]
CPI infl. [-4.75 , 1.61] [-6.32 , 2.04] [-9.43 , 3.29] [-9.00 , 4.03] [-10.54 , 6.57] [-14.95 , 7.46]
Jap. CPI infl. [-5.20 , 2.79] [-7.12 , 4.18] [-8.72 , 5.85] [-8.10 , 7.63] [-11.38 , 10.07] [-14.51 , 12.19]
Returns [2.20 , 12.20] [3.50 , 10.75] [4.78 , 10.22] [-1.93 , 15.69] [0.88 , 12.95] [2.90 , 11.71]

Table 3: Prediction intervals for long-run averages of quarterly post-WWII growth rates. The 8 macroeconomic
time series are real per capita GDP, real per capita consumption expenditures, total factor productivity, labor
productivity, population, personal consumption expenditure deflator, CPI inflation and Japanese inflation - all
transformed into log-differences. The prediction intervals provide alternative to Table 5 of Müller and Watson
(2016), who report intervals also for the horizon m = 75 years for these short post-WWII quarterly series. However,
since this horizon would exceed the sample size, we cannot provide the kernel-boot as alternative. But we present
results for this horizon in the next table, where we use longer yearly series.

horizon (years) 10 25 50 75

6
7
%

GDP/Pop [-1.43 , 5.61] [-1.59 , 5.68] [-1.85 , 5.65] [-1.72 , 5.36]
Cons/Pop [-1.07 , 4.27] [-1.15 , 4.41] [-0.96 , 4.33] [-1.08 , 4.26]
Population [0.33 , 0.99] [0.08 , 1.11] [-0.21 , 1.16] [-0.54 , 1.15]
CPI infl. [-2.72 , 6.02] [-2.80 , 6.21] [-3.19 , 6.69] [-5.27 , 9.46]
Returns [0.38 , 13.61] [3.74 , 10.68] [3.60 , 9.67] [4.44 , 8.29]

9
0
%

GDP/Pop [-5.00 , 8.44] [-4.30 , 8.47] [-4.92 , 8.24] [-4.49 , 7.96]
Cons/Pop [-3.12 , 6.21] [-3.03 , 6.22] [-2.80 , 6.03] [-2.90 , 6.27]
Population [0.13 , 1.23] [-0.24 , 1.51] [-0.63 , 1.74] [-1.13 , 1.81]
CPI infl. [-6.02 , 12.65] [-9.00 , 12.13] [-8.13 , 12.87] [-11.26 , 16.13]
Returns [-3.64 , 17.50] [0.45 , 12.62] [1.61 , 11.77] [2.82 , 9.49]

Table 4: Prediction intervals for long-run averages of annual growth rates and annual S&P 500 returns. The
macroeconomic time series are real per capita GDP, real per capita consumption expenditures, population, CPI
inflation and Japanese inflation - all transformed into log-differences. This table provides alternative prediction
intervals to those reported in Table 5 of Müller and Watson (2016).
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Appendix A - Figures of time series used in Sections 3 and 4
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Fig. 1: Daily time series: A) S&P 500 value weighted daily returns incl. dividend, B) squared
returns, C) nominal interest rates for 3-month U.S. Treasury Bills.
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Fig. 2: Annual time series - growth rates: A) real per capita GDP, B) real per capita consumption
expenditures, C) Inflation (CPI), D) population.
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Fig. 3: Quarterly time series - growth rates: A) real per capita GDP, B) real per capita consump-
tion expenditures, C) total factor productivity, D) labor productivity, E) population, F) prices
(PCE), G) Inflation (CPI), H) Japanese Inflation.
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Appendix B - Additional steps for implementation of zxw and mw

All macro-series in Section 4 are transformed to log-differences. This doesn’t preclude long-
memory dynamics or even a unit root. Note that if yt is I(1) and has deterministic trend com-
ponent rather than a constant level, the location of the PI would have to be shifted to m+1

2 ∆y
instead of ȳ).

kernel-boot:

1. Compute the mean adjusted series et = yt − ȳ, t = 1, . . . , T .
2. Fix d = 0.5 or d = 1 and compute the difference series det = (1− L)d, t = 2, . . . , T , where L

denotes lag operator.
3. Replicate det, t = 2, . . . , T B times getting debt , t = 2, . . . , T , b = 1, . . . , B.

4. Compute the series of overlapping rolling means d̄e
b
t(m) = m−1

∑m
i=1 de

b
t−i+1, t = m, . . . T

from every replicated series.
5. Estimate quantiles Q̂(α/2) and Q̂(1− α/2) from ēbT (m), b = 1, . . . , B with T = 260 obtained

as ēbT (m) = m−1
∑m
i=1(1− L)−ddebT−i+1.

6. The PI is given by [L,U ] = ȳ + [Qtκ−1(α/2), Qtκ−1(1− α/2)]σ/
√
m.

clt-tdist:

1. Compute the mean adjusted series et = yt − ȳ, t = 1, . . . , T .
2. Fix d = 0.5 or d = 1 and compute the difference series det = (1− L)d, t = 2, . . . , T , where L

denotes lag operator.
3. Estimate the long-run standard deviation σ̃ of det, t = 2, . . . , T .
4. Compute the long-run standard deviation of et: for d = 1, σe(σ̃) = σ̃

√
(m+ 1)/2 and for9

d = 0.5, σe(σ̃) = σ̃m−1
√∑m

i=1(
∑m−i
j=0 (−1)j

(−0.5
j

)
)2.

5. The PI is given by ȳ + [Qtκ−1(α/2), Qtκ−1(1− α/2)]σe.

robust: after steps 1-4.

5.1 Compute weights for specific choice of q and m/T and the prior from step 3.
5.2 Numerically approximate s. c. least favorable distribution (LFD) of θ for specific choice of q

and m/T (see the supplementary appendix of (Müller and Watson (2016))).
5.3 Using the weights and the LFD solve the minimization problem (14) on page 1721 in Müller

and Watson (2016) to get quantiles which give uniform coverage and minimize the expected
PIs width.

6. Same as in bayes with the robust quantiles.

Appendix C - Derivation of an error standard deviation for time-aggregated forecast

The formula for computing prediction error sd is âsT,+1:m = 1
m

√∑m
i=1(σ̂T,T+i

∑m−i
j=0 Ψ̂j)

2, where

Ψ̂0 = 1 and Ψ̂j ,j = 2, . . . ,m are the estimates of coefficients from the causal representation of yt.
The σ̂T,T+i is the garch forecast for innovations deviation. For simplicity, we show the derivation
for the case of constant innovation variance.
Assume that yt has causal representation:

yt = εt + Ψ1εt−1 + · · · ,

9 see http://mathworld.wolfram.com/BinomialSeries.html

http://mathworld.wolfram.com/BinomialSeries.html
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where εt ∼ (0, σ2) is the innovation process with constant second moment. Standing at time T
the i−th step-ahead prediction error can be expressed as

peT,i = εt+i + Ψ1εt+i−1 + · · ·+ Ψi−1εT+1.

The average prediction error over horizons i = 1, . . . ,m is therefore given by

p̄eT,+1:m =
1

m

m∑
i=1

1∑
j=i

Ψi−jεT+j ,

with Ψ0 = 1. Now, this can be rewritten as

p̄eT,+1:m =
1

m

εT+1

m−1∑
j=0

Ψj︸ ︷︷ ︸
cm−1

+εT+2

m−2∑
j=0

Ψj︸ ︷︷ ︸
cm−2

+ · · ·+ εT+m−1

1∑
j=0

Ψj︸ ︷︷ ︸
c1

+εT+m

 ,

where c0 = Ψ0 = 1. Since innovations are uncorrelated, we can compute the variance of average
prediction error over the horizons i = 1, . . . ,m as

var(p̄eT,+1:m) =
( σ
m

)2 m∑
i=1

c2m−i.

Appendix D - Discussion on CLT and QTL methods

For the interested reader here we provide some discussion on the justification of the two original
methods from Zhou et al. (2010) and how one can verify them in linear and possibly non-linear
processes. First we discuss a result for the CLT method. Assume the process et admits the
following linear form

et =

∞∑
j=0

ajεt−j , (5.1)

where εt are mean-zero, independent and identically distributed (i.i.d.) random variables with
finite second moment. For this structural form, we can evaluate (2.14). We assume a particular
decay rate of ai and state the following theorem.

Theorem 1 Assume the process et admits the representation (5.1) where ai satisfies

ai = O(i−χ(log i)−A), χ > 1, A > 0, (5.2)

where larger χ and A means fast decay rate of dependence. Further assume, A > 5/2 if 1 < χ <
3/2. Then the sufficient condition (2.14) implies that the convergence (2.15) to the asymptotic
normal distribution holds.

Proof

‖E(Sm|F0)‖2 = ‖(a1 + · · ·+ am)ε0 + (a2 + · · ·+ am)ε−1 + · · · ‖2 =

m∑
i=1

b2i , (5.3)
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where bi = ai + · · ·+ am. Note that
∑m
i=1 b

2
i assumes the following value depending on χ > 3/2

or not. Thus (2.14) holds since by elementary calculations,

m∑
i=1

b2i =

{
O(m3−2χ(logm)−2A), for 3− 2χ > 0

O(1) for 3− 2χ ≤ 0.
(5.4)

Note that, Theorem 1 concerns only linear processes. This class covers a large class of time-
series processes already. However, we do not necessarily require linearity of the error process (et).
One can equivalently use the functional dependence measure introduced in Wu (2005) to state
an equivalent result for stationary possibly non-linear error processes of the form

et = G(εt, εt−1, . . .),

where εi are i.i.d. random variables. For this process assuming p ≥ 2 moments one can define the
functional dependence measure

δj,p = ‖ej −G(εj , . . . , ε
∗
0, . . .)‖p,

where ε∗(·) is an i.i.d. copy of ε(·) process. For the specific case of et assuming a linear form as

specified in (5.1), we have δj,p = aj . This lays down a straight-forward way in how our results
for the linear process can be easily extended to non-linear processes.

Next, for the sake of completeness, we borrow a result from Zhou et al. (2010) that discusses
the quantile consistency for the QTL method. Recall that we will exhibit as promised that this
method allows for the situation where the i.i.d. innovations εt in the decomposition (5.1) can have
both light tails i.e. E(|εt|2) <∞ or heavy tails i.e. α < 2 where α = supr>0{r : E(|εt|r) <∞}.

We will impose the following conditions on the coefficients for short or long-range dependence
and also assume boundedness of the density of εt in the following sense:

(SRD) :

∞∑
j=0

|aj | <∞,

(DEN) : sup
x∈R

fε(x) + |f ′ε(x)| <∞,

(LRD) : aj = O((j + 1)−γ l(j)), 1/α < γ < 1, l(·) is slowly varying function (s. v. f.), (5.5)

where s. v. f. is a function g(x) such that limx→∞ g(tx)/g(x) = 1 for any t. The condition
(SRD) is a classic short range dependent condition (see Box et al., 2015, for more discussion).
(LRD) refers to the long memory of the time series and it is satisfied by a large class of models
such as arfima. (DEN) is also a mild condition since by inversion theorem, all symmetric stable
distributions fall under this condition. We borrow the following result from Zhou et al. (2010)
for linear process. It is worth noting that one can extend this to non-linear processes as well by
defining the coupling-based dependence on predictive density of et as done in Zhang and Wu
(2015) but we postpone that discussion for a future paper.

Quantile consistency results for the quantile method For a fixed 0 < q < 1, let Q̂(q) and Q̃(q)
denote the q-th sample quantile and actual quantile of (m ēt(m)/Hm); t = m, . . . , T where, using
(5.5),

Hm =


√
m, if (SRD) holds and E(ε2j ) <∞,

inf{x : P(|εi| > x) ≤ 1
m} if (SRD) holds and E(ε2j ) =∞,

m3/2−γ l(m) if (LRD) holds and E(ε2j ) <∞,
inf{x : P(|εi| > x)m1−γ l(m) if (LRD) holds and E(ε2j ) =∞.

(5.6)
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We have the following different rates of convergence of quantiles based on the nature of tail or
dependence:

Theorem 2 (Zhou et al. (2010) Th 1:4) [Quantile consistency result]
– Light tailed (SRD): Suppose (DEN) and (SRD) hold and E(ε2j ) <∞. If m3/T → 0, then for

any fixed 0 < q < 1,

|Q̂(q)− Q̃(q)| = OP(m/
√
T ). (5.7)

– Light tailed (LRD): Suppose (LRD) and (DEN) hold with γ and l(·) in (5.5). If m5/2−γT 1/2−γ l2(T )→
0, then for any fixed 0 < q < 1,

|Q̂(q)− Q̃(q)| = OP(mT 1/2−γ |l(T )|). (5.8)

– Heavy tailed (SRD): Suppose (DEN) and (SRD) hold and E(|εj |α) <∞ for some 1 < α < 2.
If m = O(T k) for some k < (α− 1)/(α+ 1), then for any fixed 0 < q < 1,

|Q̂(q)− Q̃(q)| = OP(mT ν) for all ν > 1/α− 1. (5.9)

– Heavy tailed (LRD): Suppose (LRD) hold with γ and l(·) in (5.5). If m = O(T k) for some
k < (αγ − 1)/(2α+ 1− αγ), then for any fixed 0 < q < 1,

|Q̂(q)− Q̃(q)| = OP(mT ν) for all ν > 1/α− γ. (5.10)
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