
Prediction Intervals in High-Dimensional Regression

S. Karmakara,∗, M. Chudýb, W.B. Wuc
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(M. Chudý), wbwu@galton.uchicago.edu (W.B. Wu)

Submission status: submitted to ISF conference Last update: March 19, 2019



1. Introduction

Prediction intervals (p.i.’s) help the forecasters to access the uncertainty concern-
ing the future values of time series. The benefit of interval forecast compared to
point forecasts comes for the cost of a more challenging evaluation (Chatfield, 1993;
Clements and Taylor, 2003), since a higher empirical coverage probability often comes
with the cost of a larger width, thus less precision. Suppose an univariate target time
series yi, i = 1, . . . , n follows a regression model

yi = xTi β + ei, β ∈ Rp. (1.1)
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For finite p < n, Zhou et al. (2010) showed that empirical quantiles obtained from
rolling sums of past residuals provide theoretically valid asymptotic p.i.’s for the
aggregated future value S+m = yn+1 + . . .+ yn+m, when both n,m→∞. Moreover,
the specific choice of estimator for β leads to particular p.i.’s [L,U ]β̂ such that for
given α

P
(

[L,U ]β̂ 3 Sm
)
→

n,m→∞
1− α.

Zhou et al. (2010) utilized the LAD1 estimator for β; however, if p > n this and other
conventional estimators, such as OLS, would fail. Even if p < n, and there is a reason
to assume β is sparse, using some alternative estimators, such as LASSO, may be
more efficient for forecasting. Our motivation comes from fields such as economics
and energy, where the targets supposedly depend on a large number of covariates.
Furthermore, many economic or energy time series are subject to structural breaks,
which makes their future values and the uncertainty surrounding them even harder
to assess (Koop and Potter, 2001; Cheng et al., 2016). Generally, most forecasters
accept that the inclusion of many disaggregated covariates provides some additional
forecasting power over conventional univariate and low-dimensional multivariate ap-
proaches (see Stock and Watson, 2012; Elliott et al., 2013; Kim and Swanson, 2014).
In their case study for EPEX SPOT hourly day-ahead electricity prices, Ludwig et al.
(2015) found that inclusion of wind speed and temperature measured at local weather
stations across Germany leads to improvements of day-ahead point forecasts over the
approach when the temperature resp. wind are aggregated across the stations. We
found this application interesting for our regression framework, but we focus on long-
and medium-horizon (spanning up to 17 weeks ahead) p.i.’s, which are essential for

1Least absolute deviation
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power portfolio risk management, derivatives pricing, medium- and long-term con-
tract evaluation, and maintenance scheduling rather than for day-to-day operations.
Furthermore, we use some alternative methods to provide a visual out-of-sample
comparison with our p.i.’s. The alternative approaches include Bayes p.i.’s of Müller
and Watson (2016) and bootstrap p.i.’s obtained from methods such as exponential
smoothing, neural networks, and regression with auto-correlated errors implemented
in the R-package “forecast” (see Hyndman and Khandakar, 2008).

Electricity price forecasting (EPF) generally uses exogenous variables including
weather conditions, local economy, and environmental policy2 (Knittel and Roberts,
2005; Huurman et al., 2012). Additionally, EPF is challenging due to complex sea-
sonality (daily, weekly, and yearly), heteroscedasticity, heavy-tails, and sudden price
spikes. There is a substantial amount of literature about EPF (see Weron, 2014, for
a recent review). These complex nature can often be also explained through different
covariates which can be both deterministic and stochastic. We explore the problem
of time-aggregated forecasting for a high dimensional linear regression model with a
possibly non-linear and dependent error process.

Our contributions in this paper are multifold. From a theoretical perspective,
it was important to explore whether the simple quantile-based method proposed by
Zhou et al. (2010) would extend to non-linear processes because of its vast generality.
Using the idea of predictive density and the functional dependence framework as
proposed in a seminal paper by Wu (2005a), we were able to extend the quantile
consistency results for the error process to non-linear processes which includes smooth
transition autoregression (Lundbergh et al., 2003) processes or very commonly used
ARCH-GARCH type processes.

Our second contribution lies in exploring the prediction performance in a high-
dimensional regression situation, especially allowing for the number of predictors to
grow faster than the sample size (log p = o(n)) and thus hitting the popular bench-
mark for the high-dimensional literature. We extended the theoretical properties
for the LASSO estimation in this high-dimensional regime. Moreover, we explicitly
discuss the price of having short or long-range dependence and lighter or heavier
tails. Note that all these results can be easily extended to situations where the error
process has exponentially decaying tails such as sub-exponential and sub-gaussian,
but since similar discussion with independent processes are already prevalent in the
literature we wanted to restrict ourselves to condition of only finitely many moments.
It is important to note that we specifically exploited a particular corollary from Na-

2In 2005, Germany launched a program aiming at reducing emissions by increasing the share of
renewable energy. The share was 25% during 2013-2014 and reached 36% in 2017.
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gaev (1979) to extend the non-linear process results from Wu and Wu (2016) to the
scenario where the second moment of the error process does not exist.

As a third contribution, we discuss how one can allow stochastic design in the lasso
program and still obtain sharp consistency results. This was particularly appealing
since for the small p < n case as described in Zhou et al. (2010), it makes sense to only
allow for trigonometric covariates whose future values are known. However, it is more
practical and challenging to allow for stochastic design. Our application to electricity
price forecasting uses both the trigonometric fixed design and the stochastic weather
variables. We utilize the consistency of the LASSO estimator in this set-up and show
the consistency of the quantiles.

Finally, we tackle the scenario of short-sample long-horizon forecasting of elec-
tricity prices with a simple bootstrap approach. Apart from a conjectural viewpoint
justifying our bootstrap procedure, we were able to empirically validate our method
by doing a pseudo out of sample (POOS) comparison. We also

The rest of the article is organized as follows: In Section 2, we summarize the
construction of p.i.’s by methods inspired from Zhou et al. (2010) focusing on the
particular cases: no covariates, fixed number of covariates and where the number
of covariates is much larger than the sample size. Section 3 discusses the error
process specifications. The discussion of how we model non-linearity in two different
ways and the quantile consistency results are the main results of this section. We
discuss three scenarios: short- and long-range dependence, and under light-tailed
and heavy-tailed distribution. We provide the discussion of quantile consistency of
the original response using the LASSO-fitted residuals in Section 4. This covers
both deterministic design and the more statistically meaningful stochastic design.
Section5 shows simulation results and some data-driven adjustments to arrive at
better forecasting performance when facing the curse of dimensionality. This section
also presents our real data analysis. Section 6 gives concluding remarks. The proofs
of theorems can be found in appendix section 7.

2. Construction of prediction intervals

We first discuss the scenario β = 0 i.e. yi = ei in (1.1) is a zero-mean noise process
as a primer.

2.1. Without covariates

Depending on its memory and tail behavior, Zhou et al. (2010) proposed two different
types of p.i. of predicting m-step ahead aggregated response en+1 + . . . + en+m.
We present them here, with some suggestive modifications especially for the first
approach where we estimate the long-run variance differently.
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Quenched CLT method. One can estimate the long-run variance σ2 of the ei process
using the sub-sampling block estimator (see eq. (2) in Dehling et al., 2013)

σ̃ =

√
πl/2

n

κ∑
k=1

∣∣∣∣∣∣
kl∑

i=(k−1)l+1

ei

∣∣∣∣∣∣ , (2.1)

with the block length l and number of blocks κ = dn/le in order to obtain 100(1−α)%
asymptotic p.i.

[L,U ] = ±σ̂Qt
κ−1(α/2)

√
m,

where Qt
κ−1 is student-t quantile with κ− 1 degrees of freedom.

Empirical method based on quantiles. A substantially more general method that can
account for long-range dependence or heavy-tailed behavior of the error process uses
the u-th empirical quantiles Q̂(u) of

∑i
j=i−m+1 ei; i = m, . . . , n. The p.i.’s in this

case are
[L,U ] =

[
Q̂(α/2), Q̂(1− α)/2)

]
. (2.2)

This approach enjoys reasonable coverage for moderate rate of growth of m compared
to sample size n.

2.2. High dimensional regime

Assuming model (1.1), we wish to construct p.i. for yn+1 + . . .+yn+m after observing
(yi, xi); i = 1, . . . , n. After estimating β, Zhou et al. (2010) construct p.i. as

n+m∑
i=n+1

xTi β̂ + p.i. for
n+m∑
i=n+1

êi, (2.3)

where êi = yi − xTi β̂ are the regression residuals. Regarding the choice of estimator
for β, if the error process shows light tailed behavior and short-range dependence,
we typically use OLS estimator β̂ = argmin

∑
i(yi − xTi β)2. For heavy-tailed or

long-range dependent errors (see Huber and Ronchetti, 2009), it is better to use
robust regression with general distance ρ and β̂ = argmin

∑
i ρ(yi−xTi β). Examples

of distance include the Lq regression for 1 ≤ q ≤ 2.
Note that, the p.i. in (2.3) requires the future covariate values of xi namely

xn+1, . . . , xn+m. Zhou et al. (2010) discusses the scenario where these predictors
are trigonometric and are completely deterministic. One easily understands that
for practical purposes this might not be true since in real life it is more appealing
or statistically interesting to use some real life covariate. This naturally rises the
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question of predicting the future covariate values. Since our approach here is not
focused on predicting the predictors we do not address forecasting of the future
predictor values and for practical examples as in the electricity price forecast as
described in Section 5 we provide a simple way to forecast for the future values for
the set of predictors that are not well-known apriori.

3. Prediction interval for the error process

Before moving on to a more general discussion with exponentially many covariates,
we use this section to discuss a primer without covariates i.e. our response here is just
a mean-0 error process. This section elaborately describes the model specifications
on the error process. We collect the results for the linear processes from Zhou et al.
(2010) and Chudý et al. (2019) without proof and provide our proofs for the non-
linear case.

3.1. Asymptotic normality for linear process

Using the simple idea that under short-range dependence if m is long enough then
the dependence of yT+1 + . . .+ yT+m on y1, y2, . . . , yT diminishes and the conditional
distribution of (yT+1 + . . . + yT+m)/

√
m given y1, . . . , yT is almost similar to the

unconditional distribution and thus one can obtain a simple central limit theorem to
quantify the uncertainty in prediction. Wu and Woodroofe (2004) proved that for
q > 5/2, the condition

‖E(Sm|F0)‖2 = O

( √
m

logqm

)
, (3.1)

gives the a.s. convergence

∆(P(Sm/
√
m ≤ ·|F0), N(0, σ2)) = 0 a.s., (3.2)

where ∆ denotes the Levy distance, m→∞ and σ2 = limm→∞ ‖Sm‖22/m is the long-
run variance. Assuming linearity of the mean-zero noise process ei in the following
manner

ei =
∞∑
j=0

ajεi−j, such that ei i.i.d.,E(|e1|p) <∞; p > 2, (3.3)

it is easy to derive the following conditions on ai to ensure the convergence in (3.2).
The proof is skipped here as it was proved in appendix of the forthcoming Chudý
et al. (2019).
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Theorem 3.1 (Theorem 1 from Chudý et al. (2019)). Assume the process et admits
the representation (3.3) where ai satisfies

ai = O(i−χ(log i)−A), χ > 1, A > 0, (3.4)

where larger χ and A means fast decay rate of dependence. Further assume, A > 5/2
if 1 < χ < 3/2. Then the sufficient condition (3.1) implies that the convergence (3.2)
to the asymptotic normal distribution holds.

The central limit theorem described in (3.2) does not hold if the sequence ai is not
absolutely summable or if the moment assumption in (3.3) is relaxed.

3.2. About empirical quantile method

In this subsection, we discuss an intuitive quantile-based method motivated to allow
the relaxation of short range dependence or moment conditions. We rewrite the
short-range dependence assumption for a linear process with the representation in
(3.3) as

(SRDL):
∑
|ai| <∞.

For long range dependence in linear process, we assume the same representation as
(3.3) and

(LRDL) with γ case we assume l∗(i) = aii
−γ is a slowly varying function where

q < γ < 1 and 1/q = sup{t : E(|εj|t) <∞}. Note that, the definition of (LRDL) also
takes into account the possible heavy-tailed distribution of εj. Additionally assume
εi admits a density fε and

(DENL): supx∈R(fε(x) + |f ′ε(x)|) <∞.

For a fixed 0 < u < 1, let Q̂(u) and Q̃(u) denote the u-th sample quantile and actual
quantile of S̃i, i = m, . . . , n, where

S̃i =

∑i
j=i−m+1 ej

Hm

, i = m,m+ 1, . . . (3.5)

and

Hm =


√
m, if (SRDL) holds and E(ε2j) <∞,

inf{x : P(|εi| > x) ≤ 1
m
} if (SRDL) holds and E(ε2j) =∞,

m3/2−γl∗(m) if (LRDL) holds and E(ε2j) <∞,
inf{x : P(|εi| > x)m1−γl∗(m) if (LRDL) holds and E(ε2j) =∞.

(3.6)

We collect the following theorem from Zhou et al. (2010) for the rates of convergence
of quantiles depending on the nature of the error process in terms of tail behaviour
and dependence:
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Theorem 3.2. [Empirical quantile consistency: linear error process] Assume (DENL)
holds. Additionally
- Light tailed (SRDL): Suppose (SRDL) holds and E(ε2j) < ∞. If m3/n → 0, then

for any fixed 0 < u < 1,

|Q̂(u)− Q̃(u)| = OP(m/
√
n). (3.7)

- Light tailed (LRDL): Suppose (LRDL) holds with γ. If m5/2−γn1/2−γl2(n) → 0,
then for any fixed 0 < u < 1,

|Q̂(u)− Q̃(u)| = OP(mn1/2−γ|l∗(n)|). (3.8)

- Heavy-tailed (SRDL): Suppose (SRDL) holds and E(|εj|q) <∞ for some 1 < q < 2.
If m = O(nk) for some k < (q − 1)/(q + 1), then for any fixed 0 < u < 1,

|Q̂(u)− Q̃(u)| = OP(mnν) for all ν > 1/q − 1. (3.9)

- Heavy-tailed (LRDL): Suppose (LRDL) holds with γ. If m = O(nk) for some
k < (qγ − 1)/(2q + 1− qγ), then for any fixed 0 < u < 1,

|Q̂(u)− Q̃(u)| = OP(mnν) for all ν > 1/q − γ. (3.10)

Here heavy-tailed refers to the scenario where the innovation process does not possess
finite second moment. The proof of Theorem 3.1 and Theorem 3.4 heavily rely on the
representation in (3.3) and thus it was important to explore from both a theoretical
and application perspective to prove analogous result for non-linear processes.

3.3. Non-linear error process: functional dependence

Economic and financial time series are often subject to structural changes and thus
the linear models do not provide proper approximation for their data-generating
process. Useful non-linear time-series models include the regime-switching autore-
gressive processes, which assume that the series change their dynamics when passing
from one regime to another and neural-network models. We provide extension of
(3.2) to non-linear error process assuming ei is a stationary process that admits the
following representation

ei = H(Fi) = H(εi, εi−1, . . .), (3.11)

where H is such that ei are well-defined random variable, εi, εi−1, . . . are i.i.d. inno-
vations and Fi denotes the σ-field generated by (εi, εi−1, . . .). One can see that it is
a vast generalization from the linear structure of ei. In order to get (3.2), we define
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a functional dependence measure for ei in (3.11), by which we follow Wu (2005a)’s
framework to formulate dependence through coupling. We define the following func-
tional dependence measure

δj,p = ‖ei − ei,(i−j)‖p = ‖Hi(Fi)−Hi(Fi,(i−j)‖p, (3.12)

where Fi,k is the coupled version of Fi with εk in Fi replaced by an i.i.d. copy
ε′k, Fi,k = (εi, εi−1, . . . , ε

′
k, εk−1, . . .) and ei,{i−j} = H(Fi,{i−j}). Clearly, Fi,k = Fi is

k > i. As Wu (2005a) suggests, ‖H(Fi) − H(Fi,(i−j))‖p measures the dependence
of ei on εi−j. This dependence measure can be thought as an input-output system.
It facilitates easily verifiable and mild moment conditions on the dependence of
the process which are easily verifiable compared to the more popular strong mixing
conditions. Define the cumulative dependence measure

Θj,p =
∞∑
i=j

δi,p, (3.13)

which can be thought as cumulative dependence of (ej)j≥k on εk. Further, we define
dependence adjusted norm, for α > 0,

‖e.‖q,α = sup
t≥0

(t+ 1)α
∞∑
i=t

δi,q. (3.14)

Theorem 3.3. Assume ei admits the representation in (3.11) the following rate
holds for Θj,p.

Θj,p = j−χ(log j)−A where =

{
A > 0 for 1 < χ < 3/2,

A > 5/2 for χ ≥ 3/2,
(3.15)

then the convergence in (3.2) holds.

Proof. The m-dependence approximation is a key idea for the proof for the non-
linear case, ‖E(S̃m|F0) − E(Sm|F0)‖ ≤ ‖Sm − S̃m‖ ≤ m1/2Θm,p � m1/2/(logm)5/2,
where S̃m =

∑m
i=1 ẽi =

∑m
i=1 E(ei|εi, . . . εi−m). The proof of (3.2) then follows from

‖Pj(ẽi)‖2 ≤ δi−j,2, since

E(S̃m|F0) =
0∑

j=−m

Pj(S̃m) =
0∑

j=−∞

(E(S̃m|Fj)− E(S̃m|Fj−1)).
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3.4. Non-linear error process: predictive dependence
In order to show the empirical quantile consistency that validates p.i.’s of the form
(2.2), we need to control the latent dependence of ei on εi−j. Therefore, we introduce
the predictive density-based dependence measure. Let F ′k = (. . . , ε−1, ε

′
0, ε1, . . . , εk),

be the coupled shift process derived from Fk by substitution of ε0 by its i.i.d. copy ε′0.
Let F1(u, t|Fk) = P{G(t;Fk+1) ≤ u|Fk} be the one-step ahead predictive or condi-
tional distribution function and f1(u, t|Fk) = δF1(u, t|Fk)/δu, be the corresponding
conditional density. We define the predictive dependence measure

ψk,q = sup
t∈[0,1]

sup
u∈R
‖f1(u, t|Fk)− f1(u, t|F ′k)‖q. (3.16)

Quantity (3.16) measures the contribution of ε0, the innovation at step 0, on the
conditional or predictive distribution at step k. We shall make the following as-
sumptions:

i. For short-range dependence: Ψ0,2 <∞ where Ψm,q =
∑∞

k=m ψk,q
For long-range dependence: Ψ0,2 can possibly be infinite;

ii. (DEN) There exists a constant c0 <∞ such that almost surely,

sup
t∈[0,1]

sup
u∈R
{f1(u, t|F0) + |δf1(u, t|F0)/δu|} ≤ c0.

The (DEN) implies that the marginal density f(u, t) = Ef1(u, t|F0) ≤ c0. Recall
the sufficient conditions for the linear cases in Zhou et al. (2010) were based on the
coefficients of the linear process. Here, however, the conditions for both short- and
long-range dependent errors are based on the predictive dependence measure. We
assume:

(SRD) :
∞∑
j=0

|ψj,q| <∞, (3.17)

(LRD) : ψj,q = j−γl(j), γ < 1, l(·) is slowly varying function (s. v. f.) .

For a fixed 0 < u < 1, let Q̂(u) and Q̃(u) denote the u-th sample quantile and actual
quantile of S̃i i = m, . . . , n, where

S̃i =

∑i
j=i−m+1 ej

Hm

, i = m,m+ 1, . . . (3.18)

and

Hm =


√
m, if (SRD) holds and E(ε2j) <∞,

inf{x : P(|εi| > x) ≤ 1
m
} if (SRD) holds and E(ε2j) =∞,

m3/2−γl(m) if (LRD) holds and E(ε2j) <∞,
inf{x : P(|εi| > x)m1−γl(m) if (LRD) holds and E(ε2j) =∞.

(3.19)
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Then we have following rates of convergence of quantiles depending on the nature of
the error process in terms of tail behaviour and dependence:

Theorem 3.4. [Empirical quantile consistency: non-linear error process]
- Light tailed (SRD): Suppose (DEN) and (SRD) hold and E(ε2j) <∞. If m3/n→ 0,

then for any fixed 0 < u < 1,

|Q̂(u)− Q̃(u)| = OP(m/
√
n). (3.20)

- Light tailed (LRD): Suppose (LRD) and (DEN) hold with γ and l(·) in (3.17). If
m5/2−γn1/2−γl2(n)→ 0, then for any fixed 0 < u < 1,

|Q̂(u)− Q̃(u)| = OP(mn1/2−γ|l(n)|). (3.21)

- Heavy-tailed (SRD): Suppose (DEN) and (SRD) hold and E(|εj|q) < ∞ for some
1 < q < 2. If m = O(nk) for some k < (q−1)/(q+1), then for any fixed 0 < u < 1,

|Q̂(u)− Q̃(u)| = OP(mnν) for all ν > 1/q − 1. (3.22)

- Heavy-tailed (LRD): Suppose (LRD) hold with γ and l(·) in (3.17). If m = O(nk)
for some k < (qγ − 1)/(2q + 1− qγ), then for any fixed 0 < u < 1,

|Q̂(u)− Q̃(u)| = OP(mnν) for all ν > 1/q − γ. (3.23)

We discussed quantile consistency results for the error process so far in our expo-
sition since this forms the foundation of our proposed method for constructing the
prediction interval. In the next section, we discuss the estimation in presence of
covariates and show some similar consistency results.

4. High dimensional regression

Consider the case p� n with LASSO estimator with l1-penalty

β̂ = argmin
β∈Rp

1

n
(yi − xTi β)2 + λ

p∑
j=1

|βj| , (4.1)

with penalty coefficient λ. Then we get p.i.’s (2.3) with β̂ replaced by the LASSO
estimator. For the non-stochastic covariate design, the effect of the covariates remain
constant no matter whether it is observed in the past or to be observed in the time.
However, for the stochastic design, this could be a potential concern. We can assume
that the ‘deterministic’ part xTi β would still capture the general mean effect, and
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then we employ uncertainty over the rest of the error process and then append the
prediction interval just for the residual or estimated noise process to the estimated
effect of these covariates.
Before we present the quantile consistency results for the case where the number of
predictors grows much faster, we also state key optimal tail-probability inequalities
needed for the two cases, linear and non-linear error process. Let Sn,b =

∑n
i=1 biei.

We have the following tail probability bounds for Sn,b under the short- and long-
range dependence and light and heavy tails for the error process. Only the light-
tailed versions of 4.1 and Result 4.2 were proposed and proved in Wu and Wu (2016).
We skip the proof since one needs to use corollary 1.6 instead of corollary 1.7 from
Nagaev (1979) and proceed according to Wu and Wu (2016). However, we still
state the results differently distinguishing between the cases for short or long-range
dependence and light or heavy tails.

Result 4.1. (Nagaev inequality for linear processes) Assume that the error process
ei admits the representation (3.3). Then we have the following concentration results
for Sn,b =

∑n
i=1 biei,

- Light-tailed SRD: If
∑

j |aj| < ∞ and εj ∈ Lq for some q > 2, then, for some
constant cq,

P(|Sn,b| ≥ x) ≤ (1+2/q)q
|b|qq(

∑
j |aj|)q‖ε0‖qq
xq

+2 exp

(
− cqx

2

n(
∑

j |aj|)2‖ε0‖22

)
, (4.2)

- Light-tailed LRD: If K =
∑

j |aj|(1 + j)β <∞ for 0 < β < 1 and εj ∈ Lq for some
q > 2, then, for some constant C1, C2 depending on only q and β,

P(|Sn,b| ≥ x) ≤ C1

Kq|b|qq‖nq(1−β)ε0‖qq
xq

+ 2 exp

(
− C2x

2

n3−2β‖ε0‖22K2

)
, (4.3)

- Heavy-tailed SRD: If
∑

j |aj| <∞ and εj ∈ Lq for some 1 < q ≤ 2, then, for some
constant cq

P(|Sn,b| ≥ x) ≤ cq
|b|qq(

∑
j |aj|)q‖ε0‖qq
xq

, (4.4)

- Heavy-tailed LRD: If K =
∑

j |aj|(1 + j)β < ∞ for 0 < β < 1 and εj ∈ Lq for
some q > 2, then, for some constants C1, C2 depending only on q and β,

P(|Sn,b| ≥ x) ≤ C1

Kq|b|qq‖nq(1−β)ε0‖qq
xq

. (4.5)
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Next, we discuss a Nagaev inequality for the non-linear process using the dependence
adjusted norm from (3.14). Under the short-range dependence, Θ0,q <∞ where q is
less or more than 2 depending on the tail-behavior of the error process.

Result 4.2. (Nagaev inequality for non-linear processes) Assume ‖e.‖q,α < ∞ for
some α > 0,
- Light-tailed SRD:- Assume that ‖e.‖q,α <∞ where q > 2 and α > 0 and

∑n
i=1 b

2
i =

n. Let rn = 1(resp. (log n)1+2q or nq/2−1−αq ) if α > 1/2 − 1/q (resp. α = 0 or
α < 1/2 − 1/q). Then for all x > 0, for constants C1, C2, C3 that depend on only
q and α,

P|Sn,b| ≥ x) ≤ C1
rn

(
∑

j |bj|)q‖e.‖
q
q,α
xq + C2 exp

(
− C3x

2

n‖e.‖22,α

)
, (4.6)

- Heavy-tailed SRD:- Assume that ‖e.‖q,α < ∞ where 1 < q < 2 and α > 0 and∑n
i=1 b

2
i = n. Let rn = 1(resp. (log n)1+2q or nq/2−1−αq ) if α > 1/2 − 1/q (resp.

α = 0 or α < 1/2− 1/q). Then for all x > 0, for constants C1 that depend on only
q and α,

P|Sn,b| ≥ x) ≤ C1
rn

(
∑

j |bj|)q‖e.‖
q
q,α
xq. (4.7)

Note that, we do not discuss the long-range dependence case for the non-linear
process since definition wise it is very technical and thus of little practical interest.
Next we show that for short-range dependent non-linear error process states that the
error bounds obtained in Theorem 3.4 remain intact if we make a proper choice of
the sparsity condition.

4.1. Lasso with fixed design

For the model in (1.1), we first assume that the xi’s are fixed and the future xi’s
are completely known. Under this setting, we next show the quantile consistency for
the non-linear process. Note that a very similar result can be proved for the linear
process with the error process admitting a simpler representation (3.3) however we
skip writing that as a separate theorem here for avoiding repetitiveness.

Theorem 4.3. (Empirical quantile consistency for LASSO-nonlinear)
Assume the covariates are so scaled such that |X|2 = (np)1/2. Denote λ = 2r in the
criterion function (4.1) where

r = max{A
√
n−1 log p‖e.‖2,α, B‖e.‖q,α|X|qn−1+min{0,1/2−1/q−α}}. (4.8)
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We assume that the restricted eigenvalue assumption RE(s, κ) in Bickel et al. (2009)
holds with constant κ = κ(s, 3), where s is the number of non-zero entries in true
parameter vector β and

κs,c = min
J⊂{1,··· ,p},|J |≤s,

min
|uJc |1≤c|uJ |1

|Xu|2√
n|uJ |2

. (4.9)

Let Q̄n(u) be the u-th empirical quantile of (
˜̂
Si)

n
m. Assume that (SRD) holds and for

r defined in (4.8),

(for light tails, i.e. q ≥ 2) s = o
( m
r2n

)
,

(for heavy tails, i.e. 1 < q ≤ 2), s = o

(
H2
m|l(n)|2

r2n2γ−1

)
, (4.10)

where γ and l(·) are defined in (3.17), Hm in (3.6) and α is in the context of the
dependence adjusted norm defined in (3.14), then the (SRD) specific conclusions of
Theorem 3.4 hold with Qn(u) replaced by Q̄n(u).

One can note the
√

log p/n term we have in our definitions for r = λ/2. This
allows us to capture the ultra-high dimensional scenario where log p = o(n), the usual
benchmark in the high-dimensional literature. The additional terms involving ‖e.‖.,α
are due to the dependence present in the error process. The sparsity condition for
the light tail case, i.e. q ≥ 2, in 4.10 in the view of the choice of r in (4.8) can be
written as

(for light tails) s � min

(
n4/3

log p‖e.‖22,α
,
n7/3−2max{0,1/2−1/q−α}

|X|2q‖e.‖2q,α

)
(4.11)

for the choice of m = o(n1/3). Thus we can allow p to grow a bit faster than the usual
ultra-high dimensional benchmark eO(n) rate. This surprising result makes sense in
the context of this paper, we are only interested in the long-term predictions rather
than in the immediate future point. Thus some relaxation can be done using the fact
that if m is allowed to grow to∞, the m-length average of residuals can automatically
provide some concentration. We believe that this is an interesting exploration of the
relaxation of the sparsity condition compared to the usual LASSO literature.

For the special case of linear process (See 3.3), the conditions in (4.10) will remain
identical and one can provided some more specifications in the definition of r in (4.8)
using the linear coefficients ai from (3.3) in the view of the Nagaev-type concentration
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inequalities derived in Result 4.1. Moreover, for the linear process, one can also
state the corresponding results for the (LRDL) case, however since the condition on
sparsity is unaffected by this nature of dependence, we do not state them separately
here.

4.2. Lasso with stochastic design

We show that under a mild condition on the covariate process the same optimization
routine LASSO also works for the quantile consistency results in a regime where
the covariates are stochastic. This is a particularly interesting extension from Zhou
et al. (2010) since in the high-dimensional regime it is impractical to assume an
exponentially growing number of covariates to be perfectly predictable for its future
values. Moreover, apart from allowing the covariates to vary as the random variable
we also allow the covariates to be dependent and thus allowing for the scenario
where the covariates could evolve. For this subsection, we restrict ourselves to only
non-linear processes for a clearer exposition. We assume

xi = Gx(ε
x
i , ε

x
i−1, . . .), (4.12)

where εxi are i.i.d and Gx is a measurable function. Let {εxi }′ be an i.i.d. copy of {εxi }.
Define the functional dependence measure on the stationary process xi as follows

δxk,q = ‖xi − x∗k,i‖q, (4.13)

where x∗k,i = Gx(ε
x
i , ε

x
i−1, . . . , ε

x
i−k
′, . . .). Also let the error process e admit the follow-

ing representation

ei = Ge(ε
e
i , ε

e
i−1, . . .), (4.14)

where εxi are i.i.d. and Gx is a measurable function. One can then define the cu-
mulative dependence using this functional dependence measure. For the quantile
consistency in the case of stochastic design we will need a notion of functional de-
pendence on the cross-product process x.je. as follows

δxek,q = max
j≤p
‖xljel − x∗k,lje∗k,l‖q, (4.15)
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where e∗k,l = Ge(ε
e
l , ε

e
i−1, . . . , ε

e
i−k
′, . . .) and {εei}′ is an i.i.d. copy of {εei}. Using (4.15),

we define the dependence adjusted norm as (3.14) for the x.je. process uniformly over
1 ≤ j ≤ p as follows:

max
j≤p
‖x.je.‖q,α = sup

t≥0
(t+ 1)α

∞∑
i=t

δxei,q. (4.16)

Theorem 4.4. (Empirical quantile consistency for LASSO-stochastic)
Assume maxj≤p ‖x.je.‖q,α < ∞ for some α > 0. Let Q̄n(u) be the u-th empirical

quantile of (
˜̂
Si)

n
m. Denote the number of non-zero elements of β by s and assume

that the sparsity conditions in 4.10 hold with the choice of r = λ/2 as follows:

r = max{A
√
n−1 log p‖e.‖2,α, B‖e.‖q,αnmin{0,1/2−1/q−α}}. (4.17)

Then the SRD specific conclusions of Theorem 3.4 with Qn(u) replaced by Q̄n(u).

Note that, the uniform functional dependence measure on the cross-product space
x.je. can often be simplified using Hölder inequalities and the usual triangle inequality
technique. For some examples and calculations of the functional dependence measure
for the nonlinear covariate processes, see Wu and Wu (2016).

5. Simulation and real data evaluation

In this section, we discuss the set-up, the low and high dimensional cases in the first
three subsections and use the last one for discussing some extensive data analysis.

5.1. Simulation set-up

The focus is on evaluation of p.i.’s discussed in the previous section based on their
coverage probability. We start by generating the error process (et) as:
(a) ei = φ1ei−1 + σεi,
(b) ei = σ

∑∞
j=0(j + 1)γεi−j,

(c) ei = φ1ei−1 +G(ei−1; δ, T )(φ2ei−1) + σεi,
with εi i.i.d from an α∗-stable distribution. The heavy-tails index α∗ = 1.5, au-
tocovariance decay parameter γ = −0.8, speed-of-transition parameter δ = 0.05,
autoregressive coefficients φ1 = 0.6 and φ2 = −0.3, the noise deviation σ = 54.1,
and threshold T = 0, were all selected based on the autoregressive models fitted to
the electricity prices used later in the empirical part. The logistic transition function
is given by G(ei−1; δ, T ) = (1 + exp(−δ(ei−1 − T )))−1. These three specifications
represent
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(a) a heavy-tail and short-memory error-process
(b) a heavy-tail and long-memory error-process and
(c) a non-linear error-process know as the logistic smooth transition autoregression

(LSTAR) with heavy tailed innovations.
Eventually, we add a large number of exogenous covariates to the error pro-

cess, obtaining yt = xTi β + ei, i = 1, . . . , n + m. We compute our p.i.’s based on
(y1,x1) . . . , (yn,xn) and evaluate them on ȳ+1:m = 1/m

∑m
i=1 yn+i. Note that we

predict the averages instead of sums, which will be motivated in following empirical
part.

Regarding covariates, we consider two scenarios (i) p < n and (ii) p > n. In
scenario (i), we compare p.i.’s based on OLS, LAD and LASSO estimators. In
case (ii), we only have the LASSO, since the other two estimators are not uniquely
identified. The vector xi ∈ Rp consists of the same 151 weather variables and 168 I

failed
to ver-
ify
this
claim
for the
LAD
esti-
mator

I
failed
to ver-
ify
this
claim
for the
LAD
esti-
mator

(resp. 336 for case ii) deterministic variables, which will be described in Section 5.4.
The elements of β ∈ Rp are obtained as i.i.d draws from the uniform distribution
U [−1, 1] or Cauchy distribution. Unlike for the OLS and LAD, the theoretical prop-
erties of LASSO depend on the sparsity assumption, hence we exploit the robustness
check with different scenarios for the sparsity of β, i.e., s = 100(1 − ‖β‖0/p) =
99%, 90%, 70%, 50%, 20%. We keep the (sparse) β fixed for all 1000 repetitions of
our experiment.

For the sake of brevity, only p.i.’s with nominal coverage (n.c.) 100(1−α) = 90%
are reported3. For the two methods (quenched CLT method and QTL, i.e., empir-
ical quantile method) proposed in Section 2, we compute the coverage probabilities

(c.p.’s) (1̂− α) = 1
1000

∑1000
j=1 I

(
[L,U ]j,β̂ 3 ȳj,+1:m

)
, where I for the j-th trial is 1

when ȳj,+1:m is covered by the interval [L,U ]j,β̂ and 0 otherwise.

5.2. Low-dimensional case

Results for the case p < n are given in Table 1i. We set n = 8736 (≈ 1 year of hourly
data), m = 168, 336, 504, 672 (1,2,3,4 weeks of hourly data), and p = 319. It is close
to the set-up of our empirical application (except that the horizon spans up to 17
weeks in the empirical part). Overall results suggest that for LASSO the empirical
quantile method provides better results than the quenched CLT method. The latter
is much more sensitive to cases of long memory and non-linearity, especially for the
longer horizons. Comparison of LASSO-QTL to LAD-QTL and OLS-QTL suggests
the following:

3P.i.’s for n.c. 67% and respective lengths of all p.i.’s can be obtained from the authors upon
request.

17



Uniform vs. Cauchy β’s. It does not seem to make any difference whether elements
of β are drawn from the uniform or the Cauchy distribution for the OLS-QTL and
LAD-QTL, whereas the LASSO performs better under the uniform distribution. The
LASSO provides (almost always) the highest c.p.’s close to 90%. Under Cauchy-
distributed coefficients, the winner is not clear, because if s < 80% and m > 2
weeks, LAD often gives a higher c.p. except for the long-memory errors, where the
LASSO always wins.

Short memory vs. long memory vs. non-linearity. The curse of non-linearity is
rather small compared to the curse of the long memory on the OLS and LAD. For
instance with the OLS, c.p.’s drop by 8 percent points (pp) between the short- and
long-memory cases, whereas for the LASSO c.p.’s decreased too but only by 3pp.

Horizon. Independent of which scenario we look at, the growing horizon makes QLT
deteriorate quickly. The OLS is more sensitive to the horizon than the LASSO or
LAD. For instance, in the long-memory scenario, the c.p. falls by 17pp between 1
week and 4 weeks horizon for the OLS, by 11pp for the LAD and by only 6pp for
the LASSO.

5.3. High-dimensional case

The case p > n is given in Table 1ii. We set n = 336 (2 weeks of hourly data),
m = 24, 48, 72, 96 (1,2,3,4 days of hourly data) and p = 487. Both the sample size n
and the forecasting horizon m become shorter but the horizon/sample proportions
reach m/n > 1/4. The reason behind such set-up is that for p to be larger than
n, it is convenient to keep n small so that the p does not have to be very large.
This is practical since otherwise, the computation becomes very slow. We do use a
much longer sample in the low-dimensional case though since it gives us more insight
into the empirical performance of the methods under such two different scenarios.
It turns out that the sample size has a relatively large impact on performance. The
combination of the curse of dimensionality and the large horizon/sample ratio de-
teriorates the performance of LASSO-QTL. For a remedy, we exploit a data-driven
adjustment of the QTL based on replication of the residual êi = yi − ŷi using sta-
tionary bootstrap (Politis and Romano, 1994a) and kernel quantile estimator (Falk,
1984). We denote the adjusted QTL by ADJ and provide the computation steps for
this adjusted method later in Section 5.4. The ADJ is also used instead of QTL in
Section 5.4 because of the large m/n ≈ 1/3.

Unlike the low-dimensional case, the CLT dominates QLT, especially if the pro-
cess has a long memory or if the sparsity is low. On the other hand, ADJ, which
had lower c.p.’s initially, outperforms both QTL and CLT by more than 10pp for
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longer horizons. Despite the improvement, the c.p.’s get close to 60% when the error
process shows long memory.

5.4. Prediction intervals for European Power Exchange spot electricity prices

The focus is on graphical comparison of out-of-sample p.i.’s obtained by:

(ADJ) Adjusted QTL-LASSO method described below in the Methods subsection.

(RBS) Robust Bayes method of Müller and Watson (2016),

(ARX) Bootstrap path simulations from ARMAX models,

(ETS) Exponential smoothing state space model (Hyndman et al., 2008),

(NAR) Neural network autoregression (Hyndman and Athanasopoulos, 2013, sec.
9.3).

Data. We forecast ȳ+1:m = 1/m
∑m

t=1 yn+t, i.e. the average4 of m future hourly day-
ahead spot electricity prices for Germany and Austria - the largest market at the
European Power Exchange (EPEX SPOT). The prices arise from day-ahead hourly
auctions where traders trade for specific hours of the next day. With the market
operating 24 hours a day, we have 11640 observations between 01/01/2013 00:00:00
UTC5 and 04/30/2014 23:00:00 UTC. We split the data into a training period span-
ning from 01/01/2013 00:00:00 UTC till 12/31/2013 23:00:00 UTC and an evalua-
tion period spanning from 01/01/2014 00:00:00 UTC till 04/30/2014 23:00:00 UTC
(see Figure 1A). The forecasting horizon m = 1, 2, . . . , 17 weeks (168, 336, . . . , 2856
hours).

Inspection of the periodogram for the prices in Figure 1C reveals peaks at periods
1 week, 1 day and 1/2 day. The mixed seasonality is difficult to model by SARIMA
or ETS models which are suitable for monthly and quarterly data or by dummy vari-
ables. Instead, we use sums of sinusoids gkt = Rsin(ωkt) + φ) = β

(s)
k (R, φ)sin(ωkt) +

β
(c)
k (R, φ)cos(ωkt) with seasonal Fourier frequencies ωk = 2πk/168, k = 1, 2, . . . , 168

2

corresponding to periods 1 week, 1/2 week,. . .,2 hours (see Bierbauer et al., 2007;
Weron and Misiorek, 2008; Cartea and Figureoa, 2005; Hyndman and Athanasopou-
los, 2013). The coefficients of linear combination β

(s)
k , β

(c)
k can be estimated by least

squares. In addition, we use 2 dummy variables as indicators for weekend.

4One of the reasons why we decided to forecast future averages was that the Bayes approach
of Müller and Watson (2016) is designed specifically for the means. Since all other methods are
flexible, we used the means as a common basis for the comparison.

5Coordinated Universal Time.
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As mentioned in Section 1, the local weather variables are also used as covariates.
The weather conditions implicitly capture seasonal patterns longer than a week,
which is very important for long horizons. Local weather is represented by 151
hourly wind speed, and temperature series observed throughout 5 years (2009-2013),
i.e., including the training period but not the evaluation period (see above). In
order to approximate some missing in-sample data and unobserved values for the
evaluation period, we take hourly-specific-averages6 of each weather series over these
5 years.

In total, we have 168 trigonometric covariates, 151 weather covariates and 2
dummies which gives a full set of 321 covariates. We denote these covariates

xTt = (dsa, dsu, sin(ω1t), cos(ω1t), . . . , sin(ω84t), cos(ω84t), w1,t, . . . , w73,t, τ1,t, . . . , τ78,t),

for t = 1, . . . , n, with d as dummies for weekend, wk, and τl as the wind speed and
temperature measured at the k-th, and l-th weather stations.

Methods. In Figure 1B, we see a drop in the price level during December 2013. The
forecasts based on the whole training period would therefore suffer from bias. By
contrast, using only the post-break December data would mean a loss of poten-
tially valuable information. An optimal trade-off in such situations can be achieved
by down-weighting older observations (see Pesaran et al., 2013), also called expo-
nentially weighted regression (Taylor, 2010). In order to achieve better forecasting
performance, we use the exponentially weighted regression with standardized expo-
nential weights vn−t+1 = δt−1((1 − δ))/(1 − δt), t = 1, . . . , n and with δ = 0.8. This
applies to ADJ and NAR methods. The ETS and ARX models provide exponential
down-weighting implicitly, but with optimally selected weights. Müller and Watson
(2016) showed that the RBS is robust to structural changes. What follows are the
main implementation steps for the methods used in this section:
Bootstrap p.i. for ADJ :

(i) Estimate regression yt ∼ xTt , t = 1 . . . , n with LASSO.
(ii) Using stationary bootstrap (See Politis and Romano (1994b)), replicate resid-

uals êt = yt − ŷt, B times obtaining êbt , t = 1, . . . , n, b = 1, . . . , B.
(iii) Compute (ēbt(m)) = m−1

∑m
i=1 e

b
t−i+1, t = m, . . . n from every replicated series.

(iv) Estimate the α/2th and (1 − α/2)th quantile Q̂(α/2) and Q̂(1 − α/2) using
Gaussian kernel density estimator from ēbn(m), b = 1, . . . , B.

(v) The p.i. for ȳ+1:m is [L,U ] = ¯̂yn,1:m + [Q̂(α/2), Q̂(1− α/2)], where ¯̂yn,1:m is the
average of h-step-ahead forecasts for h = 1, . . . ,m.

6See alternative approximation of future values by bootstrap (in Hyndman and Fan, 2010)
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Note that, our theoretical results are concerned with the consistency of the usual
quantiles from the original series. But we conjecture that the stationary bootstrap
technique to obtain the replicated series retains the asymptotic structure of the
original series and thus the quantiles of the m-length average from the original series
and that from the final m of the replicated series are close to each other. Additionally,
using the Gaussian kernel density to obtain the kernelized quantile estimator (See
Sheather and Marron (1990)) further improves the performance in prediction. These
improvements are supported by the empirical pseudo-out-of-sample validation where
we roll the window of available and to be predicted data through the entire time
horizon we have in the data.

In the stationary bootstrap, one randomly draws a sequence of starting point
uniformly from {1, 2, . . . , n} and a sequence of Geometric random variable L1, L2, · · · .
Depending on the values of Li and the starting value, we draw a consecutive Li-length
block and then finally concatenate these blocks together to arrive at a replicated
series of length n. Then finally we look at the final m for each such series, whereas it
is understandable that it was not particularly important to only look at the last m
since the starting point is uniform. We conjecture that this ensures consistency of the
quantiles however providing some more dispersion to the average as with a nontrivial
probability it concatenates blocks containing same elements and thus adding those
covariances in the dispersion of the overall average. However, we postpone a rigorous
theoretical justification of this innovative bootstrap technique to a future work since
this paper focuses more on the exploration of the performance of LASSO fitted
residuals.
Bootstrap p.i. for RBS :
For this sophisticated univariate approach, we focus on the intuition and refer to the
supplementary Appendix of Müller and Watson (2016) for more details about the im-
plementation. The robust Bayes (RBS) p.i’s are specifically designed for long-horizon
predictions, e.g., when m/n ≈ 1/2. First, the high-frequency noise is partialed out
from yt using low-frequency cosine transformation. Projecting ȳ+1:m on the space
spanned by the first q frequencies is the key to obtaining the conditional distribu-
tion of ȳ+1:m. In order to expand the class of processes for which this method can be
used while keeping track of parameter uncertainty, Müller and Watson (2016) employ
Bayes approach. In addition, the resulting p.i.’s are further enhanced to attain the
frequentist coverage using least favorable distribution. This requires advanced algo-
rithmic search for quantiles of non-standard distributions, which is its main drawback
in terms of implementation. On the other hand, their supporting online materials
provide some pre-computed inputs which make the computation faster.

(i) For q small, compute the cosine transformations xT = (x1, . . . , xq) of series yt.
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(ii) Approximate the covariance matrix of (ȳ+1:m,x
T).

(iii) Solve the minimization problem (14) in (Müller and Watson, 2016, page 1721)
to get robust quantiles having uniform coverage.

(iv) The p.i.’s are given by [L,U ] = ȳ + [Qrobust
q (α/2), Qrobust

q (1− α/2)].

Bootstrap p.i.’s for ARX, ETS and NAR:
(i) Adjust yt for weekly periodicity using, e.g., seasonal and trend decomposition

method proposed by Cleveland et al. (1990).
(ii) Perform automatic model selection based on AIC and fit the respective model to

adjusted yt. For ARX and NAR, we also use aggregated weather data defined as
w̄t =

∑73
k=1wk,t, τ̄t =

∑78
l=1 τl,t and the weekend-dummy variables as exogenous

covariates (see the supplementary Appendix for details).
(iii) Simulate b = 1, . . . , B future paths ŷbn,t of length m from the estimated model.
(iv) Obtain respective quantiles from set of averages ¯̂yb+,1:m,b = 1, . . . , B.

POOS results. Before we compare the ADJ to the other competitors, we would like Why
is it
POOS?

Why
is it
POOS?

to see if there are actual benefits from using disaggregated weather data instead of
weather data aggregated across the weather stations. Therefore, we compute the
ADJ p.i.’s using no regressors as in Figure 2IA, using only deterministic regressors
as in Figure 2IB, using deterministic regressors and aggregated weather variables
defined as w̄t =

∑73
k=1wk,t, τ̄t =

∑78
l=1 τl,t as in Figure 2IC and finally, using all 321

covariates as in Figure 2ID. As we can see, there is only very little difference between
the first three plots, which means that using only deterministic regressors with or
without the aggregated weather data does not prevent the bias at the end of the
evaluation period. On the other hand, if we use the disentangled local weather data,
significant improvement is achieved.

Finally, we get to the comparison with the alternative p.i.’s denoted as RBS, ETS,
NAR, and ARX. All these p.i.’s are given in Figure 2II. Of the four methods, only
RBS gives sensible p.i.’s. RBS works consistently well over the whole 17-weeks-long
evaluation period (Figure 2IIA). However, when compared to the ADJ, the p.i’s seem
too conservative. Hence the ADJ provides more precision on top of decent coverage.
Prediction intervals by ETS get too conservative as the horizon grows and do not
provide a valid alternative to ADJ. The NAR is even more biased than the ADJ
without covariates, especially for large m. Not so surprisingly, the ARX perform
worst of all methods, presumably because the exponential down-weighting implied
by the simple autoregression is too mild. Besides, the narrow p.i.’s are the result of
ignoring the parameter (among other types of) uncertainty.
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6. Discussion

We have constructed valid prediction intervals based on the high-dimensional regres-
sion model. From a theoretical perspective, we have extended the results of Zhou
et al. (2010) into the high-dimensional set-up and also to the case of the non-linear
error process. Through a thorough evaluation of a strong Nagaev type inequality,
we showed the consistency of fitted residuals for the ultra-high dimensional case
log p = o(n). Another significant contribution of this paper is to discuss the stochas-
tic design matrix since if there are exponentially many covariates, it is unnatural
to assume fixed or perfectly predictable covariates. Under some mild condition on
the stochastic covariate process, we were able to establish quantile consistency for
the normalized average of fitted residuals and thus provide a significant extension
to theoretical validity of the non-parametric and simple quantile-based prediction
intervals.

The quantile method has been additionally adjusted for short sample and long
horizon and was successfully applied to predict spot electricity prices for Germany
and Austria using a large set of local weather time series. The results have shown
the superiority of the adjusted method over selected conventional methods and ap-
proaches such as exponential smoothing, neural networks as well as the recently
proposed low-frequency approach of Müller and Watson (2016). However, it is not
possible to draw any general conclusions from this specific case study.

Regarding our application to electricity price forecasting, it would be interesting
to consider a larger set of covariates, e.g., augmented by macroeconomic covariates
like the fuel prices and the GDP growth. Some interesting extensions of the cur-
rent paper would include multivariate target series and subsequent construction of
simultaneous prediction intervals. Applications of such simultaneous intervals could
include prediction of spot electricity prices for each hour simultaneously in the spirit
of Raviv et al. (2015).
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Figure 1: Electricity spot prices, A) Full sample, B) Drop in price level, C) Periodogram with peaks
at periods 1 week, 1 day and 12 hours.
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Appendix A: Additional information for section 5

Additional notes on implementation of QTL-LASSO

We use LASSO implementation in R-package glmnet with tuning parameter λ
chosen by cross validation and with weights argument (v1 . . . , vT ) = ((1−δ)δ(T−1)/(1−
δT ), . . . , 1) to account for the structural change in coefficients. δ = 0.8.

Additional notes on implementation of ets, nnar and armax with software output

The ETS(A,N,N) with tuning parameter = 0.0446, NNAR(38, 22) with one hid-
den layer and ARMA(2, 1) were selected by AIC and estimated by R-package forecast.
NNAR and ARMAX allow for exogenous covariates, therefore we include aggregated
weather series w̄t =

∑73
k=1wk,t, τ̄t =

∑78
l=1 τl,t, and weekend dummies as well. For

NNAR, we can provide weights for the covariate observations. We use the same ex-
ponential down-weighting scheme as for the QTL-LASSO, but with α = 0.98, which
gave better results.

First the price series yt is seasonally adjusted using STL decomposition (R-core
function). The seasonally adjusted prices zt is used as input for the models imple-
mented in R-package forecast. The models are specified as follows:

ETS The model is selected according to AIC criterion. We restrict the model in
that we dont use trend component, because the prices do not show any trend pattern
(see 1). However, probably due to breaks in price-level, the AIC would select a trend
component. This results in too varying future paths. For optimization criterion, for,
we use Average MSFE, over maximal possible horizon=30 hours. This results into
model with tuning parameter 0.0446 selected by AIC. This is gives better forecasting
results than minimizing in-sample MSE which would result in tuning parameter 0.99
and huge p.i.’s.

ETS (A, N, N)

# means additive model, without trend and seasonal components.

Call:

ets(y = y, model = "ZNZ", opt.crit = "amse", nmse = 30)

Smoothing parameters:

delta = 0.0446

Initial states:

l = 34.1139
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sigma: 8.4748

AIC AICc BIC

116970.9 116970.9 116992.1

NNAR The model is selected according to AIC criterion. The model is restrited
in that it allows only one hidden layer. The number of nodes in this layer is by default
given as (#AR lags+#exogenous covariates)/2. In this case, we use aggregated wind
speed and temperatures, and dummies for weekend so the number of exogenous
covariates is 4. In order to get fair comparison with the QTL-LASSO, we also
use exponential downweighting on the exogenous covariates, this time with tuning
parameter 0.95.

NNAR (38,22)

# means that order of AR component is 38 and there are 22 nodes in the hidden layer

Call: nnetar(y = y, xreg = cbind(Weather_agg, dummy_12), weights = expWeights(alpha=0.95)))

Average of 20 networks, each of which is

a 42-22-1 network with 969 weights

options were - linear output units

sigma^2 estimated as 15.34

ARMA The model is selected according to AIC criterion. we use aggregated
wind speed and temperatures, and dummies for weekend.

Regression with ARIMA(2,0,1) errors

Coefficients:

ar1 ar2 ma1 intercept xreg1 xreg2 xreg3 xreg4

0.5062 0.3284 0.4908 59.3783 -4.5514 -0.4894 0.4811 0.1333

s.e. 0.0601 0.0548 0.0568 1.6441 0.4037 0.0602 0.5382 0.5382

sigma^2 estimated as 24.35: log likelihood=-26410.34

AIC=52838.68 AICc=52838.7 BIC=52902.38
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7. Appendix A - Proofs

Define

Ỹi = H−1m

i∑
j=i−m+1

ej for i = m,m+ 1, . . . ,

and let Z̃i = Ỹi − E(Ỹi|Fi−1). Define

F̃ ∗n(x) =
1

n−m+ 1

n∑
i=m

P(Ỹi ≤ x).

Let F̃ (x) = P(Ỹi ≤ x). Let F̃n(x) denote the empirical distribution function of
Ỹi, i = m, . . . n. We use the following decomposition

F̃n(x)− F̃ (x) = (F̃n(x)− F̃ ∗n(x)) + (F̃ ∗n(x)− F̃ (x)) = Mn(x) +Nn(x)

Define, for a random variable Z ∈ L1, Pi(Z) = E(Z|Fi) − E(Z|Fi−1). Using this,
one can write Mn(x) as follows

Mn(x) =
1

n−m+ 1

n∑
i=m

Pi(I(Ỹi ≤ x)). (7.1)

Next we present two important lemmas concerning local equicontinuity of the two
terms Mn(·) and Nn(·). Let fε is the density of the conditional distribution of Ỹi
given Fi−1.

Lemma 7.1. Under conditions of Theorem 4.1 and Theorem 4.2,

sup
|u|≤bn

|Mn(x+ u)−Mn(x)| = OP

(√
Hmbn
n

log1/2 n+ n−3

)
, (7.2)

where bn is a positive bounded sequence with log n = o(Hmnbn).

Proof. Note that, P(x ≤ Ỹi ≤ x + u|Fi−1) ≤ Hmc0u for all u > 0 where c0 =
supx |fε(x)| <∞. Therefore for any u ∈ [−bn, bn], we have

n∑
i=m

[E(Vi)−E(Vi)
2] ≤ c0(n−m+1)Hmbn where Vi = I(x ≤ Ỹi ≤ x+u|Fi−1). (7.3)

1



The result in (7.2) follows by applying Freedman’s martingale inequality and a chain-
ing argument. We skip the details as this chaining argument is lengthy and essentially
is very similar to that presented in Lemma 5 in Wu (2005b), Lemma 4 in Wu (2007)
and Lemma 6 in Zhou and Wu (2009).

Lemma 7.2. Under conditions of SRD, DEN and light-tailed

‖ sup
|u|≤bn

|Nn(x+ u)−Nn(x)|‖ = O

(
bnm

3/2

√
n

)
. (7.4)

Proof. Since Nn(x) = F̃ ∗n(x)− F̃ (x), we have

Nn(x+ u)−Nn(x) =
√
m

∫ u
0
Rn(x+ t)dt

n−m+ 1
,

where

Rn(x) =
n∑

i=m

[fε(Hm(x− Z̃i−1))− E(fε(Hm(x− Z̃i−1)))] x ∈ R.

The proof of (7.4) is complete pending we prove the following

‖Rn(x+ u)‖ ≤ Cm
√
n for all u ∈ [−bn, bn].

Let (ε′i)
∞
−∞ be an i.i.d. copy of (εi)

∞
−∞. Let Z∗i−1,k = H(εi, εi−1, . . .). Denote Z̃∗i−1,k =

H(εi, εi−1, . . . , ε
′
i−k, . . .). Also, introduce the coefficients b̃j,q as follows

b̃j,q =

{
ψ0,q + ψ1,q + . . .+ ψj,q if 1 ≤ j ≤ m− 1

ψj−m+1,q + ψj−m+2,q + . . .+ ψj,q if j ≥ m.
(7.5)

Write b̃j for b̃j,2. Then

‖Pi−kfε(
√
m(x+ u− Z̃i−1))‖ ≤ ‖fε(

√
m(x+ u− Z̃i−1))− fε(

√
m(x+ u− Z̃∗i−1,k))‖

≤ sup
v∈R
|f ′ε(v)|

√
m(Z̃i−1 − Z̃∗i−1.k)‖‖ ≤ c1b̃k, (7.6)

for some c1 <∞. Further note that

Rn(x+ u) =
∞∑
k=1

n∑
i=m

Pi−kfε(
√
m(x+ u− Z̃i−1))

2



and by the orthogonality of Pi−k, i = m, . . . , n

‖
n∑

i=m

Pi−kfε(
√
m(x+ u− Z̃i−1))‖2 =

n∑
i=m

‖Pi−kfε(
√
m(x+ u− Z̃i−1))‖2 ≤ c21(n−m+ 1)b̃2k.

Therefore, for all u ∈ [−bn, bn], by the short-range dependence condition as

‖Rn(x+ u)‖ ≤
∞∑
k=1

‖
n∑

i=m

Pi−kfε(
√
m(x+ u− Z̃i−1))‖

≤ c1
√
n
∞∑
k=1

|b̃k| ≤ c1m
√
n
∞∑
j=0

|ψj,2|.

Lemma 7.3. Under conditions of LRD, DEN and heavy-tailed, we have for any
ρ ∈ (1/γ, α)

‖ sup
|u|≤bn

|Nn(x+ u)−Nn(x)|‖ρ = O
(
Hmbnmn

1/ρ−γ|l(n)|
)
. (7.7)

Proof. Similar to the proof of Lemma 7.2, it suffices to prove, for some 0 < C <∞,

‖Rn(x+ u)‖ρ ≤ Cmn1/ρ+1−γ|l(n)| for all u ∈ [−bn, 1− bn] (7.8)

Since 1 < ρ < 2, by (Rio (2009)) Burkholder type inequality of martingales, we have,
with Cρ = (ρ− 1)−1.

‖Rn(x+ u)‖ρρ = ‖
n−1∑
k=−∞

Pk
n∑

i=m

fε(Hm(x− Z̃i−1))‖ρρ (7.9)

≤ Cρ

n−1∑
k=−∞

‖Pk
n∑

i=m

fε(Hm(x− Z̃i−1))‖ρρ

≤ Cρ

n−1∑
k=−∞

(
n∑

i=m

‖Pkfε(Hm(x− Z̃i−1))‖ρ)ρ

≤ Cρ(
−n∑

k=−∞

+
0∑

k=−n+1

+
n−1∑
k=1

)(
n∑

i=m

‖Pkfε(Hm(x− Z̃i−1))‖ρ)ρ

≤ Cρ(I + II + III).
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Since E|εi|ρ) <∞, similarly as (7.6), we have for k ≤ i− 1 that

‖Pkfε(Hm(x− Zi−1))‖ρ ≤ c1|b̃i−k|, (7.10)

for some c1 <∞. Thus using Karamata’s theorem for the term I, we have

I ≤ cρ1

−n∑
k=−∞

(
n∑

i=m

|b̃i−k|)ρ ≤ cρ1

∞∑
k=n

(m
n∑
i=1

|ψk+i,ρ|)ρ (7.11)

≤ cρ1m
ρnρ−1

∞∑
k=n

n∑
i=1

|ψk+i,ρ|ρ

= O[mρn1+ρ(1−γ)|l(n)|ρ].

Since ρ > 1 and ργ > 1, we use Hölder inequality to manipulate term III as follows:

III ≤ cρ1

n−1∑
k=1

(
n∑

i=max(m,k+1)

|b̃i−k|)ρ ≤ cρ1

n−1∑
k=1

(m
n−k∑
i=0

|ψi,ρ|)ρ (7.12)

= mρ

n−1∑
k=1

O[(n− k)1−γ|l(n− k)|]ρ

= O[mρn1+ρ(1−γ)|l(n)|ρ].

Similarly for term II we have, II = O[mρn1+ρ(1−γ)|l(n)|ρ]. Combining this with
(7.11) and (7.12), we finish the proof of the lemma.

Proof of Theorem 4.1. By central limit theorem of Hannan (1979), we have Ỹi
D→

N(0, σ2), where σ = ‖
∑∞

i=0P0ei‖ <∞. Hence Q̃(u) is well-defined and it converges
to uth quantile of a N(0, σ2) distribution as m → ∞. A standard characteristic
function argument yields

sup
x
|fm(x)− φ(x/σ)/σ| → 0, (7.13)

where fm(·) is the density of Ỹi and φ(x) is the density of a standard normal random
variable. Let (cn) be an arbitrary sequence of positive numbers that goes to infinity.
Let c̄n = min(cn, n

1/4/m3/4). Then c̄n →∞. Lemma 7.1 and 7.2 imply that

4



|F̃n(Q̃(u) +Bn)− F̃ (Q̃(u) +Bn)− [Fn(Q̃(u))− F̃ (Q̃(u))]|

= OP
Bnm

3/2

√
n

+m1/4

√
Bn

n
(log n)1/2)

= oP(Bn), (7.14)

where Bn = c̄nm/
√
n. Furthermore, similar arguments as those in Lemma 7.1 and

7.2 imply

|F̃n(Q̃(u))− F̃ (Q̃(u))| = OP(
m√
n

) = oP(Bn). (7.15)

Using Taylor’s expansion of F̃ (·), we have

F̃ (Q̃(u) +Bn)− F̃ (Q̃(u)) = Bnfm(Q̃(u)) +O(Bn)2. (7.16)

By (7.13), fm(Q̃(u)) > 0 for sufficiently large n. Plugging in (7.15) and (7.16) into
(7.14), we have P(F̃n(Q̃(u) + Bn) > u) → 1. Hence P(Q̂n(u) > Q̃(u) + Bn) → 0
by the monotonicity of F̃n(·). Similar arguments yield P(Q̂n(u) < Q̃(u) − Bn) → 0.
Using the fact that cn can approach infinity arbitrarily slowly, we finish the proof of
Theorem 4.1.

The proof for the quantile consistency results for the lasso fitted residuals in
Section 4 requires the following important result from Bickel et al. (2009).

Lemma 7.4. (Bickel et al., 2009) Assume the conditions on sparsity s and the
restricted eigenvalue condition as presented in Theorem 4.3. Write

r = max(A(n−1 log p)1/2‖e.‖2,α, B‖e.‖q,α‖X‖qnmax(−1,−1/2−1/q−α)).

Then on the event A =
⋂p
j=1{2|Vj| ≤ r}, where Vj = 1

n

∑n
i=1 eixij, we have,

r‖β̂ − β‖1 + ‖X(β̂ − β)‖22/n ≤ 4r‖β̂J − βJ‖1 ≤ 4r
√
s‖β̂J − βJ‖2, (7.17)

where s = #J with J = {j : βj 6= 0}.

Proof of Theorem 4.3. In the view that Lemma 7.4 we have

P(
1

n
‖X(β̂ − β)‖22 ≥ 16sr/κ2) ≤

p∑
j=1

P(|Vj| > r).

5



Thus, applying the appropriate Nagaev inequality from Theorem 4.2

sup
m≤i≤n

|
i∑

k=i−m+1

(êi − ei)| ≤ m‖ê− e‖∞ ≤ m

√
1

n
‖X(β̂ − β)‖22 = OP(m

√
sr). (7.18)

since s satisfies the conditions in (4.10). Then the rest of the proof follows from the
following observation; for any fixed 0 ≤ u ≤ 1,

Q̄n(u)− Q̂n(u) = OP

(
m
√
sr

Hm

)
, (7.19)

where Hm is properly chosen for the heavy or light tails as described in (3.6). Then
the right hand side by the choice of s as specified in (4.10) are smaller than the right
hand side of the SRD specific cases mentioned in Theorem 3.4.

Proof of Theorem 4.4. Consider the event B = {n−1|XTe|∞ < r}. Since this is
equivalent to the event |Vj| < r for all j, the proof consists essentially of same steps
as Theorem 4.3. In particular, note that we do not no longer have the additional
constraint on X that diagonals of XTX/n is 1 and thus we need to apply the Nagaev
type concentration inequalities on

∑n
j=1 xl,jej directly. Thus, in the view of the

choice of r in (4.17), Theorem 4.4 follows.
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