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In this paper, we investigate the problem of detecting a change-
point in a multiple time-series for both fixed and high-dimensions.
For the fixed dimensional case, we detect change-points for each in-
dividual co-ordinates using a moving average technique and focus on
testing synchronization of these change-points. The identification of
synchronized change-points can often lead to finding an unanimous
reason behind such changes. We provide an application of our study
in speedy recovery of power grid system. We also build a theoretical
framework for testing synchronization in a high-dimensional regime
where our testing method is different from the fixed dimension.

1. Introduction. Change-point analysis is an important tool to identify the loca-
tion/time and impact of a distributional change while studying a stochastic process over
time. Page (1955, [20] 1957, [21]) is considered to be the pioneer who initiated this long
and well-studied research topic in statistics and electrical engineering. The CUSUM chart
was proposed by Hinkley (1971, [12]) and Pettitt (1980, [22]). A bootstrapping idea was
suggested by Hinkley and Schechtman, (1987, [13]). These are some of the seminal works
towards detecting one change in a single time-series.

Over the past two decades, significant amount of research are also being done in analyz-
ing structural changes in multiple time-series. Such processes where change-point analysis
can be meaningful are prominent in the fields of finance, neuro-science, signal process-
ing, biology and medicine among others. See Vert and Bleakley (2010) for a list of such
applications. Ombao et al. (2005, [19]) employed the SLEX (smooth localized complex
exponentials) whereas Lavielle and Teyssi‘ere (2006, [16]) introduced a procedure based
on penalized Gaussian log-likelihood function. The change-point detection problem was
re-formulated as a penalized regression problem and was solved by the group Lasso (Yuan
and Lin (2006, [26]). CUSUM-type statistics have been widely used in time series segmen-
tation. In the context of multivariate time series segmentation, Groen et al. (2013, [10])
and Horváth, Lajos and Hušková, Marie (2012, [15]) studied the average of d CUSUM
statistics, each obtained from one component of a d-dimensional time series. The average
test statistic was also adopted in for detecting a single change in the mean of a panel data
model. Aue et al. (2009, [2]), detection of a single change-point in the covariance structure
of multivariate time-series using a CUSUM statistic.
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Very recently Hoga(2016, [14]) used a Gaussian approximation result by Liu and Lin
(2009, [17]) to study asymptotic properties of the CUSUM procedure for a stationary
multiple time-series. However, the Gaussian approximation result from [17] was improved
in a recent work by Karmakar and Wu (2017) where un-improvable approximation bounds
were achieved. We use this new result to detect existence and synchronization of change-
points. We choose a MOSUM technique instead of CUSUM as the latter is often criticized
to perform well only in the situation where change-point occurs early. Moreover, MOSUM
is computationally easier since at any given time point one needs to compute the average
of observations falling in a small window.
Consider the multiple series sequence model

Xi = µ(i/n) + ei = (µ1(i/n), . . . , µd(i/n))T + ei,(1.1)

where (e)i∈N denotes the unobserved multivariate error process and µr(i) is the signal for
the rth series at time index i. We discuss a very simple structural assumption first and
slowly generalize in multiple directions to substantially increase the scope of applicability.
Assume, for each co-ordinate r, µr is a piecewise constant function from [0, 1] → R. We
also assume there are at most two pieces for each such µr function. For each 1 ≤ r ≤ d we
denote 0 ≤ τr ≤ 1 to be the change-point and let λr denote the jump length at the point
τr. More formally,

µr(x) =

{
µr1, if x < τr

µr2, if x ≥ τr
(1.2)

The jump length λr at the point τr is defined as λr = µr2−µr1. We will first detect whether
there is any change-point in any of these series first. That is same as testing the following
hypothesis.

H10 : λ1 = . . . = λd = 0.(1.3)

Provided we reject (1.3), we will test the following hypothesis

H20 : τ1 = . . . = τd.(1.4)

The setting in model (1.2) is a very simplistic one and thus require generalization in dif-
ferent directions to enlarge the scope of application. We address two types of generalization:
first we allow the different pieces for every co-ordinates to be continuous instead of just
constant. Secondly, we also allow more than one change-point. This generalization needs
to be handled with some care since if every series is allowed to have multiple change-point,
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then the question of synchronization is no longer valid. We discuss the multiple change
point scenario in Section ??.

We do not put any special form in the signal part. Instead, we allow both time and panel
dependence in the error process. Some mild and easily verifiable moment conditions for
the time-dependence using Wu (2005, [23])’s framework of functional dependence measure
are imposed. We show in Section ?? how one can also transfer the problem of detecting
existence and synchronization of change-points in covariance process of a multiple time-
series in our framework. While there are a lot of work in the literature about the convergence
rate of the change point location estimators, little has been done to develop an inferential
theory in this direction.

Karmakar and Wu (2018+) obtained an invariance principle for the partial sums of the
vector-valued process ei. In particular, let Si =

∑i
j=1 ej be the partial sum process of

(ei). We approximate the process Si by a Gaussian process with independent ( but not
necessarily identically distributed ) increments. We will show, under suitable conditions,
we can construct a Gaussian process Gi on a richer probability space and a process S′i such
that (Si) and (S′i) are identically distributed for all 1 ≤ i ≤ n and

max
1≤i≤n

|S′i −Gi| = o(αn).(1.5)

If the approximation error (αn) is small enough, then we could use functional involving
the Gaussian process to approximate the statistics involving ei. This will be our key tool
for testing the synchronization since otherwise the null distribution of the proposed test
statistics for testing (1.4) will be difficult to obtain. We will obtain a Gaussian analogue
of the statistic and thus obtain the bootstrap distribution of the analogue to create an
inferential framework.

We conclude the introduction with some notations and assumptions that will be used
throughout.

1.1. Notations. For a matrix A = (aij) we define it Frobenius norm as |A| = (
∑
a2
ij)

1/2.

For a random vector Y , write Y ∈ Lp, p > 0, if ‖Y ‖p := [E(|Y |p)]1/p < ∞. For L2 norm
write ‖ · ‖ = ‖ · ‖2 . Define the projection operator Pi by

PiY = E(Y |Fi)− E(Y |Fi−1), Y ∈ L1.(1.6)

Throughout the text, bxc refers to the greatest integer less than or equal to x. Cp would
refer to a constant that depends only on p but could take different values on different
occurrences. Np(µ,Σ) means p-variate normal distribution with mean µ and covariance
matrix Σ. V ar(Y ) or Cov(Y ) for a random vector Y stands for the variance-covariance
matrix of Y . For a positive semi-definite matrix A, A1/2 refers to the usual Grammian
square root of A. If A = QDQT is the spectral decomposition of the matrix A then
A1/2 = QD1/2QT
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If two quantities M and N satisfy M <= cN for some c < ∞ then we write A � B or
B � A. If both A� B and B � A then we write A � B. We use the same symbols if such
relationships holds for large n, the sample size as our result is anyway asymptotic.

1.2. The error process and assumptions. We will assume ei is a very general non-
gaussian dependent process. In order to do some meaningful analysis to retrieve the un-
known or the hidden function µ from the observed Xi we need to order some dependence
structure on the process (ei). We assume the following causal representation for the process
(ei).

ei = H(εi, εi−1, . . . , ),(1.7)

where H is a measurable function taking values in Rd and εi’s are independent and identi-
cally distributed innovations. This representation allows us to use the widely used idea of
coupling, first introduced by Wu(2005, [23]) to model the dependence structure.
Consider the process in (1.7). To regularize it with a Gaussian process, we first introduce
uniform functional dependence measure on the underlying process. We will use the idea
of coupling as done in Wu[2005, [23]] Suppose (ε′i)i∈Z is an independent copy of (εi)i∈Z.
Assume that Xi has mean 0 and ej ∈ Lp, p > 0. For j ≥ 0, define the functional dependence
measure

θi,p = ‖ei − ei,0‖p = sup
i
‖Hi(Fi)−Hi(Fi,0‖p,(1.8)

where Fi,k is the coupled version of Fi with εk in Fi replaced by an i. i. d copy ε′k,

Fi,k = (εi, εi−1, . . . , ε
′
k, εk−1, . . . , )(1.9)

and ei,{i−j} = H(Fi,{i−j}). Clearly, Fi,k = Fi is k > i. As Wu(2005, [23]) suggests, ‖H(Fi)−
H(Fi,(i−j))‖p measures the dependence of Xi on εi−j . We now write down the assumptions.
For completeness we again mention the causal representation of the (ei) process.

(2.A) ei is a d−dimensional mean 0, non-stationary random sequence that assumes the
following representation

ei = H(Fi) = (Xi1, Xi2, ...Xid)
T ,

where Fi = (..., εi−1, εi), H is a measurable function such that Xi is a well-defined
random vector, and T denotes matrix transpose. The εi random variables are i. i. d..
We also assume that, ei ∈ Lp where p > 2. In other words, supi ‖Xi‖p <∞.
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(2.B) We assume short range dependency,

Θ0,p =

∞∑
i=m

θi,p <∞.(1.10)

This condition implies the cumulative dependence of (Xj)j≥k on εk is finite. If this
fails, then the Xi process can be long-range dependent, and the partial sum process
cannot be regularized by Gaussian process. In the next section, while we state our
main theorem and corollaries we will further impose some restrictions on the rate of
Θi,p

From Berkes et al. (2014, [5]), we have the following result for scalar stationary process
(ei).

Result Suppose (2.A)-(2.C) holds. In addition to that, we assume

Θi,p = O(i−χ),

with χ satisfying

χ > χ0 =
p2 − 4 + (p− 2)

√
p2 + 20p+ 4

8p
,(1.11)

there exists a probability space (Ωc, Ac, Pc) on which we can define random vectors Y c
i

with the partial sum process Scn =
∑n

i=1 Y
c
i and a Gaussian process Gi with independent

increments such that Sci
D
= (Si)i∈N and

max
i≤n
|Sci −Gi| = oP(n1/p) in (Ωc, Ac, Pc)(1.12)

where Gi = Σ1/2
∑i

j=1 Zi with Zi being i.i.d. standard normal random variables and Σ =∑∞
k=0 E(e0ek) is the long-run covariance of the ei process.

Karmakar and Wu (2018+) extended this result to a multi-variate and non-stationary
process. As a special case, if the error process is assumed to be stationary, a similar result
as (1.2) holds with Σ =

∑∞
k=0 E(e0e

T
k ) being the corresponding long-run covariance matrix

of the vector valued (ei) process.

1.3. Organization. The rest of the paper is organized as follows. We will first specify
the mathematical model and the specifications for the error process in Section ??. Section
?? describe our methods of detecting the change-points and if there are change-points
how to detect whether they occur simultaneously or not. Next, in Section ?? we validate
our detection methods with some theoretical results. We study an analogous problem in
exploring contemporaneous covariance process in Section ??. Section 3.1 is used to describe
a Gaussian block multiplier technique to practically implement this. Network anomaly
detection is discussed in Section 5.2 as a key application of our study. Section 6 shows
some data simulations to substantiate our theoretical methods.
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2. At most one change point. In this section we discuss the set-up where we can
have at most one change point (AMOC hereafter) in each series. Starting from the simplest
piecewise constant set-up we build the local linear estimation for the more general piecewise
continuous case.

Assume (1.2). Consider the following left and right average process for the r th co-
ordinate

θLr (i) =
1

G

i∑
k=i−G+1

Xi,r θRr (i) =
1

G

i∑
k=i−G+1

Xi,r(2.1)

The change-point location rescaled to (0,1) can then be estimated by the following

τ̂r =
1

n
arg max

G≤i≤n−G
|θLr (i)− θRr (i)|.(2.2)

2.1. Piecewise continuous signals. Viewing (2.2) as a primer one can generalize the
left and right simple average to a more general local constant average technique that can
accommodate piecewise continuous signals. Reference lists.

We consider the following assumption about the signal functions µr for 1 ≤ r ≤ d for
the rest of this section:

µr(x) =

{
µr1(x), if x < τr

µr2(x), if x ≥ τr,
(2.3)

where µr1 and µr2 are two piece wise continuous functions with the possibility of a jump
at τr i.e. λr = µr2(τr)−µr1(τr) is possibly non-zero. With a slight abuse of the notation of
θLr (·) and θRr (·) we can proceed with

θLr (t) =
i∑

i−m+1

K

(
i/n− t
bn

)
Xi,r

θRr (t) =

i+m∑
i+1

K

(
i/n− t
bn

)
Xi,r(2.4)

Then the estimator is defined by

τ̂r = arg max
bn<t<1−bn

|θLr (t)− θRr (t)|(2.5)
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Since local-constant approaches such as Pristley-Chao estimate or Nadaraya- Watson
estimates suffer from boundary conditions, we settle with a local-linear estimation. Inci-
dentally, one can motivate the estimators in (2.4) as inspired by the following optimization
problem

θ̂t = arg max
η1

n∑
i=1

(yi,r − η1)2K

(
i/n− t
bn

)
.

Under the assumption of smooth derivatives of all the piecewise signals for all the series
one can instead use the following minimization

(θ̂(t), θ̂′(t)) = arg max
η1,η2

n∑
i=1

(yi,r − η1 − η2(i/n− t))2K

(
i/n− t
bn

)
and its restriction to the left and right averages. Define the local linear averages ([8]) as

θ̂L(t) =

[nt]∑
i=1

Xiwi, θ̂R(t) =
n∑

i=[nt]+1

Xiwi, wi = K

(
t− i/n
bn

)
S2(t)− (t− i/n)S1(t)

S2(t)S0(t)− S1(t)2
,(2.6)

where Si(t) =
∑n

i=1K((i/n − t)/bn)(t − i/n)j .The estimator of the change-point location
is defined by (2.5).

We propose some consistency and distributional result for τr. While the consistency
results, since our d is finite reduces to stating consistency results for only one series and
has been well-studied under literature, the distributional theory of the location point for
the multiple process is, to the best of our knowledge is a new contribution. Also our results
allow a large class of dependent processes that generalize the previously stated similar
results in literature for independent or restrictive class of dependent process.

We first develop a Hàjek-Rènyi type inequality for stationary sequences with the repre-
sentation (1.7). Since this may be of independent interest we state this result here. This is a
key tool in not only change-point analysis but also in different limit theorems. After Hàjek
and Rényi (1955,[11]) obtained similar result for independent random variables, Birnbaum
and Marshall ([6]) extended it to martingales. Bai (1994, [3]) and Bai (1997, [4]) generalized
this to linear process and mixingales respectively. However, based on some recent works in
the framework of Wu (2005, [24], it is possible to extend this to a more general class of
stationary processes.

Proposition 2.1. Assume ei admits the causal representation in (1.7) with the long-
run covariance σ. Then,

P( max
m≤k≤n

1

k
|
k∑
i=1

ei| > α) ≤ C σ2

mα2
.(2.7)
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Next we discuss consistent estimation of the change-points for a single series. Since for the
scope of this paper, we restrict ourselves to finite dimensions, it suffices to prove consistency
for the process observed in a single co-ordinate. Thus, we suppress the suffix of τr = kr/n,
τ̂r = k̂r/n, λr etc. Also, note that, the jump length λ = λ(n) and the window-length
G = G(n) are functions of sample-size n but we will, in the sequel, call it just λ and G.

First, as is expected, we show that the estimated change-point cannot be too far from
the true change-point. Since we use our window size is G, one would naturally expect

|k̂ − k0| = oP(G).

In fact, it is possible to achieve much sharper consistency result with some mild assumption
on the jump-length. Without loss of generality, we assume λ > 0. Using the fact that, for
G ≤ k ≤ n−G,

0 ≤ |Vk| − |Vk0 | ≤ sup
G≤k≤n−G

|Vk − E(Vk)|+ |E(Vk)| − |E(Vk0)|

and

E(Vk) =
G− |k − k0|

G
λ1k0−G<k<k0+G,

one can see

|τ̂ − τ | ≤ 2
G

nλ
sup

G≤k≤n−G
|Vk − E(Vk)|.

Using invariance principle from Berkes, Liu and Wu ([5]) and Theorem 1.2.1 from Csörgö
and Révësz ([7]) we have,

sup
G≤k≤n−G

|Vk − E(Vk)| = sup
G≤k≤n−G

1

G

∣∣∣∣∣
k+G∑
i=k+1

ei −
k∑

i=k−G+1

ei

∣∣∣∣∣
= oP

(
n1/p

G

)
+

2

G
sup

0≤t≤n−G
sup

0≤s≤G
|W (t+ s)−W (t)|)

= oP

(
n1/p

G

)
+Op

(
log(n/G)1/2 + (log log n)1/2

G1/2

)
.(2.8)

Thus the conditions on G and λ

n1/p

λG
→ 0,

(log log n)1/2 + log(n/G)1/2

λG1/2
→ 0(2.9)

ensures consistency of τ̂ . We move on to provide a sharper convergence rate adapted for
a single series in the following theorem. This improved rate is also necessary to perform
inferential asymptotics of the distribution of τ̂ .
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Theorem 2.2. Assume λ and G satisfy (2.9) Then

τ̂ − τ = OP(n−1λ−2).(2.10)

Next, we provide a distributional theory for the locations of the change-point. This can
be used to construct confidence intervals for the location. This line of work, to the best of
our knowledge, is not discussed very much in the literature and thus call for an important
exploration. Similar type of work has been done for univariate series for quite some time.
But extending the same to multiple dimension comes with its own challenge and possibly
that is why this problem is not explored for a general scenario. Define two-sided Brownian
motion W (t) as follows

W (t) =

{
W1(t) if t ≥ 0,

−W2(t) otherwise,
(2.11)

where W1 and W2 are independent Brownian motion on (0,∞). Next, we state a distri-
butional result on the change point location estimator τ̂ . This can be used to test point
hypotheses about the location of the process.

Theorem 2.3. Under the conditions of Theorem 2.2, we have

nλ2(τ̂ − τ)
D→ arg max(σW (t)− |t|).(2.12)

where σ is the long-run variance of the error process (ei).The next theorems concern con-
sistently estimating the jump-length at the change-points and then obtain distributional
result about the statistic. If the jump length λr is positive then

Theorem 2.4. For 1 ≤ r ≤ d, we assume that the rth co-ordinate function µr has a
jump of length λr > 0 at τr. If G satisfies the condition in (2.9) then√

Mr − λr = oP(1).

Next we obtain the distributions of individual
√
Mr using the extreme value theory for

Gaussian random variables.

Theorem 2.5. If λ and G satisfies (2.9), we have,

√
2 log(n/G)

(√
Gσ−1

√
Mr − [2 log(n/G) +

1

2
log{log(n/G)}]− log(3)

)
D→ V,(2.13)

where σ is the long-run covariance for the rth error series {er} and V has extreme value
distribution P(V ≤ u) = exp{−π−1/2 exp(−u)}.
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Remark: One can easily obtain the asymptotic distribution of Mr from Theorem 2.5. The
next theorem discusses the asymptotic distribution of

√
MG under the null H20 : τ1 = τ2 =

. . . = τd
Let us define

Bd(x) =
√

2 log(x) +
log(CK) + (d/2− 1/2) log(log r)− log(2)√

2 log(x)
,

with CK =
(
∫ 1
−1 |K

′(u)|2du)1/2

γs/2 .

Theorem 2.6.

√
2 log(n/G)

(√
G

φ0

√
MG −Bd

( n
G

))
D→ V,(2.14)

where V has extreme value distribution P(V ≤ u) = exp{−2 exp(−u)}.

For more discussion about the quantiles of the process on the right hand side in (2.14), see
[9] and the references therein. Next we discuss, under the assumption of one existing change-
point location, the joint distribution of the estimated location parameter. Even though, the
literature of change-point analysis is very rich, to the best of our knowledge this is the first
treatment that allows dependence in the error process and possibly asynchronized change-
points across different co-ordinates. For ease of notation, we state the following result for
d = 2 but it is obvious how to extend this for higher but finite d

Theorem 2.7. Under conditions on bn, we have, for the estimated location vector(
cn(τ̂1 − τ1)
cn(τ̂1 − τ1)

)
d→

(
arg max0≤t≤1(B(t+ τ1)− B(t))− 1/2|t|)
arg max0≤t≤1(B(t+ τ2)− B(t))− 1/2|t|

)
.(2.15)

This result can be used for inference on the location of the change-points in different co-
ordinates. Specifically this can also be used to identify the synchronization of the locations.
However we resort to a different approach based on the maximum values of the individual
and overall objective functions.

3. Testing for synchronization. Before discussing our method to answer the ques-
tion of synchronization, we provide a motivation behind our proposal. Consider d = 2.
Intuitively if τ1 = τ2, provided we have a consistent estimation procedure for τr, one would
expect τ̂1− τ̂2 to be small. However, such a notion of distance will be complicated if d > 2.
Drawing analogy between a t-test of equality for two treatments and ANOVA for multiple,
we focus on the maximized values of the objective functions to judge closeness of τ ′is. To
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test the combined hypothesis, H20 : τ1 = τ2 = . . . = τr we define Mr = |θLr (nτ̂r)−θRr (nτ̂r)|.
Define the synchronized maximizer

MG = max
1≤i≤n

d∑
r=1

| 1
G

i∑
j=i−G+1

Xj,r −
1

G

i+G∑
j=i+1

Xj,r|2(3.1)

The following inequality is always true.

MG ≤M1 +M2 + . . .+Md.

Under the null that the change-points synchronize

τ1 = . . . = τd

we should have a small value of M1 +M2 + . . .+Md −MG. As mentioned before, we will
obtain the distribution of Mi for all i and MG. But, obtaining the theoretical asymptotic
distribution ofM1+M2+. . .+Md orM1+M2+. . .+Md−MG under the null hypothesis is not
an easy task. The distribution probably does not have a well-known name. But it is crucial
to obtain the null distribution to perform the tests. We will adopt a Bootstrap technique
along with our gaussian approximation result, Theorem (1.2) to circumvent that. We use
summation by parts argument we can instead use the corresponding gaussian versions of
these test statistics and use a bootstrap method to obtain the theoretical distribution and
consequently the threshold for testing perspective.

3.1. Bootstrap method to find the proper threshold. In this section, we discuss a boot-
strap method to approximate the asymptotic null distribution of our test statistics. This
involves consistent estimation of the long-run covariance matrix which is discussed later.
Using the atomic gaussian process gi = Σ̂1/2Zi, we obtain the gaussian analoguesMZ

1 ,M
Z
2 , . . . ,M

Z
d

and MZ
G of the corresponding quantities M1,M2, . . . ,Md and MG respectively. They are

derived from the following equations.
For 1 ≤ r ≤ d,

MZ
r = max

1≤i≤n
| 1
G

i∑
j=i−G+1

gj,r −
1

G

i+G∑
j=i+1

gj,r|2,(3.2)

τ̂Zr = arg max
1≤i≤n

| 1
G

i∑
j=i−G+1

gj,r −
1

G

i+G∑
j=i+1

gj,r|2.(3.3)

Let

MZ
G = max

1≤i≤n

d∑
r=1

| 1
G

i∑
j=i−G+1

gj,r −
1

G

i+G∑
j=i+1

gj,r|2.(3.4)
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Theorem 3.1. For any 1 ≤ r ≤ d we have

|MZ
r −Mr| = oP(

n2/p

G2
).

|MZ
G −MG| = oP(

n2/p

G2
).

In other words
G2

n2/p
(MZ

r −Mr)
P→ 0.

G2

n2/p
(MZ

G −MG)
P→ 0.

Proof. From the invariance principle in Karmakar, Wu (2016) we have√
MG = max

G≤i≤n−G
| 1
G
{Si+G − 2Si + Si−G}|+O(

1

G
)

= max
G≤i≤n−G

| 1
G
{G∗i+G − 2G∗i +G∗i−G}|+ oP(

n1/p

G
)

=
√
MZ
G + oP(

n1/p

G
).

Similar result holds for individual co-ordinates with M and Mr replaced by MZ
G and MZ

r .

In this section, we provide algorithm description for the detection of change points and
testing of synchronized changes.

1. Compute M1, . . . ,Md and MG using (??) and (3.1) respectively.
2. Use the input data Xij for estimation of τ̂r, as in (??). Use the estimated τ to decide
Xmean1 and Xmean2, and use them to de-mean Xij and get X∗ij . Calculate dispersion

estimate Σ̂ using X∗ij as in (3.6).

3. Obtain the gaussian analogues MZ
1 ,M

Z
2 , . . . ,M

Z
d and MZ

G by using the atomic gaus-

sian process gi as in (3.2) and (3.4). gi is generated by using the estimated Σ̂ and
i.i.d. standard normal random variables Zi: gi = Σ̂1/2Zi.

4. Repeat Step 3 for a large number of times (e.g., 1,000 times). Get the bootstrapped
distribution of MZ

1 +MZ
2 + . . .+MZ

d and MZ
1 +MZ

2 + . . .+MZ
d −MZ

G ).
5. Let c1 and c2 be the 95-th percentiles for the above distributions, respectively.
6. Reject the null of no change-point H10 at 5% level of significance if

M1 +M2 + . . .+Md > c1.
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7. If we have rejected H10, reject the null of synchronization H20 at 5% level of signifi-
cance if

M1 +M2 + . . .+Md −MG > c2.

Remark: To start one can take G = n1/3.

3.2. Estimating Σ for a real data application. In order to use the Bootstrap technique
mentioned in section 4, we will need to get an usable version of the Gi process mentioned
in Theorem (1.2). For this purpose one needs to estimate the long-run covariance matrix
Σ.
We first define the demeaned series X∗ based on the estimated τ ′is. Since we are assuming
our µ function is piece-wise constant, we have at most two different values of the function µ.
The demeaning process is motivated from that fact. For 1 ≤ j ≤ d, let τ̂j be the estimated
change-point location as mentioned in (??). Denote,

Xmean1
j =

1

τ̂j

τ̂j∑
i=1

Xij and Xmean2
j =

1

n− τ̂j

n∑
i=τ̂j+1

Xij .

X∗ij =

{
Xij −Xmean1

j , for 1 ≤ i ≤ τ̂j
Xij −Xmean2

j , for τ̂j + 1 ≤ i ≤ n

Let us define the following estimate of the long-run covariance matrix Σ̂.

Σ̂ =
1

G(n−G+ 1)

n−G∑
j=0

(S∗j+G − S∗j )(S∗j+G − S∗j )T ,(3.5)

where S∗i is the related partial sum process generated from the vector process X∗i .
We propose some other methods of estimating the long-run variance Σ consistently. These
are natural generalizations of two estimates proposed in Wu and Zhao (2007, [25]).
We first introduce a non-overlapping estimate of block means. For 1 ≤ r < s ≤ d, m =
[n/G],
Ai,r =

∑G
j=1Xj+iG,r,
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Σ̂A
r,r =

G

2u1/4
median(|Ai,r −Ai,r−1|2),(3.6)

Σ̂A
r,s =

G

2u1/4
median((Ai,r −Ai,r−1)(Ai,r −Ai,r−1)),

Σ̂B
r,r =

G

2(m− 1)
(
m−1∑
i=1

|Ai,r −Ai,r−1|2),

Σ̂B
r,s =

G

2(m− 1)
(
m−1∑
i=1

(Ai,r −Ai,r−1)(Ai,s −Ai,s−1)).

Similar to Theorem 3 in Wu and Zhao (2007, [25]), we have the following result for a
Lipschitz-continuous µ.

Theorem 3.2. 1. If G � n5/8, then |ΣA − Σ| = OP(n−1/16 log n).
2. If G � n1/3, then |ΣB − Σ| = OP(n−1/3).
3. If G � n1/3, then E(|ΣB − Σ|2) = O(n−2/3).

4. Testing synchronization in high dimension. For the high-dimensional scenario
where we keep the time horizon n fixed and allow the dimension d grow to∞ the Gaussian
approximation of the type (1.12) fails. Portnoy (1986) showed the central limit theorem
fails if d = n1/2. However, in today’s world big data is often the rule than exception and
many fields are increasingly demanding analyzing many datasets simultaneously. In this
section we allow d to grow and often much faster than n but still be able to perform the
hypothesis test of synchronization. For simplicity of exposition, as we mentioned before we
assume that for the entire series only one changepoint has been detected.

4.1. Problem description. Consider the model in (1.1) in conjunction with the piecewise
model specification in (1.2). Note that, for some of the series it is possible to have no
changepoint i.e.

µr,1 = µr,2

for some 1 ≤ r ≤ d. Define

A = {1 ≤ r ≤ d : µr,1 6= µr,2}.

We refine the hypothesis resting problem in (1.4) as follows: Let A = i1, , il

H0 : τi,1 = . . . = τi,l(4.1)
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For the high-dimensional scenario, we can no longer work with the original proposal of
M1 + . . .+Md −MG for finite d.

Following some of the recent development in high dimensional statistics we will focus on
the ‖.‖∞ norm.

4.2. Method.

5. Examples. In this example, we give a few applications of our results. Specifically,
we collate one result aimed towards building a general theoretical framework and another
one motivated from a real-world application.

5.1. Change-point in covariance process. In this section, we discuss how we can extend
our ideas to test for existence and synchronization of a covariance process. Let Xi ∈ Rd
is a non-stationary sequence that has finite qth moment for some q > 4. Let the d(d +
1)/2 dimensional vector Wi = (XirXis)1≤r≤s≤d. Then W̄n :=

∑n
i=1Wi/n gives sample

contemporaneous covariances of (Xi)
n
i=1. We view Wi as

Wi = E(Wi) +Wi − E(Wi) = µW (i/n) + eW (i),

where µW and eW play analogous role to µ and e described in the context of (1.1). This
allows us to not only detect the change-points for the possible d(d+1)/2 contemporaneous
covariances it allows us to test for their synchronization. From a practical purpose, if we do
not observe the data itself and have restricted availability to only their covariance estimates
this can help us recover any structural change happening in the covariance process which
might lead to further investigation for some specific co-ordinates of the multiple time-series.

We need an optimal Gaussian approximation result for the covariance process. Karmakar
and Wu (2017) proved in their paper the following result for the specific case of vector-linear
process.

Proposition 5.1. Assume that Xi is a vector linear process

(5.1) Xi =

∞∑
j=0

Bjεi−j ,

where Bj are d×d coefficient matrix, and εi = (εi1, . . . , εid)
T , εir are i.i.d. random variables

with mean 0 and finite qth moment, q > 4. Moreover assume,

(5.2)

∞∑
j=t

|Bj | = O(t−χ), χ ≥ χ0

where χ0 is defined at (1.11). Write p = q/2. Let Σ =
∑∞

k=−∞Cov(W0,Wk) be the long-run
covariance matrix of (Wi). By Theorems 1 and 2 therein, we have

(5.3) max
i≤n
|iW̄i − iE(W1)− Σ1/2IB(i)| = oP(n1/p),
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where IB is a centered standard Brownian motion.

However, through careful inspection of their proof it is easy to extend them for a more
general stationary sequence with proper functional dependence measure.

5.2. Application: Network Anomaly Detection. In this subsection we discuss two pos-
sible applications of our results. In the first of them, we use simulated data from different
power grade system which closely emulate the real data and in the second one we compare
pricing of oil and gas and test for synchronization within the data.

In communication networks, many anomaly detection problems can be treated as a
change-point detection problem. Among many others, malicious attacks aiming to cause
disruption of normal network operations are a kind of anomaly that requires immediate
attention. Detection of such anomalies in the first time is very important, as further diag-
nosis and effective countermeasures following the detection are needed in order to restore
the normal operation.

In the following, we present a case of jamming attack in a wireless network. A group
of nodes as shown in Fig. 1 are communicating with each other: 0 → 1, 2 → 3, and
4→ 5. At some point, a jammer starts to send jamming signals into the wireless channel.
Jamming signals are large blocks of continuous signals, often transmitted with high power
to maximize the jamming effect. A normal wireless transmitter would perform carrier sense
before transmitting to avoid interrupting the ongoing traffic. Once a transmitter finds the
channel is busy, it can only wait until the channel is clear to transmit. However, the jammer
would not follow the protocol and can jam the channel at any time. The presence of a
jammer will directly cause the performance deterioration of normal nodes. The performance
deterioration includes multi-folds: the packet queueing delay will increase as they wait for
the channel to clear, and the throughput between a pair of transmitter-receiver will drop
as fewer packets are successfully received. The detection of jamming attack is from the
observation of these network performance measures. In this work, we use the delay and
received packets interframe space (IFS) time series for change point detection. When the
packet size is uniform, increased IFS is an indicator of decreased throughput. Samples are
taken from a widely-used network simulator ns-3 [18], and the time series are extracted
from the trace file.

When a jammer starts to jam the channel, all nodes hearing the jamming signal will be
impacted. It is expected that change-points will appear in many time series. We put time
series in two groups: same measurements from different nodes, and different measurements
from the same node, and we perform change point detection on multiple time series within
a group. Although the change points are results of the same causing event—- jamming, we
cannot expect that the change points to occur at exactly the same time tick due to the
sampling issue, therefore the change points are only loosely synchronized. Considering the
sampling rate and node transmission rate, a tolerance band of λt is used such that change
points occurring within λt of each other are considered synchronized.
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Fig 1. network

Fig. 2 shows the measurements from node 3. Other nodes show similar patterns. In Fig.
2 (a) and (b), the blue series shows the original sample values, and the pink series shows the
smoothed values using Exponential Weighted Moving Average (EWMA). Using EWMA of
samples is a commonly used technique in communication networks, since individual packets
may experience large delay or large jitter even without any anomaly. This is mainly due
to some bursty traffic and contention for channel access. Only when the increased delay or
decreased throughput becomes a general trend for a sequence of packets, it is considered
as a change point. Note that the delay and IFS before the attack are not uniform, but have
very small variance. Picture (c) shows the microscopic IFS before the attack.

The simulation runs for 100 seconds, and the jamming attack starts at 50 second. The
jamming attack will impact the packets that are sent but not received at this time, as
well as the packets that are scheduled to send after this point. We apply the change point
detection algorithm and synchronization testing algorithm on both the original samples
and the smoothed series. Multiple time series include delay (series 1) and IFS (series 2).
The results are summarized in table 1. The smoothed data reduce the number of false
positives, but also incur additional detection delay.

Table 1
Detection of Jamming Attack

Change Point Detected? Detection Time τ̂ (s) Synchronization

Samples (Blue) Yes τ̂1=52.406 τ̂2=52.406 Yes λt = 0

EWMA (Pink) Yes τ̂1=54.017 τ̂2=58.042 Yes λt = 3
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Fig 2. (a) Delay, (b) Received packet IFS, (c) Microscopic IFS before the attack.

6. Simulation results. For the simulated results, we stick to bivariate data. More-
over, we use the true long-run variance for constructing the Gaussian analogue of the
observed data. Although we have Theorem 3.2 to ensure the consistency of the estimated
covariance matrix, we use the true long-run variance to evaluate our methods. Moreover,
the estimated block covariances are close to the true covariances and thus using the true
long-run covariance does not affect our result much. Moreover, we use µr function to be
0 before the change-point appears since this problem is location invariant with respect to
the range of µ.

6.1. Choice of the error process. We make following choices of the error process

• IID Normal (0,σ2 = 1).,
• An AR(1) process which has no co-integration. The two co-ordinates evolve indepen-

dently with AR coefficient 0.6 and -0.3 ,
• An VAR(1) process with the first order coefficient matrix being[

0.6 −0.2
0.3 −0.3

]
.

6.2. Choice of G. The condition (2.9) describes the rate of G and kn for asymptotic
consistency of our method. For practical implementation we choose G = O(n1/3). However,
all our results are asymptotic and since O(n1/3) is free to change up to a constant factor,
it leads to a challenge for a small sample size n.
The results presented here are for n = 2000 and G = 100. We show in Table 2 that the
choice of G = 50 will not make a huge difference in the observed rejection probabilities
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under null. Thus we decide to stick to G = 100 for the rest of the simulations presented
here.

We perform our simulation in mainly three different set-ups.

1. No change-point exists.
2. Change-point exists and they are synchronized.
3. Change-points exists and they are asynchronized.

The first one is tabulated in Table 2 where we exhibit the performance for three different
choice of error process and two different choices of window-size G. The second two set-ups
are collectively tabulated in Tables 3 4 5 where λτ = 0 stands for synchronized change-
points.

Table 2
Performance for the case of null hypotheses. Table shows number of times change-point is not detected/
detected out of 500 iteration with n=2000, kn=100, error=Independent gaussian. Table shows no. of not

detected, no. of detected, no. of synchronized, no. of asynchronized

Gaussian AR(1) VAR(1)

G=100 474, 26, 19, 7 484, 16, 15, 1 483, 17, 11, 6

G = 50 473, 27, 13, 14 491, 9, 8, 1 492, 8, 5, 3

Remark A few remarks are in order.

• Note that, we see similar results with the two choices of G and hence we will use
G = 100 for the rest of the simulations. The dependent case has coverage more than
95% in order to allow for the effect of dependence in the long-run covariance.
• For the Gaussian independent error Table 3, we only computed six cases as the effect

of the change will be symmetric on the two co-ordinates.
• One can see, if λ1 = λ2 = 0.5, our algorithm is not able to detect existence of

the change-points in a dependent case. The method still works pretty well for the
independent Gaussian errors but does not if λ is as small as 0.5. However, if one of
λ1 and λ2 is bigger it performs somewhat better.
• If one of λ1 or λ2 is as big as 1.2 or 2, the algorithm has 100 % success rate in

detecting the change-point. Also note that, if λτ increase from 0.001 to 0.01 the
ability to detect asynchronization increases. We emphasize that, for n = 2000, a
distance of λτ = 0.001 is a mere gap of only 2 index in the locations of the two
change-points. This substantiates the accuracy of our method.
• Difference between AR(1) and VAR(1) cases.

7. Real Data Analysis.

7.1. Oil, Gas and Dow pricing ratios. As is usual with many pricing data, we will
look at the logged and differenced data for this purpose to obtain a somewhat stationary
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Table 3
Performance for the case τ1 = / 6= τ2 for Gaussian. Table shows no. of not detected, no. of detected, no. of

synchronized, no. of asynchronized

λτ = 0 λτ = 0.001 λτ = 0.002 λτ = 0.005 λτ = 0.01

λ = 0.5 52, 448, 417, 31 69, 431, 397, 34 62, 438, 406, 32 80, 420, 383, 37 76, 424, 343, 81

λ1, λ2 = (0.5, 1.2) 0, 500, 468, 32 0, 500, 466, 34 0, 500, 459, 41 0, 500, 423, 77 0, 500, 348, 152

λ1, λ2 = (0.5, 2) 0, 500, 468, 32 0, 500, 465, 35 0, 500, 449, 51 0, 500, 408, 92 0, 500, 327, 173

λ = 1.2 0, 500, 478, 22 0, 500, 456, 44 0, 500, 414, 86 0, 500, 213, 287 0, 500, 63, 437

λ1, λ2 = (1.2, 2) 0, 500, 476, 24 0, 500, 447, 53 0, 500, 347, 153 0, 500, 126, 374 0, 500, 27, 473

λ = 2 0, 500, 476, 24 0, 500, 390, 110 0, 500, 193, 307 0, 500, 32, 468 0 500, 0, 500

Table 4
Performance for AR(1) innovations. Table shows no. of not detected, no. of detected, no. of synchronized,

no. of asynchronized

λτ = 0 λτ = 0.001 λτ = 0.002 λτ = 0.005 λτ = 0.01

λ = 0.5 448, 52, 17, 35 449, 51, 18, 33 449, 51, 18, 33 447, 53, 17, 36 446, 54, 15, 39

λ1, λ2 = (1.2, 0.5) 183, 317, 253, 64 181, 319, 255, 64 181, 319, 250, 69 183, 317, 230, 87 190, 310, 185, 125

λ1, λ2 = (0.5, 1.2) 15, 485, 52, 433 19, 481, 50, 431 23, 477, 44, 433 23, 477, 37, 440 23, 477. 28, 449

λ1, λ2 = (2, 0.5) 3, 497, 459, 38 3, 497, 457, 40 3, 497, 451, 46 3, 497, 419, 78 3, 497, 319, 178

λ1, λ2 = (0.5, 2) 0, 500, 46, 454 0, 500, 39, 461 0, 500, 33, 467 0, 500, 23,477 0, 500, 18, 482

λ = 1.2 0, 500, 310, 190 1, 499, 220, 279 1, 499, 192, 307 1, 499, 112, 387 0, 500, 45, 455

λ1, λ2 = (2, 1.2) 0, 500, 358, 142 0, 500, 335, 165 0, 500, 279, 221 0, 500, 127, 373 0, 500, 36, 464

λ1, λ2 = (1.2, 2) 0, 500, 193, 307 0, 500, 162, 338 0, 500, 114, 386 0, 500, 63, 437 0, 500, 26, 474

λ = 2 1, 499, 230, 269 0, 500, 226, 274 0, 500, 136, 364 0, 500, 51, 449 0, 500, 12, 488

Table 5
Performance for VAR(1) innovations. Table shows no. of not detected, no. of detected, no. of

synchronized, no. of asynchronized

λτ = 0 λτ = 0.001 λτ = 0.002 λτ = 0.005 λτ = 0.01

λ = 0.5 424, 76, 28, 48 425, 75, 26, 49 426, 74, 24, 50 426, 74, 19, 55 422, 78, 19, 59

λ1, λ2 = (1.2, 0.5) 134, 366, 260, 106 30, 470, 209, 261 30, 470, 205, 265 30, 470, 194, 276 30, 470, 169, 301

λ1, λ2 = (0.5, 1.2) 6, 494, 46, 448 33, 467, 208, 259 35, 465, 209, 256 36, 464, 200, 264 34, 466, 174, 292

λ1, λ2 = (2, 0.5) 1, 499, 361, 138 0, 500, 96, 404 0, 500, 93, 407 0, 500, 79, 421 0, 500, 57, 443

λ1, λ2 = (0.5, 2) 0, 500, 39, 461 0, 500, 92, 408 0, 500, 91, 409 0, 500, 79, 421 0, 500, 65, 435

λ = 1.2 1, 499, 207, 292 16, 484, 484, 0 16, 484, 458, 26 14, 486, 350, 136 13, 387, 236, 351

λ1, λ2 = (2, 1.2) 0, 500, 318, 182 0, 500, 342, 158 0, 500, 295, 205 0, 500, 183, 317 0, 500, 96, 404

λ1, λ2 = (1.2, 2) 0, 500, 176, 324 0, 500, 347, 153 0, 500, 309, 191 0, 500, 189, 311 34, 466, 174, 292

λ = 2 0, 500, 276, 224 0, 500, 416, 84 0, 500, 311, 189 0, 500, 143, 317 0, 500, 47, 453

distribution. Without this, usually price data show a unit root behavior and cannot be used
to fit in our setting. This differenced and logged data are usually called the log-return data.
We first plot the log-returns for both the series and then provide analysis by splitting the
time horizon in two parts. In the first part, one can see the change-points are synchronized
but in the second part the change points are not.
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8. Proofs.

Proof of Proposition 2.1. Let Si =
∑i

j=1 ei. Using a Rosenthal-type inequality
from Liu, Xiao and Wu (2013, [1]), we have

P
(

sup
m≤i≤n

|Si|/i ≥ x
)
≤

∑
blog2mc≤r≤dlog2 ne

P

(
sup

2r≤i≤2r+1−1

|Si| ≥ 2rx

)
(8.1)

≤
∑

blog2mc≤r≤dlog2 ne

P

(
sup

1≤i≤2r+1−1

|Si| ≥ 2rx

)

≤
∑

blog2mc≤r≤dlog2 ne

1

22rx2
2r+1 = O

(
1

mx2

)
.

Proof of Theorem 2.2. Without loss of generality, assume k > k0. Note that,

P( sup
k:|k−k0|>M/λ2

|Vk| ≥ |Vk0 |) = P( sup
k:|k−k0|>M/λ2

Vk + Vk0 ≤ 0) + P( sup
k:|k−k0|>M/λ2

Vk − Vk0 ≥ 0)(8.2)

For the first term, we proceed as follows. Since we assumed λ > 0, E(Vk) > 0 for all k

P( sup
k:|k−k0|>M/λ2

Vk + Vk0 ≥ 0) ≤ P( sup
k:|k−k0|>M/λ2

Vk − E(Vk) + Vk0 − E(Vk0) ≥ −E(Vk0)).

It follows from conditions 2.9 that

P (sup
k
|Xk − Yk| > λ/4)→ 0.

We finish the proof by showing that,

lim
M→∞

lim sup
n→∞

{ sup
Mλ2≤|k−k0|

(Vk − Vk0) > −c} = 0.(8.3)

We decompose Vk − Vk0 − E(Vk − Vk0) in three parts. For k0 < k ≤ k0 +G,

Vk − Vk0 − (E(Vk)− E(Vk0)) = M1,k +M2,k +M3,k

=

k−G∑
i=k0−G+1

ei − 2

k∑
i=k0+1

ei +

k+G∑
i=k0+G+1

ei.(8.4)

Since, E(Vk) − E(Vk0) = λmin(1, |k − k0|/G), we show it for the three parts from the
decomposition of Vk − Vk0 − E(Vk − Vk0) that (8.4), i.e.
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P( sup
|k−k0|>M/λ2

| 1

k − k0

∑
k0−G<i≤k−G

ei + λ/G| > − c

k − k0
) → 0,

P( sup
|k−k0|>M/λ2

| 1

k − k0

∑
k0<i≤k

ei + λ/G| > − c

k − k0
) → 0,

P( sup
|k−k0|>M/λ2

| 1

k − k0

∑
k0+G<i≤k+G

ei + λ/G| > − c

k − k0
) → 0.

Then (8.3) follows from Result 2.1.

Proof of Theorem 2.3. We will first prove that in order to find the distribution of
τ , it suffices to consider the quantity Gλ(Vk − Vk0) = Gλ((Vk − E(Vk))− (Vk0 − E(Vk0)) +
Gλ(E(Vk)− E(Vk0)) in the set {k : |k − k0| ≤Mnλ−2}.

Write k = k0 + bvλ−2c. Then Gλ(E(Vk) − E(Vk0)) = |v|. For the stochastic part, we
use the invariance principle from Berkes, Liu and Wu (2014, [5]) and the decomposition in
(8.4) to obtain, for k > k0

Vk − Vk0 = V Z
k − V Z

k0 + oP(n1/p) + cW1(t).

A similar result holds for k < k0.

Proof of Theorem ??.
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