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Analyzing periodic pattern is a topic of interest in various fields ranging from signal
processing to environment science. Processes with intrinsic periodicity are often referred in
literature as cyclostationary processes. Apart from the cyclic component, a smooth trend
is often added to the model description and whether it is of any particular parametric
form is sought from an a posteriori data. In this paper, we study inference on mean zero
cyclostationary processes in presence of a Hölder-α continuous trend and a possibly non-
stationary dependent error. We view the dependence within the error/noise process through
the framework of functional dependence measure proposed by Wu (2005, [8]). In particular,
we obtain consistent estimator of the period, periodic component and a simultaneous confi-
dence band of the unknown trend function. Our theory substantially generalizes the earlier
ones by relaxing the strong mixing conditions of the noise process and putting some mild
and easily verifiable conditions instead. It also relaxes the smoothness assumption on the
trend function. To substantiate our theoretical results, we perform some simulation studies
and conclude by applying the methods to two types of climate data.
Keywords: Trend estimation, cyclostationary process, Hölder-continuous function, Gaus-
sian approximation, Weak dependence, Nonlinear time series, Simultaneous confidence
band, Bandwidth, Bias, Variance
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1. Introduction. Natural processes have a tendency to show periodic pattern over
time. Our failure to observe or measure an exact periodic sequence is due to different
types of noises that perturb the original periodic process. Such processes commonly arise in
climatology, tele-communications and signal processing fields. Various scientific phenomena
where we measure random data showing rhythmic or seasonal variation comes under this
wide class of processes. These processes, hinting at their underlying periodical functionality,
are widely termed as cyclostationary processes. These processes form a special class of
non-stationary processes and can be considered as a bridge between the stationary and
non-stationary processes.

1.1. Brief historical background for cyclostationary process. Gudzenko (1959, [? ]),
Gladyshev (1963, [? ]), Kayatskas (1968, [? ]) etc. were notable among the first to contribute
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to the literature of cyclostationary stochastic processes. Hurd (1969, [? ]) and Gardner
(1972, [? ]) are also considered as pioneers in the research of second-order cyclostationary
processes. Boyles et al. (1983, [1]) and Gardner (1985, [? ], 1990, [? ]) discussed second-order
cyclostationary processes in reference to discrete-time and continuous-time stochastic pro-
cesses respectively. Theory for periodically correlated processes was discussed by Hurd and
Miamee (2007, [4]). Spectral analysis was discussed in Dragan (1971, [? ], Honda (1982,
[? ]) and Hurd and Koski (2004, [? ]) among others. Wavelet analysis was discussed in
Cambanis and Houdré (1995, [2]) and Touati and Pesquet (2001, [? ]). Random shifts are
discussed in Hurd (1974, [3]), Miamee (1990, [? ]) and Gardner (1994, [? ]) .

The notion of periodicity has been discussed in literature in many different forms. Out
of these, there are two widely used ones. See Gardner (1985 ,[? ]). Strict cyclostationary
process refers to the scenario where every finite dimensional joint distribution is periodic
whereas the weak one has milder assumption of periodicity of only the covariance structure.
In this paper, we will take a little different approach of decomposing the stochastic process
in different types of components and explore their estimation and asymptotic properties.
We explore mean cyclostationary stochastic processes, i.e, there exists integer θ0 > 0, so
that for all i,

E(Xi) = E(Xi+θ0),

where Xi is the observed data. We allow dependence for the random noise process Xi −
E(Xi). In the literature, dependence has been widely formulated by strong mixing condi-
tions. In this paper, we use the framework by Wu (2005, [8]) and the functional dependence
measure introduced therein. These conditions based on moment of the error process is mild
and easily verifiable compared to the strong mixing dependence. Moreover, this allows us
to form an unified theory for the error process arising from a large class of time series
models.

Often the observed data cannot be simplified into just a periodic component and a mean-
zero error process. For example, in the field of climatology, it is usual to add a trend function
in addition to the seasonal variation. Vogt and Linton (2014, [7]) discussed non-parametric
estimation of the period in the presence of a smooth trend function with two derivatives. In
this work, however, we add a Hölder-1/2 continuous function as the trend component to the
mean cyclostationary process. With the help of the sharp Gaussian approximation and the
multiplier bootstrap method by Karmakar and Wu (2017, []), we are able to do inference
for a function that is only Hölder-α continuous with α ≥ 1/2. This can be seen as a two-fold
generalization of the usual treatments in the literature of simultaneous confidence band for
models of the type

yi = µ(i/n) + ei.

We decompose the µ in trend and periodic components and construct the simultaneous
band for the trend component. Moreover, usually µ is considered to have two smooth
derivatives whereas we are relaxing that assumption to Hölder-1/2 continuity only.
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We decompose the cyclostationary process into three important components. The peri-
odic component µi has an unknown period θ0 i.e. µi = µi+θ0 . Suppose (εi)i∈Z are inde-
pendent random variables and let Fi be the σ-field generated by (εi, εi−1, ..). Our model
is

Xi,n = g(i/n) + µi + ei = g(i/n) + µi + +Hi(Fi),(1.1)

where Hi are functions such that ei is well-defined random variable. We assume the trend
function g has [0, 1] as its support. This is done for meaningful asymptotics in inference of
g. For example, if our n is large, we have information available in a more dense set in [0,1]
to allow us explore local properties of g. Moreover, to make the periodic component and
the trend component identifiable, we impose the condition

∫ 1
0 g(u)du = 0.

One can see our observed data considered in (1.1) comes from a triangular array Xi,n

suggesting that the dynamics of the process change based on the sample size. Later, in
Section 5, we allow this to grow as an increasing function of n. Little has been known in
the literature of a cyclostationary process where the period can also grow with the size of
the data. In this paper, we focus on process with fixed periods and thus drop the second
suffix of Xi,n henceforth. As a possible variant, we also provide similar theoretical results
for the case of unbounded period in Section 5.

1.2. Organization. The rest of the paper is organized as follows. We first introduce
the functional dependence measure to describe the structure of dependence within the
error process. In Section 3, we describe our methods to estimate the period, the periodic
components and the trend function. The next Section 4 is devoted to the asymptotic results
related to these estimators. Section 5 discusses two variants, first the multivariate version
of our model inspired by different climate data and secondly the scenario where the period
can grow with sample size. We discuss some simulation results in Section 6 and applications
to climate data of Central England in Section 7. All the proofs are postponed to Section 8.

2. Our framework. We introduce some notation. For a matrix A = (aij) we define
it Frobenius norm norm as |A| = (

∑
a2
ij)

1/2. For a random vector Y , write Y ∈ Lp, p > 0,

if ‖Y ‖p := [E(|Y |p)]1/p <∞. For L2 norm write ‖.‖ = ‖.‖2. Define the projection operator
Pi by

PiY = E(Y |Fi)− E(Y |Fi−1), Y ∈ L1.(2.1)

Throughout the text, bxc refers to the greatest integer less than or equal to x. Cp would
refer to a constant that depends only on p but could take different values on different
occurrences. Np(µ,Σ) means p-variate normal distribution with mean µ and covariance
matrix Σ. For a random vector Y , V ar(Y ) stands for the variance-covariance matrix of Y .
For a positive semi-definite matrix A, A1/2 refers to the usual Grammian square root of
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A. If A = QDQT is the spectral decomposition of the matrix A then A1/2 = QD1/2AT .
If two quantities A and B satisfy A <= cB for some c < ∞ then we write A � B or
B � A. If both A � B and B � A then we write A � B. We use the same symbols if
such relationships holds for large n.

2.1. Dependence structure. We allow the error/noise process ei to be a very general non-
stationary and possibly dependent process. The dependence can happen in many different
ways and hence it is important to put a structure to it.

ei = Hi(Fi) = Hi(εi, εi−1, . . .),(2.2)

where Hi are functions such that ei are well-defined random variables. This formulation
allows us to capture a huge class of well-known time-series processes. Strong mixing con-
ditions has been extensively used in literature to formulate dependence but it suffers from
easy verifiability. Wu(2005, [8]) suggested the idea of coupling to explain the dependence
between the noise process ei. We extend it to the non-stationary case in the following way

δj,r = sup
i
‖ei − ei,(i−j)‖r = sup

i
‖Hi(Fi)−Hi(Fi,(i−j)‖r,(2.3)

where Fi,k is the coupled version of Fi with ek in Fi replaced by an i.i.d copy e′k,

Fi,k = (εi, εi−1, · · · , ε′k, εk−1, · · · )(2.4)

and ei,{i−j} = Hi(Fi,{i−j}). Clearly, Fi,k = Fi is k > i. As Wu(2005, [8]) suggests, ‖Hi(Fi)−
Hi(Fi,(i−j))‖r measures the dependence of ei on ei−j . δj,r measures for the uniform j lag
dependence in terms of rth moment. Define the cumulative sum Θi,p as

∑∞
j=i δj,p.

3. Methods. The usual periodogram technique to estimate the period fails here due
to the presence of dependent noise and the trend function. Our estimation method is
sequential. The first and key step of our estimation procedure relies on a penalized least-
square based method to estimate the unknown period. Using this estimate, one can get
estimated periodic components. Plugging in the periodic component, we obtain the estimate
of the unknown trend function from the residuals. Lastly, a simultaneous confidence band
is obtained using invariance principle and extreme value theory for Gaussian processes.

3.1. Known period-length, Oracle estimator. Consider a model without the g compo-
nent and independent Gaussian error e. Suppose we know that the true period is θ. The
maximum likelihood estimator of µi for 1 ≤ i ≤ θ is is

µ̂i = X̄i,θ =
1

|Aθ,iθ |
∑
j∈iθ

Xj ,(3.1)
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Fig 1. Objective function

where iθ = i mod θ and

Aθ,t = {i : iθ = t},(3.2)

for 1 ≤ t ≤ θ. Intuitively speaking, if the dependence decays fast enough then this estimator
should work well even for the dependent errors. Also, since we have some well-established
Gaussian approximation results in the literature if the error process is non-Gaussian we
can still use something that works for a Gaussian process. This motivates us to estimate
the ith periodic component using the same estimator as in 3.1 In fact, we can use the same
estimator in the presence of the trend g. As we have assumed

∫ 1
0 g(u)du = 0. so the effect

of g balances out.

3.2. Regularization parameter. We compare some small candidate θ. Say we have n
observations X1, X2, · · ·Xn. For this given sample size n, we fix an upper bound Un to our
search region for true period θ0.

For each integers 1 ≤ θ ≤ Un compute

Q(θ) =
∑
i

(Xi − X̄i,θ)
2.(3.3)

We can minimize Q(θ) over the choices of θ but this clearly chooses some minimizer that
is a multiple of the true period.
We first show some results based on the famous Central England data , where we have
seasonal average of temperature from 1659 to 2015. Even if we work without detrending
the data one can clearly see, that whenever our candidate θ assumes a multiple of 4, the
objective function takes a very small value compared to when it is not.

To circumvent this difficulty, we penalize the likelihood in the following manner

Q(θ, λn) = Q(θ) + λnθ.(3.4)
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Choosing the proper rate of the penalty parameter λn is a tricky question. We cannot
choose it to be too big to end up estimating true θ0 as 1. We cannot choose it too small
as then we end up choosing some multiples of the true period as our estimator. We discuss
the appropriate rate of λn that enables us to consistently estimate the period length.

3.3. Estimating the periodic components. We are using the estimate θ̂ to obtain the
estimates for the mean of Yi = g(i/n) + ei.
Our estimates for the periodic components are

ˆm(i) =
1

|Aθ̂,iθ̂ |
∑

j∈Aθ̂,i
θ̂

Xj ,(3.5)

which is in other words the average of all the Xj such that θ̂ divides i− j.

3.4. Estimating the trend function. Recall the model in (1.1). This model is similar to
the popular sequence model in literature.

yi = µ(i/n) + ei.(3.6)

There is a huge amount of literature where the error process in the above model is assumed
to have i.i.d. Gaussian distribution. For a dependent error process there have been previous
works by Wu and Zhou(2007, [9]) but that considers only functions µ with two smooth
derivatives. In order to accommodate functions that are only Hölder-α continuous, we need
much sharper Gaussian approximation than the one used in ([9]). With the help of the main
theorem in Karmakar, Wu(2016, []) we can do inference about the above model. This was
shown in ([]) using a kernel based approach. Suppose K is a symmetric kernel with bounded
variation. We assume the support of the kernel to be [-1,1],

∫ 1
−1K(x)dx = 1,

∫ 1
−1K(x)dx =

φ

µ̂(t) =
1

nbn

n∑
i=1

K

(
i/n− t
nbn

)
yi(3.7)

However, a similar estimate for g(t) does not work for this paper as our model

yi = g(i/n) +mi + ei,(3.8)

involves the periodic sequence m. We instead use

ĝ(t) =
1

nbn

n∑
i=1

K

(
i/n− t
nbn

)
(yi − m̂i),(3.9)

where m̂i = ȳi,θ0 is the estimator of the periodic sequence m. Under very mild conditions
on K, we obtain the simultaneous confidence band for the function g(t) using the Gaussian
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approximation result in Karmakar and Wu ( 2016, []). We are using the Pristley-Chao
estimate instead of the standard Nadaraya Watson estimate although both the estimates
behave similarly.
A significant contribution of our work is to provide a simultaneous confidence band (SCB)
of the unknown trend function g. This improves upon the pointwise confidence band of
the trend function shown in [7]. We also improve upon the usual smoothness assumption
of the trend function g. There is a huge amount of literature that deals with function
estimation assuming the related function possess two smooth derivatives. One of the biggest
advantage of such assumption is that it facilitates taylor series expansion and hence makes
the inference easier.
In our work, we only assume that the trend function g is Hölder-α continuous for α ≤ 1/2.
Intuitively speaking, we are allowing our trend function to have some abrupt changes in
a continuous fashion. This type of functions can often be very useful in econometrics,
finances and related fields. using the sharp Gaussian approximation obtained in Karmakar,
Wu (2017, []) and the extreme value theory in Lindgren (1980, [5]), we obtain the 95 %
SCB of the trend function. We discuss our result in Theorem 4.4.
Even though the asymptotic coverage of the SCB reported in Theorem 4.4 is 95 %, because
of the logarithmic convergence one needs a huge n to achieve a coverage around 95 %. To
circumvent such difficulty we propose a bootstrap based method to easily obtain such SCB.
Theorem 4.5 discusses that result.

4. Asymptotic Results.

4.1. Assumptions. General Assumptions

• The error process ei is in Lp where p ≥ 4. [7] needed a finite moment condition for
p > 4
• Short range dependency of the error process:

Θ0,p =

∞∑
i=0

δi,p <∞.(4.1)

• In order to be able to identify the trend function g, we need to put the condition∫ 1
0 g(u)du = 0. We also assume that g is Hölder-α continuous where α ≥ 1/2.

Assumption for period estimation For our proofs, we introduce new sequence νn diverg-
ing to∞. We assume polynomial rate for all sequences and study the relationship between
the exponent to facilitate asymptotic inference. We emphasize that such restrictive as-
sumption of polynomially varying sequence can be relaxed. Assume Un � nδ1 , λn � nδ2

and νn � nδ3 , we need the following conditions on δ1, δ2 and δ3. Recall that, p > 4, g is
Hölder-α continuous with 1/2 ≤ α < 1.
We summarize the assumptions on these parameters in the following conditions
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B.1)
Un � nδ1 , λn � nδ2 and νn � nδ3 ,

B.2)
0 < δ1 < 2α/(3 + 2α),

B.3)
(2/p+ 1/2)δ1 < δ2 < 1− δ1 and

B.4)
δ1(1 + α) + 1/2− α < δ3 < (1− δ1)/2.

If α = 1/2

4.2. Asymptotics for period estimation.

Theorem 4.1. Under assumptions (B.1-B.4), we have,

θ̂ − θ0
P→ 0.(4.2)

4.3. Asymptotics for periodic component estimation.

Theorem 4.2. Uniform Consistency

max
1≤i≤n

|m̂(i)−m(i)| = Op(n
−α).(4.3)

4.4. Asymptotics for trend estimation. Before we state the main result of this section,
we first state a Gaussian approximation result by Karmakar and Wu (2017 ). This is an
involved result with potentially many applications. We use this to obtain the simultaneous
confidence band. Apart from the general assumptions in (), for this part we assume the
following for the error process (ei),

(4.A) Upper bound on the functional dependence measure:

Θi,p = O(i−χ), χ > 0,(4.4)

where larger χ denotes weaker dependence.
(4.B) Uniform integrability: ei is uniformly integrable, namely

sup
i≥1

E(|ei|p|1|ei|≥u)→ 0 as u→∞.(4.5)

(4.C) Lower bound on variance of incremental process: There exists a constant λ∗ > 0
such that, for all t, l ≥ 1 and any unit vector v

inf
t
ρ∗(V ar(

t+l∑
i=t+1

ei)) ≥ λ∗l.(4.6)
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Result 4.3. Under the assumptions (4.A)-(4.C), if,

χ > χ0 =
p2 − 4 + (p− 2)

√
p2 + 20p+ 4

8p
(4.7)

then there exists a probability space (Ωc, Ac, Pc) on which we can define random vectors Xc
i

with the partial sum process Scn =
∑n

i=1X
c
i and a Gaussian process Gci with independent

increments such that Sci
D
= (Si)i≤n and

max
i≤n
|Sci −Gci | = oP (n1/p), in (Ωc, Ac, Pc),(4.8)

where Gci =
∑i

t=1 Y
c
t with Y c

t being independent Gaussian random variables with mean 0.

First we state a result for constructing simultaneous confidence band for a special class of
non-stationary error process, namely locally stationary process using a Gaussian approx-
imation result obtained by Wu and Zhou (2011, [10]) for the case 2 < p < 4. Assume
ei = H(ti,Fi), where Hi satisfies the following

sup
0≤t<s≤1

‖H(t,Fi)−H(s,Fi)‖
|t− s|

≤ C.(4.9)

for some C < 1. Let

Σe(t) = (V ar(Di(t)))
1/2 = (V ar(

∞∑
j=i

PiH(t,Fj)))1/2.

Using Σe(t), we state the following theorem for constructing the simultaneous confidence
band of µ(t).

Theorem 4.4. Assume the kernel function K is of bounded variation and bn satisfy

√
log(1/bn)

(
n1/p

√
nbn

+ bn log n+ n1/2b
α+ 1

2
n + b−1/2

n n−1/2

)
→ 0.(4.10)

Then we have

P (

√
nbn
φ0

supt∈τ |Σe(t)
−1{ĝ(t)− g(t)}| −B(r) ≤ u√

2 log r
)→ exp{−2exp(−u)},(4.11)

where r = 1/bn, τ = [bn, 1− bn], and

B(r) =
√

2 log(r) +
log(CK) + (d/2− 1/2) log(log r)− log(2)√

2 log(r)
(4.12)
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with

CK =
(
∫ 1
−1 |K

′(u)|2du)1/2

γs/2
.

Remark:

• By Theorem 4.4, if Σ̂e(t) is the uniformly consistent estimate of Σe(t) then the 100(1−
α)% confidence interval for g(t)is

ĝ(t) +

√
φ0

nbn
[BK(r)− log(log((1− α)−1/2))√

2 log(1/bn)
]Σ̂e(t)Bd(4.13)

where Bd is he d-dimensional unit ball.
• If we assume bn � n−δ then by (4.10), we need

1

2
< (α+

1

2
)δ,

2

p
< (1− δ), 0 < δ < 1.(4.14)

One can see if α = 1/2, we need p > 4 but unfortunately, such a result is not available. As
a remedy, the improved Gaussian approximation Result 4.3 valid for all p > 4 can be used.
However, we do not have a similar corollary attached to the main Gaussian approximation
result for a locally stationary process. This motivates us to solve this problem in its most
generality by constructing a result similar to Theorem 4.4 for a general non-stationary
error process. Our original Gaussian approximation in Theorem 4.1 says

max
i≤n
|Si −

[i/2k0m]∑
j=1

Σ
1/2
j Zj | = op(n

1/p),(4.15)

where Σj = V ar(Bj) is an estimate of the variance of the block X2k0m(j−1)+1+· · ·+X2k0mj .
We introduce a smooth version to facilitate using properties of

∑
Zj .

Σ(t) =

{∑
2ik0m/n≤t Σi if t = 2jk0m/n

αΣj−1 + (1− α)Σj if 2(j − 1)k)m/n < t < 2jk0m/n.
(4.16)

It can be easily shown that,

sup
0<t≤1

|Σ(t)−
∑

2ik0m/n≤t

Σi| = op(n
2/p),(4.17)

Thus we can use results like Theorem 4.4 to exploit the theory for extreme value Gaussian
processes.
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4.5. Bootstrap SCB for known covariance of the error process. Although we have a
nice theoretical result Theorem 4.4 and its analogue for a general non-stationary error, the
convergence result is still logarithmic, and thus the simultaneous band does not have the
correct coverage in a practical sense unless n is huge. We propose a bootstrap technique to
circumvent this difficulty. Note that,

µbn(t)− µ(t) =
1

nbn

n∑
i=1

K

(
i/n− t
bn

)
ei +Biasn,(4.18)

where

Biasn =
1

nbn

n∑
i=1

K

(
i/n− t
bn

)
(µ(i/n)− µ(t)) + µ(t){ 1

nbn

n∑
i=1

K

(
i/n− t
bn

)
− 1}.

Also, √
nbnBiasn = O(

√
nbα+1/2

n ).(4.19)

We will use our Gaussian block multiplier to create the quantiles of

(nbn)−1/2
n∑
i=1

K ((i/n− t)/nbn) ei.

Assuming K is of bounded variation, by summation-by-parts formula we have,

max
1≤i≤n

| 1

nbn

n∑
i=1

K

(
i/n− t
bn

)
ei −

1

nbn

n∑
i=1

K

(
i/n− t
bn

)
gi| = oP (n1/p)O

(
1

nbn

)
,(4.20)

where partial sums of the Gaussian random variables gi form the process Gci as described
in (4.8). Define the Gaussian analogue of m̂u(t) process as following

µZ(t) =
1

nbn

n∑
i=1

K

(
i/n− t
bn

)
gi.

From (4.19) and (4.20), we create the following condition on bn,

n1/p

√
nbn

+
√
nbα+1/2

n = o(1).(4.21)

Under the above condition on the bandwidth bn, we have the following theorem for vali-
dating our algorithm.
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Theorem 4.5. Recall µZ(t) from (??) where g1, . . . , gn satisfy (4.8). Then

sup
t
|
√
nbn(µbn(t)− µ(t)− µZ(t))| = oP (1).(4.22)

Proof. Trivially follows from (4.21) and (4.20).

Assuming we can create Gaussian process (Gci ) as described in (4.8), we use the following
bootstrap algorithm.

Algorithm for simulation

• For i = 1, 2, 10000 obtain

sup
t∈(bn,1−bn)

|µZ1(t)|, · · · , sup
t∈(bn,1−bn)

|µZ10000(t)|.

• Get u, the 100(1− α)% quantiles of the empirical process supt∈(bn,1−bn) |µZ
i
(t)|.

• The SCB for µ(t) using (4.20) is µbn(t)− u, µbn(t) + u.

4.6. Estimation of covariance:. In reality, we need to propose some method to simulate
g1, . . . gn satisfying (4.8). Define, for a suitably chosen sequence m → ∞ (See Karmakar
and Wu (2017, []) for more details)

Wl =
∑

|i−j|≤m,1≤i,j≤l

eie
T
j .(4.23)

Choose another sequence M such that m/M → 0. Define ∆F = WMf −WMf−M for a
suitably

Proposition 4.6. Under the conditions of Theorem 4.1, ∆f is positive definite with
probability going to 1.

Let
Wl =

∑
1≤i<j≤l

I(|i− j| < m)eie
T
j .

Define,

G∆
i =

[i/M ]∑
f=1

∆
1/2
f Zf ,

where ∆f = WMf −WMf−M and Zf are i.i.d. d-dimensional standard normal variables
independent of (Xi). Note that, here ∆f is also a random variable.
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4.7. Validity for Bootstrap. First, we prove a deterministic version of the main theorem
of this section.

Theorem 4.7. Define the process (GEi ) as follows

GEi =

[i/M ]∑
f=1

(E(∆f ))1/2Zf .(4.24)

Then we have,

max
i≤n
|Grawi −GEi | = oP (n1/2−(1−2/p)χ/(1+χ)).(4.25)

Comment 4.8. From (4.25), we achieve the optimal n1/p bound if χ > 1. Also note
that for p ≥ 4, χ0 ≥ 1.

Next we discuss the approximating bound for the process G∗i , constructed from the covari-
ance matrix estimate from the data. The following well-known result for Gaussian process
play a key-role in proving efficiency of our bootstrap procedure.
We have the following theorem for the validity of the bootstrap procedure. Let Zi, i ∈ Z,
be i.i.d. standard normal random variables that are independent of (Xi); let

G∗i =

i/M∑
f=1

∆
1/2
f Zf .(4.26)

Theorem 4.9.

max
i≤n
|G∆

i −Grawi | = oP ∗((nm)1/4(log n)1/2),(4.27)

where P ∗ refers to the conditional probability given the data {Xi}.

The ei’s are unobserved and their covariance structure is unknown. We propose an
estimate of G∗i with ei therein replaced by êi = yi − µ̂(i/n) − m̂i. To show the validity of
such a replacement, we need to bound the covariance estimate arising from E(eie

T
j ) and

that from êiê
T
j .

5. Variants.
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5.1. Unbounded Period. In this section, we try to further generalize to the case where
the true period can be an increasing function of sample size n. The observed data comes
from the triangular array

Xi,n = g(i/n) +mi,n + ei,

where mi,n is a periodic sequence with period θ0,n → ∞ as n grows. Recall in the case,
θ0,n = θ0 for all n we required the upper bound of the search region to follow Un �

√
n. Due

to the fact that θ0,n can grow too, we need the search region to be shorter, i.e Unθ
2
0,n � n.

Along with this, we need the following condition on ζs (cf 8.4)/

Either ζs = 0 or |ζs| > c where c is a positive number that does not depend on n.

A careful check of our proofs reveal that these small modification in the rates of the search
region and the property of the periodic sequence allows us to extend our derivations to the
scenario where the period can grow with the sample size.

5.2. Multiple Time series. In this subsection, we discuss a possible extension of our
results to a multivariate set-up. As will be described in Section 7, we want to see if the
temporal effect are similar for two different co-ordinates of the datasets. Thus it is natural
to explore the possibility of extending our results to a multivariate set-up. Consider the
following model

yi = g(i/n) + mi + ei = g(i/n) + mi + Hi(εi, εi−1, . . .),

where yi, mi and ei are in Rd and g is a function from [0, 1] to Rd. Since the Gaussian
approximation result by Karmakar and Wu (2017, []) accommodates multiple time-series,
our proofs will go through with some minor and obvious modifications.

6. Simulation Study.

6.1. Choosing penalization parameter for finite sample. In finite sample, choosing the
penalization parameter λn is very crucial. In Theorem 4.1 we discuss how λn can vary with
the sample size but in real life scenario as n is finite, we have to be really careful in choosing
this parameter as it affects the estimation of the period length crucially.
Let us consider a simplified model without the trend function. Towards a possible suggestion
for the suitable penalty parameter we have the following result.

Proposition 6.1. Assume ei are i.i.d. with mean 0 and variance σ2. Consider the
model

Xi = mi + ei.

Then,

1

k − 1
E(XT (I −Πkθ0)X −XT (I −Πθ0)X) = σ2θ0.(6.1)
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The proof follows from straight-forward algebra. See [7] for details. Next, we first prove
that this result is true asymptotically even after we incorporate the trend function.

Proposition 6.2. Assume ei are i.i.d. with mean 0 and variance σ2. Consider the
model

Xi = g(i/n) +mi + ei.

Then,

1

k − 1
E(XT (I −Πkθ0)X −XT (I −Πθ0)X) = σ2θ0.(6.2)

Next we incorporate the serial dependence of stationary errors. We assume the coupling
framework as discussed in Section 3 and using the properties of the functional dependence
measure we arrive at our next theorem.

Proposition 6.3. Let us assume

Xi = g(i/n) +mi + ei,

where ei admits the causal representation as (2.2) with Hi = H for all i. Then,

1

k − 1
E(XT (I −Πkθ0)X −XT (I −Πθ0)X)− θ0σ

2 → 0(6.3)

where σ2 is the long run covariance of the non-stationary error process.

For non-stationary error process ei however, there is no such notion of a long run covariance.
However, E(S2

n)/n can be used in place of σ2 as a reasonable estimate. Inspired from results
of the type (6.1), (6.2) and (6.3), [7] suggests plugging in a sequence σ̂2κn as λn where κn
is a slowly diverging sequence and σ̂2 is obtained from the following algorithm.

• First estimate θ̂. With probability going to 1 it is a multiple of the true θ0.
• Using this obtain ĝ and m̂(i) .
• Obtain ε̂i = Xi − ĝ(i/n)− m̂(i).
• Obtain σ̂2 = Sample Var(ε̂).

It is possible to choose λn in a different way that also ensures consistent estimation of θ0.
However, to maintain simplicity we stick to this above algorithm.

6.2. Estimation of periodic and trend components. To see the efficacy of our period
estimation method, we choose three values for n, three corresponding values for θ0, the
true period and three values for ρ determining the amount of dependence in the error
process. Our results based on 1000 iterations are shown in the following three figures.
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Fig 2. Objective function

Fig 3. Objective function
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Fig 4. Objective function

Remark

Remark

We report the empirical asymptotic coverage probability based on 10000 iterations.

Table 1
Coverage probability; 5 cycles

n = 100 n = 350 n = 1000

ρ = 0.15

ρ = 0.45

ρ = 0.75

Remark

7. Applications.
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Fig 5. Objective function

Table 2
Coverage probability; 3 cycles

n = 100 n = 350 n = 1000

ρ = 0.15

ρ = 0.45

ρ = 0.75

Table 3
Coverage probability; 2 cycles

n = 100 n = 350 n = 1000

ρ = 0.15

ρ = 0.45

ρ = 0.75

7.1. Temperature data. We use temperature data from central England. The data com-
prises of 357 years record of seasonal averages of the four season of the years. An obvious
period for this data is 4. We tested our methods to verify its consistency. One can see
in Fig 1, we have spikes for every multiple of 4. Once we choose proper penalty, we could
estimate the true period to be 4. However, in this section, we focus on the interesting study
of periodic nature across years. It has been known in the literature of climatology, that the
global temperature shows a periodic pattern every 60 years. This is popularly referred as
60-year circle.
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Fig 6. Objective function

Since, we have data for four seasons, we choose to fit five different models with the fifth one
using the average temperature data for each year. Our estimated periods for the central
England are around 65-70 for the seasons and for the averaged out temperature of the
years. One can see from Figure 4, our simultaneous confidence band for the average trend
is smaller than the individual trends. Also, from figure 4 one can see the winter temperature
is more fluctuating than the other three seasons.

Our sample size is n = 357. We use technique discussed in Section 7 to choose λn. Un,
the upper bound for search region is taken to be 100. We chose a bandwidth of 0.1. Slight
deviations from this bandwidth also gave similar results.

Figure 7 shows the penalized loss function in (3.4) for the average temperature across
years and one can see there is a sharp drop around 70.

In Figure 4, we show that the original data and the data after removing the periodic
component look similar however their range is different. This is intuitive since the periodic
component is average of the observations at certain distance and are of similar magnitude
of the original data.
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Fig 7. Objective function

Fig 8. Objective function
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Fig 9. Objective function

The estimated trend along with the simultaneous confidence band is shown in the fol-
lowing Figure.

One can see the bands are wider for individual seasons. They all show a steep increase
from the beginning of the last century probably owing to the world war.

Sample autocorrelation plot of the series after removing periodic and the trend compo-
nent is shown below. It does not indicate strong dependence over time.

7.2. Precipitation data.

7.3. Temperature and Precipitation data:-Joint distribution. In this subsection, we pro-
vide an analysis for the joint distribution of the temperature and the precipitation data in
conjunction the variant discussed in

7.4. ssc:multiple. .
Interesting remarks.
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Fig 10. Objective function

Fig 11. Objective function
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8. Proofs. The basic steps of the proof of Theorem 1 is closely related to a similar
theorem in [7]. However, we do not use the strong mixing properties for our derivations
and depend on the dependence framework discussed in Section 2. We provide a detailed
proof for the sake of completeness. The proof of Theorem 2 is closely related to Karmakar
and Wu (2017, []) however the authors therein did not consider the presence of a trend
function and hence our proof is considerably more involved. Before we present the proof of
the theorem, for the convenience of the readers we mention some small results we will use
throughout. Recall the definition of |Aθ,iθ | from equation 3.2. It is equal to bnθ c or bnθ c+ 1
depending on whether iθ < nθ or not. Note that, we can write

Q(θ, λn) = XT (I −Πθ)X + λnθ,(8.1)

where (Πθ)i,j = 0 if θ does not divide i − j. For pairs (i, j) such that θ divides i − j,
(Πθ)i,j = |Aθ,iθ |−1 � θ/n = O(Un/n). The term Q(θ0, λn) − Q(θ, λn) involves the matrix
A = Πθ −Πθ0 . Using the periodic nature of the vector m, it is possible to simplify some of
the related terms. Consider the expression

Am = (Πθ −Πθ0)m,(8.2)

since m has period θ0, (I −Πθ0)m = 0. Hence

Am = (I −Πθ)m = (γ1, γ2, ..γθ∗, γ1, γ2, ...γθ∗, ..)
T ,(8.3)

where θ∗ is the lcm of θ and θ0 and

γs = m(s)− 1

|Asθ |

|Asθ |∑
k=1

m((k −−1)θ + sθ).

Write γs = ζs +Rs where

ζs = m(s)− 1

θ0

θ0∑
k=1

m((k − 1)θ + sθ).(8.4)

Observe that, (also see [7])

|Rs| ≤
Cθ0

|Asθ |
.(8.5)

We first prove all the results for the case with constant period and then in the next
subsection we discuss small tweaks needed to incorporate the case for the unbounded
period.
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Proof. of Theorem 4.1
Suppose the true period is θ0. We show that

P (θ̂ 6= θ0) = small,(8.6)

which is equivalent to show∑
θ

P (XT (Πθ0 −Πθ)X ≤ λ′(θ0 − θ))→ 0.(8.7)

Recall that
Xi = g(i/n) +mi + ei.

For convenience, henceforth, we call g(i/n) as gi and Πθ0 − Πθ as a matrix A. Note that
we can write

XTAX = gTAg +mTAm+ eTAe+ 2gTAe+ 2gTAm+ 2mTAe,(8.8)

where X = (X1, X2, · · ·Xn)T and g,m, e bear similar meaning. Since m has period θ0 i.e
m(s+ θ0) = m(s) for all s. Define the following quantities,

See = eTAe, Sgg = gTAg, Smm = mTAm, Smg = gTAm, Seg = gTAe, Sem = mTAe.

Proposition 8.1. We have the following upper bound on E(See) for every 1 ≤ θ ≤ Un,

|E(See)| < 4Θ2
0,2Un.

Proof. We will show E(XTΠθX) ≤ 2Θ0,2Un for all 1 ≤ θ ≤ Un. Moreover, we assume
θ is a factor of n.

E(XTΠθX) =
∑∑

(Πθ)ijE(eiej) =
∑
i

∑
j∈Aθ,iθ

θ

n
ζ2(|i− j|) ≤ 2Un

∞∑
k=0

ζ2(k) ≤ 2UnΘ2
0,2,

where ζ2(k) =
∑∞

i=0 δi,2δi+k,2 .

Proposition 8.2. For any 1 ≤ θ ≤ Un, we have,

Sgg = O(U2α
n n1−2α).(8.9)
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Proof. We prove that gTΠθg = O(U2α
n n1−2α). Using Lemma 8.6 we have,

gTΠθg =
∑
i

∑
j:θ divides i−j

1

Aθ,iθ
gigj =

θ∑
s=1

1

|Aθ,sθ |

Aθ,sθ∑
k=1

g

(
(k − 1)θ + s

n

)2

(8.10)

≤ Cθ

|Aθ,sθ |
(|Aθ,sθ |)

2−2α � Cθ(n/θ)1−2α = O(U2α
n n1−2α).

Proposition 8.3. ∑
θ 6=θ0

P (|Seg | > νn) = O

(
U2+2α
n n1−2α

ν2
n

)
.(8.11)

Proof. It suffices to prove E(|Seg |2) = O(U1+2α
n n1−2α). Since the matrix Πθ is idempo-

tent for any θ,

E(|Seg |2) ≤ 2(E((gTΠθe)
2 + E((gTΠθ0e)

2)(8.12)

≤ 2gTΠθgE(eTΠθe) + 2gTΠθ0gE(eTΠθ0e).

The result then follows from Proposition 8.1 and Proposition 8.2.

We are now ready to prove Theorem 4.1.

Proof. of Theorem 4.1 We separate out the following two cases.

• case A: θ is a multiple of θ0

• case B: θ is not a multiple of θ0

In each of the above cases, we show that,∑
θ 6=θ0,θ≤Un

P (XTAX ≤ λn(θ0 − θ)) = o(1).

Recall the definition of γs, ζs and Rs,t. We have the following Proposition about ζs.

Proposition 8.4. Let θ∗ be the lcm of θ and θ0. For case B, there exists an index
s ∈ {1, 2, ...θ∗} with ζs 6= 0. Moreover, we can get a small constant c∗ > 0 such that
|ζs| ≥ c∗ whenever ζs > 0. For case A, ζs = 0 for all s
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Proof. The proof for claim corresponding to case A is trivial as in this case γs = 0 for
all s. case B. Let θ∗ be the lcm of θ and θ0. We proceed through contradiction. Suppose
ζs = 0 for all s ∈ {1, 2, · · · θ∗}. Then

1

θ0

θ0∑
k=1

m((k − 1)θ + sθ) =
1

θ0

θ0∑
k=1

m((k − 1)θ + (s+ rθ)θ).(8.13)

Hence, as we have assumed ζs = ζs+rθ = 0 we get that m(s) = m(s + rθ). for all s and
r. As θ is not a multiple of θ0 this would imply θθ0 is a period of the sequence {m(s)}s∈Z
which clearly contradicts the fact that θ0 is the smallest true period of the same.
Now, as we are assuming θ0 to remain constant over different choices of sample size T ,
note that 1

θ0

∑θ0
k=1m((k−1)θ+sθ) is average of θ0 many different elements of the sequence

{m(s)}s∈Z . Hence it can only take finitely many possible values. Hence ζs can also take
only finite number of possible values. So the claim is proved.

Define d to be the number of ζs 6= 0. Also denote S as the set of s, 1 ≤ s ≤ θ∗ for which
ζs 6= 0.

Case A For case A, Since θ is a multiple of θ0,λn(θ0 − θ) is always negative. Also,
Smg = SmY = Smm = 0 since

Am = (Πθ0 −Πθ)m = (I −Πθ)m− (I −Πθ0)m = 0.

Using the assumptions in (4.1)

P (Q(θ, λn) ≤ Q(θ0, λn))(8.14)

= P (See ≤ −2Seg − Sgg + λn(θ0 − θ)
≤ P (See ≤ νn +MU2α

n n1−2α + λn(θ0 − θ)) + λn(θ0 − θ), |Seg | ≤ νn/2) + P (|Seg | > νn/2)

≤ P (See ≤ νn +MU2α
n n1−2α + λn(θ0 − θ)) +O

(
U1+2α
n n1−2α

ν2
n

)
≤ P (See ≤ −Cλn) +O

(
U1+2α
n n1−2α

ν2
n

)
,

for some C > 0. Now, since by Proposition 8.1 |E(See)| = O(Un) = o(λn) by our assumption
δ2 > δ1 in (4.1). We apply the Lemma 8 from Xiao and Wu (2011, [11]) again to deduce
that the above probability is small.

UnP (See ≤ −Cλn) ≤ UnP (|See − E(See)| ≤ −C1λn) +O

(
U2+2α
n n1−2α

ν2
n

)
(8.15)

= O(U1+p/4
n λ−p/2n n−p/4) +O(

U2+2α
n n1−2α

ν2
n

) = o(1),
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by our assumptions on λn, µn and νn.
Case B We have the following proposition for case B.

Proposition 8.5. We can choose n sufficiently large such that we have the following
results for case B.

Smm & n/Un, |Smg | . Uαn n
1−α, P (|Sem| > νn

√
dn

θ
) ≤ Cν−2

n .(8.16)

Proof. Note that Since we assume θ0 to be constant over n,

θ0 ≤ θ∗ =
θθ0

gcd(θ, θ0))
≤ θθ0.(8.17)

Also,
|γs − ζs| = |Rs| ≤ CUn/n,

for all s. Thus

Smm = mT (I −Πθ)m =
∑n

s=1 γ
2
s >

n
θ∗
∑

s∈S γ
2
s & dn

θ∗ .(8.18)

from (8.17). The second inequality is obtained using Lemma 8.6, (8.17) and

|gT (I −Πθ)m| = |
θ∗∑
s=1

γs|Aθ∗,sθ∗ |

(
1

|Aθ∗,sθ∗ |
∑
k

g

(
s+ (k − 1)θ

n

))
| . d(n/θ∗)1−α.

For the third one, note that,Sem = eT (I − Πθ)m =
∑

s γses. We use the same result from
Liu and Wu (2010, [6]) again to deduce that,

P (|Sem| > Cνn

√
dn

θ∗
) ≤ ‖Sem‖2

Cν2
ndn

θ∗ =

∑
γ2
sθ
∗

Cν2
ndn

≤ M

ν2
n

,(8.19)

for a large enough M .

Using the assumptions in (4.1), Proposition 8.5, Proposition 8.1 and derivation similar to
(8.14) imply, for case B,

P (Q(θ, λn) ≤ Q(θ0, λn)) ≤ P (See ≤ −Cn/Un) +
C ′

ν2
n

≤ P (See − E(See) ≤ −Cn/Un) +
C ′

ν2
n

,

for some constants C,C ′ which does not depend on n.. We apply Lemma 8 from Xiao and
Wu (2011, [11]) to deduce that∑

θ 6=θ0

P (See − E(See) ≤ −C
n

Un
) ≤ Upn

np
‖See − E(See)‖pp = U1+3p/4

n n−p/2 = o(1),(8.20)

by our assumptions in (4.1). This concludes the proof of Theorem 4.1.
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8.1. Proof of Theorem 4.2. Suppose m̃ denotes the estimate of the sequence {m(s)}s∈Z
when the true period θ0 is known.

m̃(i) =
1

|Aθ0 , iθ0 |
∑

j∈Aθ0,iθ0

Xj(8.21)

and m̃(s+ kθ0) = m̃(s) for all s = 1, 2, ..., θ0 and for all k ∈ N. Write

√
n(m̂(t)−m(t)) =

√
n(m̂(t)− m̃(t)) +

√
n(m̃(t)−m(t)).(8.22)

For any δ > 0,

P (|
√
n(m̂(t)− m̃(t))| > δ) ≤ P (|

√
n(m̂(t)− m̃(t))| > δ, θ̂ = θ0) + P (θ̂ 6= θ0).(8.23)

The second term is op(1) from Theorem 4.1. The first term is identically equal to 0. Hence,

√
n(m̂(t)−m(t)) =

√
n(m̃(t)−m(t)) + op(1)

= Q1(t) +Q2(t),(8.24)

where

sup
t
Q1(t) = sup

t

√
n

|Aθ0,tθ0 |

|Aθ0,tθ0 |∑
k=1

g(
tθ0 + (k − 1)θ0

T
) = O(n1/2−α),

form Lemma 8.6 and

Q2(t) =

√
n

|Aθ0,nθ0 |

|Aθ0,tθ0 |∑
k=1

etθ0+(k−1)θ0 .

8.2. Proof of Theorem 4.4. Let Kt denotes a n× 1 vector v with co-ordinates

vi =
1

nbn
K

(
ti − t
bn

)
.(8.25)

Note that,

ĝ(t) =
1

nbn

n∑
i=1

K(
ti − t
bn

)(yi − m̂i) =
1

nbn

n∑
i=1

K

(
ti − t
bn

)
(yi − ȳi,θ̂) = KT

t (I −Πθ̂)y.(8.26)

We first approximate ĝ(t) by the oracle estimator

g̃(t) =
1

nbn

n∑
i=1

K

(
ti − t
bn

)
(yi − ȳi,θ0) = K ′t(I −Πθ0)y.
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For any cn,

P (cn(|ĝ(t)− g(t)| > δ) ≤ P (cn(|ĝ(t)− g(t)| > δ, θ̂ = θ0) + P (θ̂ 6= θ0)

= P (cn(|ĝ(t)− g(t)| > δ, θ̂ = θ0) + o(1)

= P (cn(|g̃(t)− g(t)| > δ, θ̂ = θ0) + o(1).(8.27)

Hence,
cn|ĝ(t)− g(t)| = cn|g̃(t)− g(t)|+ op(1).

We write (g̃(t) − g(t)) as sum of stochastic part S(t) and bias part B(t) where S(t) =
(g̃(t)−E(g̃(t))) and B(t) = (E(g̃(t))− g(t)). We start with the bias part B(t). We use the
following two facts. For j = 0 and j = α,

sup
t∈τ
{
∫ n

0
|Kj(

b1 + vc − nt
nbn

)−Kj(
v − nt
nbn

)dv} = O(1) and
1

nbn

∫ n

0
Kj(

v − nt
nbn

)dv =

∫
R
Kj(u)du.(8.28)

where Kj(u) denotes K(u)uj .

E(g̃(t))− g(t) =
1

nbn

n∑
i=1

K

(
ti − t
bn

)
(g(i/n) +mi − ḡi/n,θ0 − m̄i,θ0)− g(t)

=
1

nbn

n∑
i=1

K

(
ti − t
bn

)
g(i/n)− g(t) +

1

nbn

n∑
i=1

K

(
ti − t
bn

)
ḡi/n,θ0

= B1(t) +B2(t).(8.29)

Now,

|B1(t)| ≤ C

nbn

n∑
i=1

K(
ti − t
bn

)|i/n− t|α =
Cbαn
nbn

n∑
i=1

K(
i/n− t
bn

)|( i− nt
nbn

)|α = O(bαn).(8.30)

The last line follows from (8.28) and (8.28). From Lemma 8.6, we have |ḡi/n,θ0 | ≤ C(θ0/n)α.
Plugging that in expression of B2(t) and using (8.28) for j = 0

sup
tinτ
|B2(t)| = O(n−α),(8.31)

assuming θ0 <∞ and does not change with n.
In the context of Theorem 4.4, we therefore need

(
√

log 1/bn)n1/2b1/2+α
n + n1/2−αb1/2n → 0.(8.32)

Next, we handle the stochastic part S(t). Clearly, as m has period θ0 we can write
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S(t) = g̃(t)− E(g̃(t))) =
1

nbn

n∑
i=1

K

(
ti − t
bn

)
ei −

1

nbn

n∑
i=1

K

(
ti − t
bn

)
ēi,θ0 = .K̃T

t e.

where Kt is as described in (8.25) and K̃t = (I − Πθ0)Kt. From Karmakar and Wu (2017,
[]), we know,

max
j≤n
|
j∑
i=1

ei −
j∑
i=1

Σe(t)Vi| = o(n1/p).(8.33)

From (8.33) we use summation by parts formula to deduce that

sup
t∈τ
|S(t)− 1

nbn

n∑
i=1

K̃

(
ti − t
bn

)
| = Op(

n1/p

nbn
),(8.34)

provided K̃t = ṽ(t) satisfies

max
t
|ṽ(t)1|+

n∑
i=2

|ṽ(t)i − ṽ(t)i−1| = O(
1

nbn
).(8.35)

Next we show that, under the assumption of K having bounded variation, with the special
Πθ0 we achieve eq. (8.35) .

Proof. Let K̄( ti−tbn
, θ0) denote

K̄(
ti − t
bn

, θ0) =
1

|Ai,θ0 |
∑

j∈Ai,θ0

K(
tj − t
bn

).

As described before while discussing structure of Πθ we know that

|Ai,θ0 | = O(θ0/n).(8.36)

As K have bounded variation,

n∑
i=1

|K
(
ti − t
bn

)
−K

(
ti−1 − t
bn

)
| = O(1).
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We start with the second term in (8.35).

nbn

n∑
i=2

|ṽ(t)i − ṽ(t)i−1| ≤
n∑
i=1

|K
(
ti − t
bn

)
−K(

ti−1 − t
bn

)|+
n∑
i=1

|K̄(
ti − t
bn

, θ0)− K̄(
ti−1 − t
bn

, θ0)|

≤ O(1) +
n∑
i=1

| 1

|Ai,θ0 |
∑

j∈Ai,θ0

K(
tj − t
bn

)− 1

|Ai−1,θ0 |
∑

j∈Ai−1,θ0

K(
tj − t
bn

)|

≤ O(1) +

n∑
i=2

O(
θ0

n
)
∑

j∈Ai,θ0

|K(
tj − t
bn

)−K(
tj−1 − t
bn

)|

≤ O(1) +O(
θ0

n
)
∑

j∈Ai,θ0

n∑
i=2

|K(
tj − t
bn

)−K(
tj−1 − t
bn

)|

= O(1) +O(
θ0

n
)|Ai,θ0 |O(1) = O(1).(8.37)

Hence we have (4.20). We can then use Lindgren(1980, [5]) to conclude the proof of Theorem
4.4. See Lemma 1 and Lemma 2 in Zhou, Wu (2011,[10]) for more detail.

8.3. Proofs for the case where the true period is unbounded.

8.4. Lemmas.

Lemma 8.6. If g is a Hölder-α continuous function with support [0,1] and for each k,
0 = x0, x1, x2, · · ·xk = 1 be a partition of [0,1] such that xi − xi−1 = 1/k for all i, then for
large k,

|1
k

k∑
i=1

g(xi)−
∫ 1

0
g(u)du| ≤ C.k−α.(8.38)

Proof. This follows from the fact that
∫ 1

0 g(u)du = lim supU(g,Π) = lim inf L(g,Π)
where Π is a partition of [0,1] and U and L denotes upper and lower rectangular sums.
If we take the partition as [x0, x1, · · ·xk] then the errors in each small sub interval is
O(k−1−α).

Lemma 8.7. Suppose g and g̃ are two Hölder-α continuous function satisfying
∫ 1

0 g(u)du =∫ 1
0 g̃(u)du = 0. m and m̃ are two periodic sequences with smallest fundamental period

θ0 and θ̃0. If
g̃(i/n) + m̃i = g(i/n) +mi,

for all i and n, then g̃ = g, m̃ = m with θ̃0 = θ0.
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Proof. This proof follows from similar argument as [7]. As g and g̃ is Hölder-α contin-
uous their arguments go through in our extended case as well.
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