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Using a novel logarithmic decomposition technique, Karmakar and Wu (2017) obtained
an optimal bound for Gaussian approximation of a large class of vector-valued random pro-
cesses. This paper proposes a multiplier bootstrap technique to simulate the approximating
Gaussian process and thus makes the result of [] useful to several applications in statistical
inference. We propose an estimate of the block covariances of the empirical process which
is then multiplied with Gaussian innovation to compute the Gaussian analogue. Three ap-
plications among many are chosen to demonstrate how the Gaussian approximation and
the bootstrap technique together can improve many existing results in the literature.
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1. Introduction. Based on multiplier central limit theorem by Vaart and Wellner
(1996, [28]), Gaussian multiplier bootstrap has remained as one of the important tools for
the past two decades in the regime of obtaining size and power of statistical tests involving
empirical processes. This has been applied in several areas of statistics such as studying
local quantile treatment effect (See Hsu, Kan and Lai (2015)) or constructing critical value
of stochastic dominance relations (See Barrett and Donald (2003, [1]), Donald, Hsu and
Barrett (2012, [11]), and Donald and Hsu (2014, [12]). Generalized regression monotonicity
by Hsu, Liu and Shi (2016, [19]) and specification test for moment inequality models by
Bugni, Canay and Shi (2017, [5]) are only some of the many applications of this very
effective yet intuitive bootstrap procedure.

The multiplier bootstrap essentially depends on some invariance principle where a Gaus-
sian approximation is established for some empirical process. This approximation can be
obtained in different sense. Very recently, Chernozukov et al (2014, [6], 2016, [6]) discussed
a multiplier bootstrap using a Gaussian approximation of the maximum co-ordinate of an
empirical process in an independent set-up. Zhang and Wu (2017) generalized their result
allowing weak dependence within a stationary process. For such an invariance principle, in
this paper we choose the Gaussian approximation for non-stationary, multiple time series
obtained in Karmakar and Wu (2017). We start with a brief overview of the history of
strong invariance principle and its applications.

For an empirical process (Xi) ∈ Rd, let Si denote the partial sum Si =
∑i

j=1Xj . If
d = 1 and Xi are i.i.d. and have finite pth moment for some p > 2, Komlós et al. (1974/75,
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[22],[23]) proved that in a probably richer probability space it is possible to construct S′i

and a mean zero Gaussian process Gi such that (Si)
′
i≤n

D
= (Si)i≤n and

|S′i −Gi| = oa.s(n
1/p).(1.1)

It is also well-known that under the finite pth moment condition this n1/p bound is not
improvable. Since a large class of sufficient statistics are based on partial sums of empirical
process, there are several areas of statistics and econometrics where result of type (1.1)
can be used. This motivation opened the area of research where extensions in multiple
directions were sought. See Wu and Zhou (2011, [32]), Berkes et al. ([2]), Karmakar and
Wu ([]) and the references therein for a more detailed overview of the history of how the
results were generalized to different set-ups.

For d > 1, Liu and Lin (2009, [25]) obtained the KMT-type bound for a stationary weak
dependent sequence having finite pth moment where 2 < p < 4. [32] also restricted their
research to the case 2 < p < 4 but allowed non-stationarity and obtained bounds close
to op(n

1/p). [] obtained the τn = n1/p bound for a non-stationary weak dependent time
series for all p > 2 and thus solved a long-standing open problem. This very deep result
has several applications in analysis of multiple time-series. We carefully choose three such
examples and demonstrate a bootstrap procedure to obtain/simulate the approximating
Gaussian process. These should give the reader a general idea of how to use our result in
other scenarios. The bootstrap method is kept specifically focused in the context of our
first application for presentational clarity.

1.1. Applications. Consider the following model

yi,n = µ(i/n) + ei,(1.2)

where µ is a continuous function from [0, 1] → Rd and ei is a dependent non-stationary
error process. In an univariate set-up, Wu and Zhao (2007, [31]) obtained simultaneous
confidence band for the unknown trend function for the model in (1.2). They assumed
stationarity of the error process and double-differentiability of the µ function. In section 3,
we treat similar models and extend it in three directions. We allow vector-valued process,
use trend function µ that is not Lipschitz and allow the error process to vary in a locally
stationary way. This discussion can be viewed as a premier to address a more general
non-stationary error process. We also highlight that if the function µ is only Hölder- 1/2
continuous, then we will need Gaussian approximation with bound sharper than oP (n1/4).

The theoretical simultaneous confidence band still suffers from a few drawbacks. It is
well-known in the theory of convergence of extreme value of Gaussian process, that the
convergence to Gumbel distribution is logarithmic. Thus it requires a large sample size
to have approximately accurate coverage probabilities. Also, one needs to assume some
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more structure on how the physical mechanism Hi in (2.1) changes. Lastly, one needs some
knowledge about the unobserved εi variables to construct such a confidence band. To this
end, we will show how our bootstrap technique can solve this issue in its most generality
and allow us to obtain asymptotically correct simultaneous confidence band.

The Gaussian approximation obtained in [] is not amenable for practical use as the co-
variance structure of the approximating Gaussian process remains complicated. To address
this issue, we first propose an estimate of the covariance structure of the approximating
Gaussian process. Next the covariance estimate is used to propose a Gaussian multiplier
bootstrap technique. We choose two more applications to exhibit how the bootstrap method
can appear as a remedy where obtaining null distribution is difficult under dependence and
non-stationarity of error process. We seek the null distribution of the unknown coefficients
in the functional regression model (See (6.1)). The deviation from the true value of the
coefficients can be approximated by a Gaussian analogue using the invariance principle and
thus a Bootstrap method can be proposed to perform inference.

We show a third application in the regime of unit-root testing for panel data. where
we put very mild restriction on contemporaneous correlation of the observed data. The
inference using the usual estimator of ρ, the AR(1) co-efficient for univariate models of the
type yi = ρyi−1 + ei has been well-studied for the nearly non-stationary (ρ close to 1) or
non-stationary (ρ = 1) case. See Dickey and Fuller (1979, [10]), Evans and Savin (1984, [14])
and Nankeris and Savin (1985, [26]) among others. In this paper, we allow panel data as
our observation yi and the error innovations can be a very general non-stationary process.
Whereas the usual estimator of ρ easily extends for the panel data, the non-stationarity
in the error process makes it difficult to perform statistical inference. We show how our
Gaussian bootstrap method can overcome this difficulty. Although we restricted ourselves
to the dimension d = 2 for this particular example, it can be easily extended to any fixed,
higher dimension.

1.2. Organization of the article. The rest of the article is organized as follows. In Sec-
tion 2, we introduce the functional dependence measure and use it to state the Gaussian
approximation result. Section 3 discusses the inference on the trend regression model (1.2).
We revisit this example in Section 5 using the bootstrap technique in Section 4. We use Sec-
tion 6 and 7 to discuss two more possible applications of the sharp Gaussian approximation
result in the paradigm of functional regression analysis and unit root testing respectively.
We defer all the proofs to Section 9.

1.3. Notation. For a matrix A = (aij), we define its Frobenius norm as |A| = (
∑
a2
ij)

1/2.

For a random vector Y , write Y ∈ Lp, p > 0, if ‖Y ‖p := [E(|Y |p)]1/p < ∞. For L2 norm
write ‖ · ‖ = ‖ · ‖2 . Define the projection operator Pi by

PiY = E(Y |Fi)− E(Y |Fi−1), Y ∈ L1.(1.3)
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Throughout the text, bxc refers to the greatest integer less than or equal to x. We use Cp
to refer to a constant that depends only on p but could take different values on different
occurrences. The p-variate normal distribution with mean µ and covariance matrix Σ is
denoted by Np(µ,Σ). For a positive semi-definite matrix A, A1/2 refers to the usual Gram-
mian square root of A. If A = QDQT is the spectral decomposition of the matrix A then
A1/2 = QD1/2AT . Say the diagonal entries of D are λ1 ≥ . . . λd. Then ρ∗(A) = λ1 and
ρ∗(A) = λd. If two quantities A and B satisfy A ≤ cB for some c < ∞, then we write
A . B or B & A. If both A . B and B . A then we write A � B. If An/Bn → 0, then we
say An � Bn. If An/Bn →∞, then we say An � Bn.

2. Functional dependence and Gaussian Approximation.

2.1. The functional dependence measure. To state the structure of dependence we allow
throughout the paper, we introduce an uniform functional dependence measure on the
underlying process using the idea of coupling as done in Wu (2005, [29]). Assume that Xi

has mean 0, Xi ∈ Lp, p > 0 and it admit the causal representation

Xi = Hi(εi, εi−1, . . .)(2.1)

When Hi can potentially take different functional value for different i, it points to the non-
stationarity of the process. Suppose (ε′i)i∈Z is an independent copy of (εi)i∈Z. For j ≥ 0,
0 < r ≤ p, define the functional dependence measure

δj,r = sup
i≥1
‖Xi −Xi,(i−j)‖r = sup

i≥1
‖Hi(Fi)−Hi(Fi,(i−j))‖r,(2.2)

where Fi,(k) is the coupled version of Fi with εk in Fi replaced by an i. i. d. copy ε′k,

Fi,(k) = (εi, εi−1, · · · , ε′k, εk−1, · · · )(2.3)

and Xi,(i−j) = Hi(Fi,(i−j)). Also, Fi,k = Fi if k > i. ‖Hi(Fi)−Hi(Fi,(i−j))‖r measures the
dependence of Xi on εi−j . The functional dependence measure δj,r quantifies the uniform
j-lag dependence in terms of the rth moment. In general, the tail cumulative measure Θj,r

for j ≥ 0 and 2 ≤ r ≤ p is defined as

Θj,r =

∞∑
i=j

δi,r.

One can think of the functional dependence measure as a measurement of an input-output
mechanism.
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2.2. General assumptions for Gaussian Approximation:. For completeness, we rewrite
the representation (2.1) of the (Xi) process.

(2.A) Xi is a d−dimensional mean 0 vector process with the representation

Xi = Hi(Fi) = (Xi1, . . . , Xid)
T , where Fi = (..., εi−1, εi),

where εi are i. i. d., and Hi is a measurable function such that Xi is well-defined,
and T denotes matrix transpose.

(2.B) The sequence (|Xi|p)i≥1 is uniformly integrable. Namely

sup
i≥1

E(|Xi|p|1|Xi|≥u)→ 0 as u→∞.(2.4)

(2.C) We assume short range dependency,

Θ0,p =

∞∑
i=0

δi,p <∞.(2.5)

This condition implies the cumulative dependence of (Xj)j≥k on εk is finite.
(2.D) There exists a constant λ∗ > 0 such that, for all t, l ≥ 1 and any unit vector v

inf
t
ρ∗(V ar(

t+l∑
i=t+1

Xi)) ≥ λ∗l.(2.6)

Comment 2.1. (The lower bound on variances) The condition (2.D) is intuitive since
if this condition is violated, it will pose the problem of singularity. Similar conditions have
been imposed in Gaussian approximation literature. See ChernoZhukov et. al. (2014, []),
Wu and Zhou (2011, [32]) for instance. This condition can be relaxed if the normalized
incremental process corresponding to only a non-zero fraction of co-ordinates have their
minimum eigenvalue bounded away from 0.

We assume the following upper bound for the cumulative dependence measure Θi,p.

Θi,p = O(i−χ), χ > 0.(2.7)

Result 2.2. In addition to the assumptions (2.A) to (2.D), we also assume the for-
mulation (2.7) of the cumulative dependence measure Θi,p. If,

χ > χ0 =
p2 − 4 + (p− 2)

√
p2 + 20p+ 4

8p
(2.8)
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then there exists a probability space (Ωc, Ac, Pc) on which we can define random vectors Xc
i

with the partial sum process Scn =
∑n

i=1X
c
i and a Gaussian process Gci with independent

increments such that Sci
D
= (Si)i≤n and

max
i≤n
|Sci −Gci | = oP (n1/p), in (Ωc, Ac, Pc),(2.9)

where Gci =
∑i

t=1 Y
c
t with Y c

t being independent Gaussian random variables with mean 0.

3. Application: Inference on multivariate time-varying models with a non-
Lipschtiz trend function. Estimation of trends for an a posteriori dataset is a well-
studied problem in statistics and related fields. We will consider a non-parametric regression
model of the form

yi = µ

(
i

n

)
+ ei,(3.1)

It is important to know if the unknown intrinsic trend function for a given dataset has a
particular parametric form and thus simultaneous confidence bands (SCB) are obtained to
perform such inference problems. In an univariate set-up see Johnston (1982, [21]), Hall and
Titterington (1988, [17]) and Cummins, Filloon and Nychka (2001, [8]) among others for
constructing SCB for unknown µ with independent errors. The seminal invariance principle
result by Komlos et al. (1975, [23])for independent scalar random variables was used in
Eubunk and Speckman (1993, [13]) to construct the SCB. However, it is well-known in the
literature that dependence within the stochastic process may appear as a difficult obstacle
for constructing the simultaneous bands. Wu and Zhao (2007,[31]) tested for structural
breaks in the µ function using the invariance principle by Wu (2007, [30]) to extend the
results to a set-up with weakly dependent errors. The Gaussian approximation result in [30]
was sub-optimal compared to that of [23] to adjust for the dependence. Recently, Berkes
et al. (2014, [2]) achieved the optimal n1/p rate for weakly dependent stationary scalar
time-series under the assumption of finite pth moment of the error process.

An invariance principle result for all p > 2 similar to that of [2] was not available for a
multiple time-series until recently. This was recently solved in [] and thus gives us a mo-
tivation to extend the set-up in (3.1) to a multivariate one. Moreover, since the Gaussian
approximation available can be sharper than n1/4 under the mild assumption of pth mo-
ment, it is possible to relax some smoothness criterion on µ. Although historically, many
different specifications were put in for µ and tested after observing the data, we will stick
to a simple model as in (3.1) as our focus is on loosening the smoothness assumption of
the trend function µ. The error process ei specified in the model of [31] is univariate, de-
pendent but stationary. We will obtain the simultaneous confidence band for µ allowing
the following extensions from therein:
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• We allow yi, µ( in) and ei to be vector valued. This is an important extension as this
allows us to test for more than one trend function simultaneously.

• µ is not Lipschitz continuous, but only Hölder -α continuous, i.e, µ is a function from
[0, 1]→ Rd which satisfy, for all 0, x, y < 1, and some α ≤ 1,

|µ(x)− µ(y)| ≤ C|x− y|α.(3.2)

This very weak restriction provides a strong generalization of similar models consid-
ered in literature. A function with two smooth derivatives admits a Taylor expansion
and that is widely exploited in the literature. On the contrary, little has been re-
searched for the case when the unknown function is not Lipschitz continuous. We
know the path of a Brownian motion is not Lipschitz continuous in a stochastic
sense. We emphasize that our unknown function is not random but this assumption
allows us to incorporate those with similar abrupt changes. For known covariance
structure of the data Xi or the error process ei, we will be able to achieve the class of
functions with α = 1/2, thus accommodating functions that behave like a Brownian
motion. Our result can be substantially useful in many applications of finance and
econometrics where one can fit a random walk model. We will also propose how to
estimate the covariance matrix leading to a Gaussian multiplier bootstrap.

• The process ei is allowed to be non-stationary. Naturally, this requires some formu-
lation of the non-stationarity or some regular conditions on it. For the time being,
we assume that,

ei = Hi(εi, εi−1, · · · ) = Hi(Fi) = H(
i

n
,Fi)),(3.3)

where εi are identically distributed independent random variables. We assume local-
stationarity for the ei process. i.e. H(,̇Fi) is stochastic Lipschitz continuous in the
sense that there exists C <∞ such that

sup
0≤t<s≤1

‖H(t,Fi)−H(s,Fi)‖
|t− s|

≤ C.(3.4)

The causal representation (3.3) allows us to use the functional dependence framework
by Wu (2005,[29]) allows us to handle the dependent process ei. We will later relax
this local-stationarity assumption.

3.1. Assumptions. Before using the Gaussian approximation from Theorem 2.2, we
provide a list of assumptions for the error process ei. For completeness, we also add the
causal representation, local-stationarity and the short-range dependency assumptions:

A1.1 The error process ei is a d−dimensional mean 0, non-stationary random sequence
that assumes the following representation

ei = Hi

(
i

n
,Fi
)

= (ei1, ei2, ...eid)
T ,
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where Fi = (..., εi−1, εi), Hi is a measurable function such that ei is a well-defined
random vector, and T denotes matrix transpose. The εi random variables are i. i. d.
We also assume that Hi satisfies (3.4).

A1.2 The process ei is uniformly integrable in Lp.

sup
i≥1

E(|ei|p|1|ei|≥u)→ 0 as u→∞.(3.5)

Moreover, this implies ei ∈ lp. We also assume short range dependency of the error
process

Θp(e, 0) =

∞∑
i=0

δp(e, i) <∞.(3.6)

A1.3 There exists a positive real number m1 such that for any d− dimensional unit norm
vector v and for any integer r,

ρ∗(V ar(

r+l∑
i=r+1

ei)) ≥ λ∗l.(3.7)

A1.4 The cumulative dependence measure Θp(e, i) satisfies the following

Θp(e, i) = O(i−χ),(3.8)

for some χ > χ0 where χ0 is as described in (2.8).

Lemma 3.1. Define

Fn(t) =

n∑
i=1

ViK

(
ti − t
bn

)
,

where Vi are i. i. d. N(0, Idd). If bn satisfies (3.9), then,

lim
n→∞

(P [
1√
φ0nbn

sup
t∈τ
|Fn(t)| −B(r) ≤ u√

2 log(r)
]) = exp{−2 exp(−u)}.

Proof. See Lemma 1 from Zhou and Wu (2010, [34]).

Recall Pi from (1.3). Define Σe(t) = E(Ki(t)Ki(t)
T ) where Ki(t) =

∑∞
j=i Pi(H(t,Fj)). We

have the following lemma about convergence of Σe(t)
−1/2De(t)

Lemma 3.2. Let De(t) = (nbn)−1
∑n

i=1 eiK((ti−t)/bn). Suppose K is of bounded varia-
tion and Σe(t) is Lipschitz continuous in [0, 1]. We have the following result for constructing
the simultaneous confidence band.

lim
n→∞

(P [
√
nbn sup

t∈τ
{|Σe(t)

−1/2De(t)|} −B(r) ≤ u√
2 log(r)

]) = exp(−2 exp(−u)).
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Theorem 3.3. Additional to the assumptions A.1- A.7, assume the kernel function K
is of bounded variation and bn satisfy

√
log(1/bn)

(
n1/p

√
nbn

+ bn log n+ n1/2b
α+ 1

2
n + b−1/2

n n−1/2

)
→ 0.(3.9)

Then we have

(3.10)

P (

√
nbn
φ0

sup
t∈τ
|Σe(t)

−1/2{µbn(t)− µ(t)}| −B(r) ≤ u√
2 log r

)→ exp{−2 exp(−u)},

where r = 1/bn, τ = [bn, 1− bn], and

B(r) =
√

2 log(r) +
log(CK) + (d/2− 1/2) log(log r)− log(2)√

2 log(r)
,

with

CK =
(
∫ 1
−1 |K

′(u)|2du)1/2

Γ(d/2)
.

Comment 3.4. By Theorem (3.3) , if Σ̂e(t) is the uniformly consistent estimate of
Σe(t), then the simultaneous confidence band (SCB) for µ(t),

µbn(t) +

√
φ0

nbn
[BK(r)− log(log((1− α)−1/2))√

2 log(1/bn)
]Σ̂e(t)Bd,(3.11)

has 100(1− α)% coverage where Bd is he d-dimensional unit ball.

Comment 3.5. If we assume bn � n−δ then by (3.9), we need

1

2
< (α+

1

2
)δ,

2

p
< (1− δ), 0 < δ < 1.

If µ is Hölder-1/2 continuous, i.e. α = 1/2, then the Gaussian approximation obtained by
Wu and Zhou (2011, [32]) will not be useful. We will need o(n1/p) bound for some p > 4 and
existence of Gaussian approximation of such optimal bound has been proved in Theorem
2.2.

3.2. A smooth estimate for the covariance matrix. Note that, Σe(t) in Lemma 3.2 is
difficult to estimate. Also it is only applicable in case the process has the local stationary
property. Here, we try to generalize the results for a general non-stationary process.
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A careful check of the proof of the Gaussian approximation Result in 2.2 reveals that it
says there exists

max
i≤n
|Si −

[i/2k0m]∑
j=1

Σ
1/2
j Zj | = op(n

1/p),(3.12)

where Σj = V ar(Bj) is an estimate of the variance of the block X2k0m(j−1)+1+· · ·+X2k0mj .
We introduce a smooth version to facilitate using properties of partial sums of standard
Gaussian random variables.

Σ(t) =

{∑
2ik0m/n≤t Σi if t = 2jk0m/n

α
∑j−1

i=1 Σi + (1− α)
∑j

i=1 Σi if 2(j − 1)k)m/n < t < 2jk0m/n.
(3.13)

It can be easily shown that,

sup
0<t≤1

|Σ(t)−
∑

2ik0m/n≤t

Σi| = op(n
2/p),(3.14)

Thus we can use results like Lemma 3.2 to exploit the theory for extreme value Gaussian
processes.

4. A block Gaussian multiplier resampling procedure. We revisit the trend-
regression model (3.1) discussed in Section 3 and implement a bootstrap method to cir-
cumvent some of its restrictive assumptions and limitations.

• General Non-stationary error: Note that in Section 3, we assumed the error process
in our model (3.1) to be locally stationary (See (3.4)). In this section we introduce a
bootstrap technique to relax that assumption.
• Estimating Σe(t): Looking at the expression of Σe(t) one can see that it depends on

the unobserved εi process and hence it is difficult to consistently estimate it.
• Logarithmic convergence: The logarithmic convergence to the extreme value distri-

bution in theorem 3.3 makes it practically infeasible as one needs huge n to have
appropriate coverage probability. This is our main motivation behind proposing a
bootstrap method.

4.1. Bootstrapped version of SCB. Compared to the assumptions of Theorem 3.3, we
will only need the assumptions made in Theorem 2.2 for the error process ei to construct
a bootstrap SCB for µ(t). Note that,

µbn(t)− µ(t) =
1

nbn

n∑
i=1

K

(
i/n− t
bn

)
ei +Biasn,(4.1)
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where

Biasn =
1

nbn

n∑
i=1

K

(
i/n− t
bn

)
(µ(i/n)− µ(t)) + µ(t){ 1

nbn

n∑
i=1

K

(
i/n− t
bn

)
− 1}.

Also, √
nbnBiasn = O(

√
nbα+1/2

n ).(4.2)

We will use our Gaussian block multiplier to create the quantiles of

(nbn)−1/2
n∑
i=1

K ((i/n− t)/nbn) ei.

Assuming K is of bounded variation, by summation-by-parts formula we have,

max
1≤i≤n

| 1

nbn

n∑
i=1

K

(
i/n− t
bn

)
ei −

1

nbn

n∑
i=1

K

(
i/n− t
bn

)
gi| = oP (n1/p)O

(
1

nbn

)
,(4.3)

where partial sums of the Gaussian random variables gi form the process Gci as described
in Theorem (2.2) Define the Gaussian analogue of the estimated µ as following

µZ(t) =
1

nbn

n∑
i=1

K

(
i/n− t
bn

)
gi.

We have the following algorithm for constructing the simultaneous confidence band (SCB).
Algorithm for known covariance If E(∆f ) are known for the noise process ei, then

we use the following algorithm.

• For i = 1, 2, 10000 obtain

sup
t∈(bn,1−bn)

|µZ1(t)|, · · · , sup
t∈(bn,1−bn)

|µZ10000(t)|.

• Get l and u, the α/2% and 100(1−α/2)% quantiles of the empirical process supt∈(bn,1−bn) |µZ
i
(t)|.

• Let the two quantiles be l and u. The SCB for µ(t) using (4.3) is µbn(t)− l, µbn(t)+u.

From (4.2) and (4.3), we create the following condition on bn

n1/p

√
nbn

+
√
nbα+1/2

n = o(1).(4.4)

Under the above condition on the bandwidth bn, we have the following theorem for vali-
dating our algorithm.
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Theorem 4.1. Assume bn satisfies 4.4. Then,

sup
t
|
√
nbn(µbn(t)− µ(t)− µZ(t))| = oP (1).(4.5)

Proof. Trivially follows from (4.2) and (4.3).

Comment 4.2. Note that, from (4.4), one can see that if our unknown function µ is
only Hölder-1/2 continuous, then one needs p > 4 and bn � n−1/2. Since the underlying
function is not as smooth as a twice differentiable one, one needs a much smaller bandwidth
to capture the small changes within the function.

5. Estimation of covariance of the approximating process. The approximating
Gaussian process in Theorem 2.2 Gci has a complicated structure arising from different
steps of our proof. We first discuss the key strategies behind the proof of the theorem so
that it can provide some motivation behind the estimates of the covariance matrix.

5.1. Key strategies for the proof of Result 2.2. In this subsection, we throw some light
on the key steps of the proof of Result 2.2 as it will serve as a background of the block
covariance estimators proposed. There are mainly three stages of the long and involved
proof. We will mainly discuss the first of them in detail to remain pertinent to the context
of this paper. The other two stages will be briefly mentioned for sake of completeness.

Truncation, m-dependence and blocking approximation A series of approxima-
tions are done in the first stage as a pre-processing. The first of them, a truncation approx-
imation is used to allow Rosenthal-type inequality with moments higher than p. For b > 0
and v = (v1, . . . , vd)

T ∈ Rd, define

Tb(v) = (Tb(v1), . . . , Tb(vd))
T , where Tb(w) = min(max(w,−b), b).(5.1)

The truncation operator Tb is Lipschitz continuous with Lipschitz constant 1. Using uniform
integrability(cf 2.4) of the process Xi t is possible to choose a tn such that,

max
1≤i≤n

|Si − S⊕i | = oP (n1/p), where S⊕l =

l∑
i=1

[Ttnn1/p(Xi)− ETtnn1/p(Xi)].(5.2)

As exhibited in [2] and Karmakar and Wu (2017,[]), it is essential to use such a high power
to obtain the optimal rate.

The next approximation is m-dependent approximation, the most important step of the
proof. This m-dependence approximation technique has a long history in the literature
of dependent data analysis. See Lin and Liu (2011, [24]) for a brief overview. Using the
dependence framework by Wu (2005, []), one can create a m-dependent analogue of the
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partial sum process with optimal error rate. For a suitably chosen sequence mn →∞, using
the decay condition (cf 2.7), we have

max
1≤i≤n

|Si − S̃i| = oP (n1/p), where S̃l =

l∑
i=1

E(Ttnn1/p(Xj)|εj , . . . , εj−mn)− E(Ttnn1/p(Xj))

Henceforth we drop the suffix of mn. m is chosen to vary in an almost polynomial rate,
m ≈ nL0 in []. This approximation gives a very simple yet effective way to handle the
original process Xi in terms of only m many εi’s. As we assume that the dependence
of Xi and Xi+k dies down as k grows, dividing the m-dependent partial sum process in
blocks of sufficiently large length seems a natural choice. This allows to use the existing
Gaussian approximation results that are only suitable for independent process. To allow
the non-stationarity [] used blocks of size 2k0m compared to the blocks of size 3m in [2].
For qi = bi/(2k0m)c, we have,

max
1≤i≤n

|S̃i − S�i | = oP (n1/p), where S�i =

qi∑
j=1

Aj =

qi∑
j=1

(S̃2k0jm − S̃2(j−1)k0m).(5.3)

Conditional and Unconditional Gaussian Approximation: The blocks created in
the first stage are not independent because two successive blocks possibly share some εi’s
in their shared border. In this second step, we look at the partial sum process conditioned
on these borderline εi’s. In the last part of the proof, the Gaussian approximation for the
unconditional process was obtained by applying Götze and Zaitsev (2008, [15])’s result one
more time. The treatment for this part is similar to [2].
In this section, we first propose a simple approximation of the covariance of the partial
sums of the Gaussian process Gci in Theorem 2.2. This approximated covariance is simple
and easy to estimate using the data itself. The following well-known result for Gaussian
process will play a key-role in proving efficiency of our bootstrap procedure.

Result 5.1. Let Gi1 and Gi2 be two Gaussian process defined as following

Gi1 =

i∑
j=1

Σ
1/2
j1 Zj and Gi2 =

i∑
j=2

Σ
1/2
j2 Zj ,

where Zj are standard d-variate normal random variables. Then,

max
i≤n
|Gi1 −Gi2| = oP (max

i≤n
|

i∑
j=1

{Σj1 − Σj2}|1/2(log n)1/2).(5.4)

The m-dependent approximation suggests the following estimator of block covariances.
Define,
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Wl =
∑

1≤i,j≤l
I(|i− j| ≤ m)XiX

T
j .(5.5)

Choose a sequence M such that m/M → 0. Define ∆F = WMf −WMf−M for a suitable
sequence M .

Proposition 5.2. Under the conditions of Theorem 2.2, E(∆f ) is positive definite.

The original approximating Gaussian process Grawi has independent but possibly non-
identical increment. However, the covariance matrix for each such increment is not easily
estimable from data since it is derived after a series of transformation.

5.2. Approximation of the covariance structure. First, we prove a deterministic version
of the main theorem of this section.

Theorem 5.3. Define the process (GEi ) as follows

GEi =

[i/M ]∑
f=1

(E(∆f ))1/2Zf .(5.6)

Then we have,

max
i≤n
|Gci −GEi | = oP (nmax(1/p,1/2−(1−2/p)χ/(1+χ))).(5.7)

Comment 5.4. From (5.7) one can see that we achieve the optimal n1/p bound if
χ > χ0 ≥ 1 for p > 4.

5.3. Estimating the unknown covariance of the error process.

Proposition 5.5. Under the conditions of Theorem 2.2, it is possible to choose a
sequence M � n such that ∆f is positive definite with probability going to 1.

In practice, the covariance will not be known. For the oracle case where ei is known, we use
the natural estimate ∆f as an estimate of E(∆f ) with Xi therein replaced by ei. Define,

G∆
i =

[i/M ]∑
f=1

∆
1/2
f Zf ,

where ∆f = WMf −WMf−M and Zf are i. i. d. d-dimensional standard normal variables
independent of (Xi). Note that, here ∆f is also a random variable whereas in our approx-
imating process the covariance matrices were deterministic.
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Proposition 5.6. For p > 4,

max
i≤n
|

[i/M ]∑
f=1

∆f −
[i/2k0m]∑
j=1

V ar(Aj)| = oP (n2/r/(log n)2),(5.8)

Using Result (5.1) and Proposition (5.6) we have the following theorem for the validity of
the bootstrap procedure.

Theorem 5.7.

max
i≤n
|G∆

i −Gci | = oP ∗((nm)1/4(log n)1/2),(5.9)

where P ∗ refers to the conditional probability given the data {Xi}.

Comment 5.8. It is striking that our original Gaussian approximation achieves the
n1/p bound where as the bootstrapped version can only obtain roughly n1/4 bound. Even
in univariate i. i. d. set-up one cannot estimate the long-run variance better than

√
n

rate which translates to n1/4 rate for the bootstrapped process with the standard deviation
multiplier.

Comment 5.9. From expression (4.4), it is clear that one needs to have an approxi-
mation sharper that n1/4 in order to achieve the correct coverage rate for the simultaneous
confidence band. On the other hand, note that from the comment (5.8), it is impossible to
achieve such a bound. If we can achieve the (nm)1/4(log n)1/2 rate as described in Theorem
(5.7), we can still do inference on unknown µ functions that are Hölder-α continuous with
1/2 < α < 1. To achieve α = 1/2 one needs to know the unknown covariance structure
of the error process. In practice, for real life data, even if α = 1/2, the estimate using ∆f

works fine as a way to simulate the surrogate process.

Moreover, the ei’s are unobserved. We propose an estimate ofG∗i withXi therein replaced
by êi = yi − µ̂(i/n). To show the validity of such a replacement, we need to bound the
covariance estimate arising from E(eie

T
j ) and that from êiê

T
j .

Theorem 5.10.

max
l≤n
|
∑

1≤i,j≤l
I(|i− j| ≤ m)(êiê

T
j − E(eie

T
j ))| = oP (nδ),(5.10)

for some small δ. Thus the two Gaussian process defined using covariances of the type êiêj
T

and E(eie
T
j ) are close.
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6. Application: Functional linear regression model. Consider the functional lin-
ear regression model

yi = xTi β + ei,(6.1)

where yi and ei are the response and the noise/error process respectively. xi stands for the
known d-dimensional vector of the covariate for the ith data point and β is the corresponding
unknown vector of regression coefficients. The usual ordinary least square estimator of β
is

β̂ = (
n∑
i=1

(xix
T
i ))−1

n∑
i=1

xiyi.(6.2)

Under the assumption of independence and normality of the error process ei, the distri-
bution of β̂ − β can be easily obtained and hence it can be used for inference problems
concerning β. We use the Gaussian multiplier bootstrap to obtain the distribution of β̂−β
and thus can allow a very general dependent, non-linear and non-stationary error process
ei. Note that,

β̂ − β = (
n∑
i=1

xix
T
i )−1

n∑
i=1

xiei.(6.3)

Define the corresponding Gaussian analogue

β̂g − β = (
n∑
i=1

xix
T
i )−1

n∑
i=1

xigi.(6.4)

where gi are obtained from the Gaussian process so that

max
i≤n
|

i∑
j=1

ej −
i∑

j=1

gj | = oP ((nm)1/4(log n)1/2),(6.5)

as described in (5.9). The following theorem states that the two statistic β̂ − β and β̂g − β
are close to each other.

Theorem 6.1. Assume ei satisfy similar conditions as described in Theorem 2.2 and
the cumulative dependence measure for the error process ei satisfy

Θe
i,p = O(i−χ), χ > χ0.
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where χ0 is mentioned in (2.8). Let g1, · · · gn be the simulated Gaussian process satisfying
(6.5). Then,

(
n∑
i=1

xix
T
i )(β̂g − β̂) = (|

n∑
i=1

|xi − xi−1||)oP ((nm)1/4(log n)1/2).(6.6)

where m is as described in the discussion following Theorem 2.2.

Proof. Follows directly by summation-by-parts formula and (5.9) on
∑n

i=1 xi(ei − gi).

Comment 6.2. Here we assumed xi to be known. However, Theorem 6.1 has the po-
tential to be easily extended to the case where xi can also evolve randomly with time-index
i. For random xi’s however, note that, under regular conditions on the covariance structure
of the random vectors xi, it is possible to simplify the convergence rate in (6.6);

ncx(β̂ − β̂g) = OP (1),(6.7)

for some uniform constant cx > 0.

Comment 6.3. Theorem 6.1 implies that for inference problems for the unknown β,
one can reasonably use β̂g as a surrogate.

7. Application: Unit root testing for multiple time-series. In this section, we
study the problem of unit root testing for multiple time series as an application of our
sharp Gaussian approximation result. Over the past three decades, unit root testing in
panel data has attracted a great deal of attention. Phillips (1987, [27]) was one of the first
to discuss some dependence across time. These were further generalized by incorporating
cross-sectional/contemporaneous correlation in Im et. al. (2003, [20]), Breitung (2005 , [3]),
Breitung and Das (2005, [4]) and Wachter et. al. (2007,[9]). Also see Harris and Tzavalis
(1999, [18]), Hadri (2000, [16]) and Choi (2001, [7]) . However, there are strong assumptions
on the contemporaneous correlation structure in these works.

In our work, we do not put any restriction on contemporaneous correlation except the
error process following condition (2.D) (2.6). This is a very mild restriction and can also be
relaxed in the sense that we need only a positive proportion of co-ordinates to obey such
a condition. The dependence restriction we put on the time dependence is through the
framework by Wu (2005, [29]) and hence it is easily verifiable. The time dependence of the
observed data happen through the error process. We allow non-stationary and non-linear
errors that admits the representation (2.1) and exhibit short-range dependency as in (2.5).
For simplicity, we concentrate on two-dimensional vector process Xi modeled as follows:
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(
Xi,1

Xi,2

)
=

(
µ1

µ2

)
+ ρ

(
Xi−1,1

Xi−1,2

)
+

(
ei,1
ei,2

)
,(7.1)

where the (ei,1, ei,2)T is the error process and (µ1, µ2)T is the drift process. For the time
being we assume µ1 = µ2 = 0. In the sequel, the data and the error process are denoted
by Xi and ei for convenience. After observing the data X1, · · ·Xn, we will test

H0 : ρ = 1 vs H1 : ρ < 1.

If ρ < 1 the process is stationary, so this is often used to test stationarity of the observed
auto-regressive process as well. We propose the usual slope estimator in a regression context

ρ̂ =

∑
XT
i−1Xi∑

XT
i−1Xi−1

.(7.2)

For a general non-stationary process ei, it is difficult to obtain the null distribution of ρ̂.
To circumvent that, we use the following identity

ρ̂− ρ =

∑n
i=1X

T
i−1ei∑n

i=1X
T
i−1Xi−1

and the Gaussian multiplier bootstrap proposed in Section 4. Under the null H0 : ρ = 1,
since Xi reduces to simply the partial sum process of ei.

ρ̂− ρ =

∑n
i=1 e

T
i (
∑

0<j<i ei−j)∑n
i=1X

T
i−1Xi−1

.

Since our Gaussian approximation regularizes the partial sum by a Gaussian analogue in
the light of Theorem 2.2, we can obtain the approximate null distribution of ρ̂ − ρ by
bootstrapping from it’s Gaussian analogue

ρ̂g − ρ =

∑n
i=1 g

T
i (
∑

0<j<i gi−j)∑n
i=1X

T
i−1Xi−1

,

where g1, · · · gn form a Gaussian process such that

max
i≤n
|

i∑
j=1

ej −
i∑

j=1

gj | = oP ((nm)1/4(log n)1/2).(7.3)

as described in (5.9). We prove that the two statistics ρ̂ and ρ̂g are close to each other in
the following theorem.
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Theorem 7.1. Assume ei satisfy similar conditions as described in Theorem 2.2) and
the cumulative dependence measure for the error process ei satisfy

Θe
i,p = O(i−χ), χ ≥ χ0,

Let g1, · · · gn be the simulated Gaussian process satisfying (7.3). Then, we have,

n5/4m−1/4(log n)−1/2(ρ̂g − ρ̂) = oP (1).

Proof. Let Sei =
∑i

j=1 ej and Sgi =
∑i

j=1 gj . We bound the distance of the numerators
of the expression of ρ̂− ρ and ρ̂g − ρ.

(7.4)

|
n∑
i=1

eTi (
∑

0<j<i

ej)−
n∑
i=1

gTi (
∑

0<j<i

gj)| = |
n∑
i=1

eiS
e
i−1 −

n∑
i=1

giS
g
i−1|

≤ |
n∑
i=1

eiS
e
i−1 −

n∑
i=1

giS
e
i−1|+ |

n∑
i=1

giS
e
i−1 −

n∑
i=1

giS
g
i−1|

= o(n3/4m1/4(log n)1/2),

by summation by-parts formula and (5.9). The denominator of the two expression ρ̂ − ρ
and ρ̂g − ρ are roughly of the order of n2 from the assumption that ei satisfy the condition
(2.6).

To obtain ρ̂g, we need the Gaussian approximation of the partial sums of ei. But since they
are unobserved, we will use a surrogate êi to obtain the Zi. We summarize our algorithm
of the bootstrap technique below.

1. Obtain ρ̂ using (7.2) and using ρ̂ obtain êi.
2. Obtain the covariance matrix estimates using êi in place of Xi as described in Section

5.
3. Using the covariance matrix estimate, obtain the approximating Gaussian distribu-

tion for a large number of times. For each iteration, we obtain a set of gi such that

max
i≤n
|

i∑
j=1

êi −
i∑

j=1

gi| = oP ((nm)1/4(log n)1/2).

Using gi obtain

ρ̂g − ρ =

∑n
i=1 g

T
i (
∑

0<j<i gj)∑n
i=1(

∑
0<j<i gj)

T (
∑

0<j<i gj)
.
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4. Let q be the 100(1− α)% quantiles of |ρ̂g − ρ| = |ρ̂g − 1|.

We reject H0 : ρ = 1 if |ρ̂− 1| > q.

Comment 7.2. We can use ideas similar to what we discussed in Section 4 to construct
confidence interval for the unknown ρ in a general case.

Comment 7.3. It is easy to extend for the case where drift µ 6= 0. Note that, the
estimator of ρ and µ in this case turns out to be the following

ρ̂′ =

∑n
i=1X

T
i−1Xi − 1

n

∑n
i=1X

T
i−1(

∑n
i=1Xi)∑n

i=1X
T
i−1Xi−1 − 1

n

∑n
i=1X

T
i−1(

∑n
i=1Xi−1)

.(7.5)

and

µ̂ =
1

n

n∑
i=1

yi − ρ̂′
1

n

n∑
i=1

yi−1.

Following similar ideas, one can construct the asymptotic null distribution of µ̂ − µ and
ρ̂− ρ in the same fashion.

Another possible extension is to extend ρ to a matrix R in Rd2 and test whether it is
identity versus the alternative that the largest eigenvalue of R lies inside the unit circle.

8. Simulation Studies.

8.1. Trend Estimation. ssc:simu trend We work with a simple AR(1) model with dif-
ferent coefficient ρ and different values of n. We will use µ(x) = x1//2 and bn = n−1/2.

8.2. Unit Root. We use sample size and dependent error as described in Subsection 8.2
and show that our test statistic based on Gaussian analogue has approximately α% level
of significance.

9. Proofs.

Proof. of Lemma 3.2 Note that,

De(t) =
n∑
i=1

wn(t, i)ei,

where wn(t, i) = (nbn)−1K
(
ti−t
bn

)
. Let Ωn(t) = |wn(t, 1)| +

∑n
i=2 |wn(t, i) − wn(t, i − 1)|.

As K is of bounded variation, we have

Ωn = max
0≤t≤1

{Ωn(t)} = O(
1

nbn
).



21

By summation-by-parts formula and Corollary 2 in Wu, Zhou (2011,[32]), for χ > (2p −
4)/(p+ 2) in (2.7), we have

sup
t∈τ
|De(t)− κ(t)| ≤ Ωn max

i≤n
|

i∑
j=1

ej −
i∑

j=1

Σe(ti)
1/2Vi| = o

(
n1/p

nbn

)
,(9.1)

where

κ(t) =
1

nbn

n∑
i=1

Σe(ti)ViK

(
ti − t
bn

)
.

Since Σe(t) is assumed to be Lipschitz continuous, we also have

sup
t∈τ
|κ(t)− 1

nbn
Σe(t)

n∑
i=1

ViK

(
ti − t
bn

)
| = O

(√
bn
n

log n

)
.(9.2)

By the choice of our bn in (3.9) and Lemma 3.1 we conclude the proof.

Proof. of Theorem 3.3 Suppose, µ is Hölder- α continuous. We will write µbn(t)−µ(t)
as sum of the stochastic and the bias part.

µbn(t)− µ(t) = (µbn(t)− E(µbn(t))) + E(µbn(t))− µ(t).

where µbn(t)− E(µbn(t)) is the stochastic part and E(µbn(t))− µ(t) is the bias part.
Note that, in Lemma (3.2), De(t) = µbn(t)− E(µbn(t). For the bias part, our choice of bn
in (3.9) makes √

nbn sup
t
|E(µbn(t))− µ(t)| → 0.

E(µbn(t))− µ(t)(9.3)

=
1

nbn

n∑
i=1

K

(
ti − t
bn

)
µ(
i

n
)− µ(t)

=
1

nbn

n∑
i=1

K

(
ti − t
bn

)
(µ(

i

n
)− µ(t)) + µ(t)(

1

nbn

n∑
i=1

K

(
ti − t
bn

)
− 1)

= In +O(1)(IIn − 1).

Before we deal with the terms In and IIn separately, we discuss some properties of the
kernel K. For j = 0, α, 1/2, 1, 2, we have,

sup
t∈τ
{
∫ n

0
|Kj(

[1 + v]− nt
nbn

)−Kj

(
v − nt
nbn

)
|dv} = O(1),(9.4)
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with Kj(v) being K(v)vj . We also have,

1

nbn

∫ n

0
|Kj(

v − nt
nbn

)|dv =

∫
R
|Kj(u)|du.

Now, √
nbnIn = b

α− 1
2

n n−1/2

∫ n

0
|Kα(

[1 + v]− nt
nbn

)|dv(9.5)

= O(b
α− 1

2
n n−

1
2 )O(nbn)

= O(b
α+ 1

2
n n

1
2 ),

√
nbnIIn =

√
1

nbn
(O(1) +

∫ n

o
K0(

[1 + v]− nt
nbn

)dv) = O(

√
1

nbn
),(9.6)

since
∫
RK(x) = 1. By Lemma 3.2, 9.3, (9.5), (9.6) we conclude the proof.

Proof. of Proposition 5.2

WMf −WMf−M =
∑

Mf−m+1≤i,j≤Mf

eie
T
j +

m∑
i=1

eMf−M+i(eMf+1 + · · · eMf+i)
T .(9.7)

E(WMf −WMf−M ) =
∑

Mf−m+1≤i,j≤Mf

E(eie
T
j ) +O(

m∑
i=1

iρi−j)

E(∆f ) = E((SMf − SMf−M )2) +O(MΘm+1) +
m∑
i=1

Θi,p

≥ λ∗M +MΘm+1,p + o(m−χ+1(logm)−A)

≥ λ∗M/2,

since m/M → 0 and Θm+1,p → 0.

Proof. of Proposition 5.5
Note that, we can also argue E(∆f ) .M and

||∆f − E(∆f )|| . (Mm)1/2.
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This in particular allows us to derive that ∆f is positive definite in an uniform manner.

P (inf
f
ρ∗(∆f ) > 0) ≤ n

M
sup
f
P (|∆f − E(∆f )| > M)(9.8)

≤ n

M

Mm

M2

= o(1),

provided one can choose M large enough to have nm/M2 → 0. Since, m� n it is possible
to choose such a sequence M � n.

Proof. of Theorem 5.3 Without loss of generality, we do the proof for the univariate
case, d = 1. We first discuss a few key results needed for the proof. As described in the key
strategies following Theorem 2.2, the covariance matrix of the approximating process goes
through several step whereas our estimate here is based on the original Xi process.
Define X̂ = Tn1/p(X)− E(Tn1/p(X)) where for a real number b > 0

Tb(w) = min(max(w,−b), b).

From [2] (cf expression 3.53), we have,

|E(XiXj)− E(X̂iX̂j)| = o(n2/p − 1).(9.9)

Define the blocks Aj as following. For 0 ≤ j ≤ qn = n/2k0m,

Aj+1 =

2jk0m∑
i=2jk0m+1

E(Tn1/p(Xi|εi, · · · εi−m)− E(Tn1/pXi).(9.10)

Let Bj denote the variance of j th block of the approximating Gaussian process. As de-
scribed in the ”rearrangement of variance” identity and ”truncated variance” identity in
Karmakar and Wu (2017), assumption (2.6) implies, for any j0 and t0,

|
j=j0+t0∑
j=j0

(V ar(Aj)− V ar(Bj))| = o(m).(9.11)

We omit the details here. Note that, using arguments similar to (9.7) we have

|E(∆f )− E(SMf − SMf−M )2| = O(MΘm+1,p).(9.12)

Let E(∆j
f ) denote E(WMf−M+2jk0m −WMf−M+2(j−1)k0m). By elementary manipulation,

one can show that,
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E(∆f ) =
∑
j

E(∆j
f ) + o(m).(9.13)

Denote γi and γ̃i to be the average of E(XkXk+i) and E(X̃kX̃k+i) for k ∈ Z . From (9.9),
(9.12),(9.13) and (9.13) we have,

[n/M ]∑
f=1

((
∑
j

V ar(Bj))
1/2 − E(∆f )1/2)2(9.14)

=
n

M
sup
f

((
∑
j

V arBj)
1/2 − (E(∆f ))1/2)2

=
n

M
sup
f

(
∑

j V arBj)− (E(∆f )))2

((V arAj)1/2 + (E(∆f ))1/2)2

=
n

M2
(M2Θ2

m,p +m2 + sup
f

(M/m)2 sup
j
|V ar(Aj)− E(∆j

f )|2)

= n(Θ2
m,p +m2/M2 + |γ0 − γ̃0 + 2

m∑
i=1

γi − 2
m∑
i=1

γ̃i|2)

= O(n(Θ2
m,p +m2/M2 + min

l≥0
(Θl.p + ln2/r−1)2)).

where the index j in the summation in
∑

j V ar(Bj) ranges from (f − 1)M/2k0m + 1 to

fM/2k0m. To choose a proper l one can equate l−χ = ln2/r−1 to obtain optimal l as
l∗ = n(1−2/r)/(1+χ). This choice of l also allows us to choose M � n so that, m ≤MΘl∗,p.
using m� n2/r. This leads to,

max
i≤n
|Gci −GEi |2 = oP (nmax{2/r,1−2χ(1−2/r)/(1+χ)}).(9.15)

Proof. of Proposition 5.6 One can view

max
i≤n
|

[i/M ]∑
f=1

∆f −
[i/2k0m]∑
j=1

V ar(Bj)|

as

max
j≤n/M

|
j∑

f=1

{∆f −
fM/2k0m∑

r=(f−1)M/2k0m+1

V ar(Br)}| = max
j≤n/M

|
j∑

f=1

Nf |+ max
j≤n/M

|
j∑

f=1

Uf |,
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where Nf = ∆f − E(∆f ) and

Uf = E(∆f )−
fM/2k0m∑

r=(f−1)M/2k0m+1

V ar(Br).

Using Proposition 1 from Wu (2007, [30]) and Lemma 8 from Xiao and Wu (2012, [33]) we
assume, n/M = 2d1 and proceed as follows,

‖ max
j≤n/M

|
j∑

f=1

Nf |‖q =

d1∑
t=0

(
2d1−t∑
c=1

‖
2tc∑

f=2tc−2t+1

Nf‖qq)1/q(9.16)

=

d1∑
t=0

(
2d−t∑
c=1

(2tMm)q/2)1/q

= (mM)1/22d1/q
d1∑
t=0

2t{1/2−1/q}.

Choosing q = 2, we get,

‖ max
j≤n/M

|
j∑

f=1

Nf |‖q = (nm)1/2 log n.

The second term involving Uf is easy and is treated similar to Theorem 5.3.
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