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In this paper, we try to address the issue of robustness in testing the equal-

ity of means of two normal populations with the same but unknown variance.

When the model is misspecified or outliers are present in the data, the usual

pooled two-sample ‘t-test’ for this hypothesis performs poorly in terms of the

empirical level and power. The t-test statistic is based on the Maximum Like-

lihood Estimator (MLE) of the parameter. Maximum likelihood estimation can

also be viewed as a special case of Minimum Distance Estimation. In this

paper we consider a few other density-based distances and contrast the perfor-

mance of the corresponding minimum distance procedures with the likelihood

based methods. In particular, we construct two new test statistics and test the

hypothesis of equality of means using them. The tests with these new statistics

lead to inference that is substantially more stable relative to the pooled two

sample t-test. We demonstrate that these new test statistics perform better in

the presence of outliers. We also consider the extension of some of our tests

to construct a more robust version of the Analysis of Variance test. Finally,

we present a relevant simulation study and discuss several real data examples

to substantiate our claims.

Keywords ANOVA, Hellinger Distance, Minimum Disparity Estimation,

Negative Exponential Disparity, Outliers, Robustness, t-test

1 Introduction

Parametric models are convenient ways of describing real data in terms of a

small number of interpretable parameters. However, all models are approxi-

mations to reality and small deviations are never unexpected. Yet, at certain

times, such small deviations can have a substantial effect on the classical tests

of hypotheses. Such deviations are often manifested through, among other

things, large outliers. Presence of outliers is a very common phenomenon that

we face while analyzing real data. Sometimes, these outliers may also be intro-

duced due to erroneous handling of the data, rather than through actual model

misspecification. There are numerous occasions where a small proportion of
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data seem to be far away from the ‘data-cloud’. Yet we cannot subjectively

ignore a few data points that appear to be geometrically well separated from

the rest of the observations. Other cases of model misspecification including

the inlier problem (See Lindsay (1994)) can also seriously harm the analysis.

In such contexts, the issue of robust inference comes in very naturally. Testing

equality of means of two populations is a very common testing frame. If we

assume normality and equality of variances of the two populations then this

allows us to do an exact pooled two sample t-test which has high power un-

der the true model. But, its performance is severely compromised under model

misspecification and the presence of outliers. It often leads to a severe inflation

in the observed level, and can also lead to a drastic drop in power under con-

tamination. These facts motivate us to look for new testing procedures which

are relatively less affected by the presence of a few geometrically ‘distant’ data-

points. In order to provide an early motivation for our test statistics, we will

start with a specific real example.

1.1 A Motivational Example

Koopmans (1987, Page 86) has presented a dataset in which the yearly measure

of wastage (termed as ‘run-up’) of two cotton mills were reported.

Mill 1 0.12 1.01 −0.20 0.15 −0.30 −0.07 0.32 0.27
−0.32 −0.17 0.24 0.03 0.35 −0.08 2.94 0.28

1.30 4.27 0.14 0.30 0.24 0.13

Mill 2 1.64 −0.60 −1.16 −0.13 0.40 1.70 0.38 0.43
1.04 0.42 0.85 0.63 0.90 0.71 0.43 1.97
0.30 0.76 7.02 0.85 0.60 0.29

Table 1: Mill Data

We subjectively consider the observations written in bold to be outliers. We

carry out a two sample pooled t-test on the entire data and the outliers-deleted

data which leads to the following results.

p-value
With outliers 0.3428

Without outlier 0.0308

Table 2: t-test p-values for the mill data example

This demonstrates that the presence of outliers can substantially affect a t-

test in terms of its p-value and hence can cause a reversal in the statistical

conclusion. In terms of the decision, the removal of outliers in this example

changes a clear decision of acceptance (at 5% level) to a comfortable rejection.

We will get back to this data example and illustrate the robustness that can

be brought in to this hypothesis testing with our new statistics.
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2 Density-based Minimum Distance Estima-

tion

In parametric minimum distance estimation two broad classes of distances have

been used in the literature, namely the distance between two distribution func-

tions (e.g. the Kolmogorov Smirnov distance) and the distance between two

densities (e.g. the chi square type distances). In this paper we will focus on

density-based distances. Several minimum distance estimators including those

based on the Hellinger distance and the Negative Exponential Disparity have

been shown to perform significantly better than the MLE on the robustness

count. see Lindsay (1994 [8]) and Basu et. al. (2011[2]) for a detailed descrip-

tion of the structural geometry which naturally leads to the robustness of these

estimators. Many of the ‘distances’ that we consider in this paper are really

divergences rather than metrics in the strict sense of the term. They represent

discrepancies between density functions but are not necessarily symmetric or

do not satisfy the triangle inequality. These include the class of disparities

which will be our primary tool in this paper. In a loose sense, however, we will

refer to these measures as ‘statistical distances’ or simply ’distances’.

2.1 The Mathematical Set-up

As we will focus on the normal distribution, we will describe our set-up in the

case of a continuous model. Let X1, X2, ..., Xn be a sequence of independent

and identically distributed observations from a distribution G having density

g with respect to the Lebesgue measure. The support is assumed to be the

entire real line unless otherwise mentioned. The distribution G will be mod-

eled by the parametric class of distributions Fθ = {Fθ : θ ∈ Θ ⊂ Rp}. As the

data are discrete and the model is continuous, one cannot directly construct a

distance between the data and the model densities. We will take recourse to

kernel density estimation to produce a continuous density estimate represent-

ing the data generating density. One can then construct a distance between

this density and the model density. This distance may be minimized to deter-

mine the corresponding minimum distance estimator, or to be used in tests of

hypothesis.

2.2 The Disparity Measure

To introduce the disparity measure, let us consider the parametric set up of the

previous section. Let G be the true, data generating distribution, and fθ be

the density function of the model distribution function Fθ. Let X1, X2, ..., Xn
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be a random sample from G, and let

g∗n(x) =
1

nhn

n∑
i=1

w

(
x−Xi

hn

)
=

∫
1

hn
w

(
x− y
hn

)
dGn(y)

define a nonparametric density estimator of the unknown true density g. Here

Gn is the empirical distribution function, w(·) is a smooth kernel function and

hn is the bandwidth. Let C be a thrice differentiable, strictly convex function

on [−1,∞), satisfying C(0) = 0. The Pearson residual at the value x is defined

by

δ(x) =
g∗n(x)

fθ(x)
− 1, (1)

and the disparity measure generated by C between the densities g∗n and fθ is

given by

ρC(g∗n, fθ) =

∫
C(δ(x))fθ(x)dx.

We drop the differential dx and occasionally the argument x as well for brevity

whenever there is no scope of confusion.

As C is convex it follows from Jensen’s inequality that ρC(g, f) ≥ 0 for any

two densities g and f with respect to the same measure. In minimum disparity

estimation, the estimator is the minimizer of ρC(g∗n, fθ) over the parameter

space Θ. If we take C(δ) = (δ + 1) log(δ + 1), the disparity is a version of

Kullback-Liebler divergence and is denoted as the likelihood disparity. It has

the form

LD(g∗n, fθ) =

∫
g∗n(x) log

(
g∗n(x)

fθ(x)

)
. (2)

Under discrete models, the exact same approach works for the construction

of the disparity. In addition, the discrete case has the advantage that now one

has a natural density estimate dn, which is the vector of relative frequencies

obtained from the sample. In this case, the likelihood disparity

LD(dn, fθ) =
∑
x

dn(x) log

(
dn(x)

fθ(x)

)
(3)

is a decreasing linear function of the log-likelihood so that the minimum dispar-

ity estimator corresponding to the likelihood disparity is actually the maximum

likelihood estimator.

For the continuous case, minimizing LD(g∗n, fθ) is equivalent to maximizing∫
log(fθ(x))dG∗n(x) whereG∗n is the distribution that corresponds to the density

g∗n. As G∗n is an estimate of G, an alternative is to simply substitute it with
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Gn, which generates the usual log-likelihood (scaled by n)

1

n

n∑
i=1

log fθ(Xi).

However, the LD is the only disparity where replacing G∗n with Gn is possible

in the continuous case. In case of the Hellinger distance, for example, the

objective function being maximized is∫
(g∗1/2n − f 1/2

θ )2 = 2

[
1−

∫
g∗1/2n f

1/2
θ

]
and a kernel smoothed density estimate g∗n is inevitably necessary.

While V1 =
∫

log(fθ(x))g∗n(x) and V2 = 1
n

∑
i log fθ(Xi) are in general dif-

ferent, they lead to (asymptotically) equivalent results in the following sense.

Let ∫
uθ(x)g∗n(x)dx = 0 and

1

n

∑
i

uθ(Xi) = 0

be the estimating equations resulting from the maximization of these two cri-

terions where uθ(x) = d/dθlogfθ(x). Then, under routine conditions on the

kernels (Beran,1977, Theorem 4), we have∫
uθ(x)g∗n(x) =

1

n

∑
i

uθ(Xi) + op(n
−1/2), (4)

and the estimators are easily seen to be equivalent. Thus the density-based

minimum distance estimation procedure is a general one which includes max-

imum likelihood estimation as a special case.

2.3 The Properties of the C Function

The conditions imposed on C will be called the disparity conditions. Apart

from the conditions mentioned in Section 2.2, we need certain other properties

of the C function, which we describe below.

• For the analysis of disparity-based minimum distance estimators it is

often beneficial to redefine the disparity to make the integrand in the

expression of ρC(g∗n, fθ) non-negative. As we have already imposed the

condition C(0) = 0 on the convex function C, non-negativity of the

integrand is implied by the additional condition C ′(0) = 0.

• For determining the asymptotic distribution of the disparity based good-

ness of fit statistic, it is useful to have the additional condition C ′′(0) = 1.
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Both modifications can be done without changing the estimating prop-

erties of the disparity. It is easy to see that the minimization problem un-

der these modifications is equivalent to the minimization of ρC∗(g
∗
n, fθ) where

C∗(δ) = C(δ)−C′(0)δ
C′′(0)

. This standardized form has both the additional properties

mentioned above. The estimating properties are preserved since ρC∗(g
∗
n, fθ) is

just a constant positive multiple of ρC(g∗n, fθ). So we can as well work with

this standardized C∗ function without any loss of generality. Henceforth, we

will assume C ′(0) = 0, C ′′(0) = 1 unless otherwise stated.

We also have an associated function, the Residual Adjustment Function

(RAF) which has a crucial role in the estimation process. Under appropriate

differentiability conditions, the minimum disparity estimator is obtained as the

solution of the estimating equation

−∇ρC(g∗n, fθ) =

∫
(C ′(δ)(δ + 1)− C(δ))∇fθ = 0,

where δ is as in equation (1) and∇ represents the gradient with respect to θ

(Similarly, ∇2 will represent the second derivative with respect to θ. ) The

RAF is the function A(δ) = C ′(δ)(δ + 1) − C(δ). Under our assumption on

the C function, we will have

A(0) = 0 and A′(0) = 1.

Without loss of generality, we assume that the RAF satisfies these two condi-

tions. The residual adjustment function provides a very convenient construct

for the geometrical description of the robustness of the minimum disparity

estimators. To be robust, the function should provide a dampened response

to increasingly positive δ. For the maximum likelihood estimating function

A(δ) turns out to be δ itself so that the function is linear in δ. Hence the

comparison of other minimum distance estimators with the MLE must focus

on how other RAFs A(δ) depart from linearity. Ideally we want these RAFs

to provide strong down-weighting for large positive δ.

2.4 Examples of Disparities

The following table gives a list of some useful (from the robustness viewpoint)

disparity functions and their corresponding RAF’s. A substantially larger

list of disparities is provided in Basu. et. al (2011), which also contains an

extended discussion of the properties of these distances.
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2.5 Notation

In this subsection, we present some notation that will facilitate the discussion.

We will consider two normal population with possibly different means (µ1 and

µ2) but a common variance (σ2). We denote

θ = (µ1, µ2, σ
2)′.

(θ)1 = (µ1, σ
2)′ and (θ)2 = (µ2, σ

2)′.

So whenever we put a subscript 1 after the bracketed 3× 1 vector θ, we refer

to the projection of the latter onto the 1st and 3rd co-ordinates of θ and for

(θ)2 it will be the projection onto the 2nd and the 3rd components.

Let x be a 2× 1 vector (x1, x2)′. Then we will denote

x1 =

 x1

0

x2

 and x2 =

 0

x1

x2

 .

Similarly, if A is a 3× 3 matrix,

A1 =

(
a11 a13

a31 a33

)
and A2 =

(
a22 a23

a32 a33

)
.

where the subscripts denote the indicated components of A. Let B be a 2× 2

matrix. Then

B1 =

 b11 0 b12

0 0 0

b21 0 b22

 and B2 =

 0 0 0

0 b11 b12

0 b21 b22

 .
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3 The First Proposal

In this section and the next we will describe two new test statistics for testing

the equality of means of two normal populations under the assumption of equal

variances. The basic set up is as follows. We have two independent random

samples X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 from two distributions G1 and G2

(having densities g1 and g2) where Gi is modeled by a N(µi, σ
2) distribution.

Thus the means are possibly different, but the variances are assumed to be

equal. Under this assumption we want to test the composite null hypothesis

H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

We denote θ = (µ1, µ2, σ
2). We will state our results for a general disparity

ρC . We will minimize the overall disparity ρO based on ρC which is defined as

ρO(g∗n1
, g∗n2

, θ) =
n1

n1 + n2

ρC(g∗n1
, f(θ)1) +

n2

n1 + n2

ρC(g∗n2
, f(θ)2)

where g∗ni is the kernel smoothed density based on the sample from the ith

population and f(θ)i is the normal probability density function with the pa-

rameters (θ)i as defined in Section 2.5. Here n1 and n2 represent the respective

sample sizes with n1 + n2 = n. Both n1 and n2 tend to ∞ at a rate which

guarantees that n1

n1+n2
→ w ∈ (0, 1). Then our first test statistic T1 is defined

as

T1 =
2n1n2

n1 + n2

ρC(f(θ̂)1
, f(θ̂)2

)

where θ̂ = arg inf
θ∈Θ

ρO(g∗n1
, g∗n2

, θ) == (µ̂1, µ̂2, σ̂
2).

3.1 Null Distribution of the Statistic T1

We will need some preliminary results before we can arrive at the distribution

of the statistic T1. Note that the parameter space Θ of θ = (µ1, µ2, σ
2) is

not compact in itself but in can be embedded within a compact space Θ̄ and

ρO(g1, g2, θ) can be extended to a continuous function of θ on Θ̄, where g1 and

g2 are the true data generating densities. This can be done by reparamtrizing

µ1, µ2, σ2 as α = (α1, α2, α3), µ1 = tan(α1), µ2 = tan(α2), σ2 = tan(α3).

Henceforth we will assume that the densities g1 and g2 belong to the model

family. We will let θ0 = (µ10, µ20, σ
2
0) represent the true parameter, so that,

according to our notation, g1 = f(θ0)1 and g2 = f(θ0)2 . We will, henceforth,

also assume that θ0 = arg inf ρO(f(θ0)1 , f(θ0)2 , θ). Under the identifiability of

the normal densities this assumption is automatically true.

To complete the required derivations, we will show that θ̂ is a consistent

estimator of θ0, and demonstrate its asymptotic normality. We will then com-
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bine these results appropriately to derive the asymptotic null distribution of

the statistic T1.

Lemma 3.1. (Consistency) Suppose that |C ′(·)| is bounded on [−1,∞).

Also assume that θ0 = arg inf ρO(f(θ0)1 , f(θ0)2 , θ) is unique. If g∗n1

as→ f(θ0)1 in

L1 , and g∗n2

as→ f(θ0)2 then θ̂ is a consistent estimator of θ0.

Proof. First, suppose g∗n1
and g∗n2

are two fixed sequences of densities which

tend to f(θ0)1 and f(θ0)2 in L1. We will prove that this implies θ̂ goes to θ0.

Note that, in this case, as g∗n1
and g∗n2

are fixed, θ̂ is also a fixed sequence. In

our context, as the two former convergences happen almost surely, so does the

last convergence and hence θ̂
P→ θ0. Define,

ρ(t) = ρO(f(θ0)1 , f(θ0)2 , t)

and

ρn(t) = ρO(g∗n1
, g∗n2

, t).

We have

θ0 = arg inf ρ(t) and θ̂ = arg inf ρn(t).

Now,

|ρn(t)−ρ(t)| ≤ n1

n1 + n2

∫
|C(δn1)−C(δ1)|f(t)1+

n2

n1 + n2

∫
|C(δn2)−C(δ2)|f(t)2

where δni = g∗ni/f(t)i − 1 and δi = f(θ0)i/f(t)i − 1 for i = 1, 2. By the mean

value theorem, there exist δ∗1 and δ∗2 satisfying

C(δni)− C(δi) = C ′(δ∗i )(δni − δi)

where δ∗i lies between δni and δi for i = 1, 2. Denote K = maxδ |C ′(δ)|. Then

we have,

|ρn(t)− ρ(t)| ≤ K

∫
[|g∗n1

− f(θ0)1|+ |g∗n2
− f(θ0)2|]

for all t ∈ Θ. Hence in this case we get, under the L1 convergence of g∗ni to

f(θ0)i ,

sup
t
|ρn(t)− ρ(t)| → 0.

If ρ(θ0) ≥ ρn(θ̂), then ρ(θ0)− ρn(θ̂) ≤ ρ(θ̂)− ρn(θ̂), and if ρn(θ̂) ≥ ρ(θ0), then

ρn(θ̂)− ρ(θ0) ≤ ρn(θ0)− ρ(θ0). Therefore, we have

|ρn(θ̂)− ρ(θ0)| ≤ 2 sup
t
|ρn(t)− ρ(t)|,

which implies ρn(θ̂)→ ρ(θ0) and hence ρ(θ̂)→ ρ(θ0).
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If θ̂ does not converge to θ0, compactness of Θ ensures existence of a sub-

sequence {θm} ⊂ {θ̂} such that θm → θ∗ 6= θ0, implying ρ(θm)→ ρ(θ∗) by the

continuity of ρ(·). This implies ρ(θ∗) = ρ(θ0) which contradicts the uniqueness

of arg inf ρO(f(θ0)1 , f(θ0)2 , θ). This completes the proof.

Lemma 3.2. (Normality): We assume that all the conditions stated in Park

and Basu (2004, Theorem 3.4) hold with appropriate modifications in the nota-

tion in the context of our problem. Additionally, we assume |C ′(δ)| is bounded

in [−1,∞).

Under these assumptions, we have the asymptotic convergence

√
n(θ̂ − θ0)

D→ N(0, I−1
θ0

)

where

Iθ0 =


w 1
σ2
0

0 0

0 (1− w) 1
σ2
0

0

0 0 1
2σ4

0

 .

Remark Before we prove this, let us add a few remarks about the matrix Iθ0 .

We note that, under the notation of Section 2.5,

Iθ0 = w(I((θ0)1))1 + (1− w)(I((θ0)2))2

where

I((θ0)1) =

((
E

[
∂2

∂(θ)i1∂(θ)j1
log f(θ)1(X)

]))
=

(
1
σ2
0

0

0 1
2σ4

0

)
,

I((θ0)2) =

((
E

[
∂2

∂(θ)i2∂(θ)j2
log f(θ)2(Y )

]))
=

(
1
σ2
0

0

0 1
2σ4

0

)
.

Here, I((θ0)1) is the 2 × 2 information matrix for a normal population with

mean µ1 and variance σ2
0. Similarly for I((θ0)2). Now, we are ready to present

the proof following the derivations in Park and Basu (2004) and Lemma 3.1.

Proof. Due to the condition (c) imposed on the kernel function in Theorem

3.4 in Park and Basu (2004), we have, g∗ni(x)
a.s→ f(θ0)i(x) for every x and∫

|g∗ni(x)− fθ0(x)|dx→ 0,
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for i = 1, 2 and hence by Lemma 3.1, θ̂
P→ θ0.

For convenience let us write ρO(θ) = ρO(g∗n1
, g∗n2

, fθ). As θ̂ minimizes ρO(θ)

over Θ, Taylor’s theorem yields

0 = ∇ρO(θ̂) = ∇ρO(θ0) +∇2ρO(θ∗)(θ̂ − θ0)
√
n(θ̂ − θ0) = (∇2ρO(θ∗))−1(−

√
n∇ρO(θ0)),

where θ∗ is a point on the line segment joining θ0 and θ̂. Now, as θ̂ is trapped

in between θ̂ and θ0, it also converges to θ0 in probability. We will prove that,

(A1) ∇2ρO(θ∗)
P→ Iθ0 .

(A2) −
√
n∇ρO(θ0)

D→ N(0, Iθ0).

That proving these two suffices for the final conclusion is evident from Slut-

sky’s theorem. To prove (A1) and (A2) we will follow the proofs of Equation

(6) and Equation (7) in Theorem 3.4 in Park and Basu (2004).

Proof. (A1) Note that,

∇2ρO(θ∗) =
n1

n1 + n2

(∇2ρ1((θ∗)1))1 +
n2

n1 + n2

(∇2ρ2((θ∗)2))2.

As θ̂∗ is in between θ̂ and θ0, θ∗ converges in probability to θ0. Consequently,

(θ∗)i, for i = 1, 2, converges in probability to (θ0)i. Then it follows from Park

and Basu (2004, Theorem 3.4) that

∇2ρ1((θ∗)1)
P→ I((θ0)1)

and

∇2ρ2((θ∗)1)
P→ I((θ0)2).

Therefore,

∇2ρO(θ∗) =
n1

n1 + n2

(I((θ0)1))1 +
n2

n1 + n2

(I((θ0)2))2 + op(1) = Iθ0 + op(1)

and this completes the proof of this part.

Proof. (A2) Note that,

−
√
n∇ρO(θ0) = −

√
n

[(
n1

n1 + n2

∇ρ1((θ0)1)

)1

+

(
n2

n1 + n2

∇ρ1((θ0)1)

)2
]

=

√
n1

n1 + n2

(−
√
n1∇ρ1((θ0)1))1 +

√
n1

n1 + n2

(−
√
n1∇ρ1((θ0)1))2.

Applying Equation (7) from Park and Basu (2004, Theorem 3.4) we have
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• (−√n1∇ρ1((θ0)1))
D→ N(0, I((θ0)1)),

• (−√n2∇ρ2((θ0)2))
D→ N(0, I((θ0)2)).

Also, these two are independent as (−√n1∇ρ1((θ0)1)) and (−√n2∇ρ2((θ0)2))

are related to observations from the first and second samples respectively.

Therefore,

−
√
n∇ρO(θ0)

D→ N(0, Iθ0).

Hence, the result is proved.

Result 3.3(Asymptotic null distribution) Suppose that, the assumptions

stated in Park and Basu (2004, Theorem 3.4) hold as do the assumptions of

Lemma 3.1. Then T1 has an asymptotic χ2 distribution with 1 degree of

freedom.

Proof. Let α((µ, σ2)′) denote ρC(f(µ,σ2)′ , f(θ̂)2
). We write T1 as 2cnα((µ̂1, σ̂

2)′)

where, cn = n1n2

n1+n2
. Now,

α((µ̂1, σ̂2)′) = α((µ̂2, σ̂2)′)+∇α((µ̂2, σ̂2)′)′(µ̂1−µ̂2, 0)′+
1

2
(µ̂1−µ̂2, 0)∇2α(θ∗2)(µ̂1−µ̂2, 0)′

where θ∗2 lies between (µ̂1, σ̂
2)′ and (µ̂2, σ̂

2)′ and hence under null goes to

(µ0, σ
2
0)′ in probability.

Now, from the definition of α((µ, σ2)′) it follows that,

α((µ̂2, σ̂
2)′) = 0.

and

∇α((µ̂2, σ̂
2)′) = 0

where ∇ represents the gradient with respect to (µ, σ2) and ∇α((µ̂2, σ̂
2)′) is

the derivative of α(·) evaluated at (µ̂1, σ̂
2)′. The latter equality follows as the

minima of the function α(·, ·) is attained at (µ̂2, σ̂
2)′.

Simplifying the above expression we obtain

T1 = cn(µ̂1 − µ̂2)′
∂2

∂µ2
α((µ∗, σ∗)′)(µ̂1 − µ̂2.)

Using assumption (a) of Theorem 3.4 of Park and Basu (2004), the bounded-

ness of C ′(δ) and the Dominated Convergence Theorem gives us

∂2

∂µ2
α((µ∗, σ∗)′) =

∂2

∂µ2
α((µ̂2, σ̂

2)′) + op(1) =
1

σ̂2
+ op(1)
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The latter equality is established by the following simple calculation.

∂2

∂µ2

∫
C

(
f(θ)1

f
(̂θ)2

− 1

)
f

(̂θ)2
|
(θ)1=(̂θ)2

=

∫
C ′′

(
f(θ)1

f
(̂θ)2

− 1

)
( ∂
∂µ
f(θ)1)

2

f
(̂θ)2

+ C ′

(
f(θ)1

f
(̂θ)2

− 1

)
∂2

∂µ2
f(θ)1|(θ)1=(̂θ)2

=

∫ ( ∂
∂µ
f(θ)1)

2

f
(̂θ)2

|
(θ)1=(̂θ)2

[As C ′(0) = 0 and C ′′(0) = 1]

=

∫ (
∂

∂µ
log f(θ)1|(θ)1=(̂θ)2

)2

f
(̂θ)2

= E
(̂θ)2

(
x− µ̂2

σ̂2

)2

=
1

σ̂2
.

So,

T1 = cn
(µ̂1 − µ̂2)′(µ̂1 − µ̂2)

σ̂2
+ cn(µ̂1 − µ̂2)′(µ̂1 − µ̂2)op(1).

Now, from Lemma 3.2, it follows that
√
n1 + n2(µ̂1− µ̂2)

D→ N(0, σ2
0( 1
w

+ 1
1−w )).

That implies
√
n1 + n2

√
w(1− w)(µ̂1 − µ̂2)

D→ N(0, σ2
0). Now, it is trivial to

show that as n1, n2 goes to ∞ in a way that n1

n1+n2
→ w then

(n1 + n2)w(1− w)
n1n2

n1+n2

→ 1

So, √
n1n2

n1 + n2

(µ1 − µ2)
D→ N(0, σ2

0).

From Lemma 3.1,

σ̂2 P→ σ2
0.

By Slutsky’s theorem,

n1n2

n1 + n2

(µ̂1 − µ̂2)′(µ̂1 − µ̂2)

σ̂2

D→ χ2
1

n1n2

n1 + n2

(µ̂1 − µ̂2)′(µ̂1 − µ̂2)

σ̂2
op(1) = Op(1)op(1) = op(1).

So, we note that cn = n1n2

n1+n2
is the correct multiplier. The last two equations

with the help of Slutsky’s theorem implies

2cnα((µ̂1, σ̂
2)′)

D→ χ2
1

13



i.e. under H0,

T1 ∼ χ2
1 asymptotically.

3.2 Modifications for the inclusion of Hellinger Distance

For the Hellinger distance, as we can see, none of the three functions |C ′(δ)|,
A(δ) and A′(δ)(δ + 1) are bounded on [−1,∞). Naturally, if we look at the

subclass of disparities for which Park and Basu (2004) results are valid, it

does not include Hellinger distance. But Hellinger distance remains one of

the most popular distances used in minimum distance literature. So, in this

subsection, we will discuss conditions which will allow the Hellinger distance

to be included. Consistency: For the Hellinger disparity, we see that

|ρn(t)− ρ(t)| ≤ 4

(∫
|(g∗1/2n1

− f 1/2
(θ0)1

)|f 1/2
(t)1

+

∫
|(g∗1/2n2

− f 1/2
(θ0)2

)|f 1/2
(t)2

)
≤ 4

(∫
|(g∗1/2n1

− f 1/2
(θ0)1

)|2 +

∫
|(g∗1/2n2

− f 1/2
(θ0)2

)|2
)

where the last inequality follows from Cauch-Schwarz inequality.

Thus the required condition for supt |ρn(t)− ρ(t)| to converge to 0 is that

g
∗1/2
ni → f

1/2
(θ0)i

in L2 for i = 1, 2. Under the restrictions imposed on the kernel in

Lemma 3.2 , the kernel smoothed densities g∗ni indeed satisfy this (Beran,1977).

Normality: In Lemma 3.2, while we prove conclusion (A1), we require the

derivation of Equation (6) as done in Park and Basu Theorem 3.4. A crucial

step in that derivation was that A(δ∗) and A′(δ∗)(δ∗+1) is bounded in [−1,∞)

. In the case of Hellinger disparity, A(δ∗) and A′(δ∗)(δ∗ + 1) are both linear

function of
√
δ∗ + 1 =

√
g∗ni/f(θ∗)i where θ∗ = θ0 + op(1). Now, from the

conditions imposed on the kernel g∗ni(x)
as→ f(θ0)i(x) and f(θ∗)i(x)

as→ f(θ0)i(x).

If we assume that supx(g
∗
ni

(x)/f(φ)i(x)) is bounded where φ = θ0 + op(1) then

we can carry out the proof as done in the proof of (6) in Theorem 3.4 from

Park and Basu (2004).

For the proof of (A2) in Lemma 3.2, we have used Park and Basu Theorem

3.4 derivation of Equation (7). We note that the crucial step is to find a B

such that

|A(r2 − 1)− (r2 − 1)| ≤ B(r − 1)2 for all r.

For the Hellinger disparity we can see that left hand side of the above inequality

itself turns out to be (r − 1)2 and hence is trivially satisfied for any choice of

B ≥ 1. Thus, although A′(δ) and A′′(δ)(δ + 1) are not bounded, we can

still prove Equation(7) of Theorem 3.4 in Park and Basu (2004) automatically

holds in a direct manner for the special case of Hellinger Distance.

14



The proof for Result 3.3 remains the same for the Hellinger distance under

the additional assumptions required here.

3.3 Power Approximation of T1

We will approximate the power of the test T1 based on its asymptotic distribu-

tion. In this test we reject the null at level α if observed value of T1 is greater

than the chi-square α% upper quantile. To find the power, we need to find

out Pθ[T1 > χ2
1,α] where θ = (µ1 µ2 σ

2)′. Here µ1, µ2 are not necessarily equal.

Let r(θ) = ρC(f(θ)1 , f(θ)2). Then,

√
nr(θ̂) =

√
nr(θ) + (∇θr(θ))

′√n(θ̂− θ) +
1

2

1√
n

[
√
n(θ̂− θ)′∇2θr(θ

∗)
√
n(θ̂− θ)]

A careful check of the proof of Lemma 3.2 (Asymptotic normality) indicates

that even under a general θ,

√
n(θ̂ − θ) ∼ N(0, I(θ)−1).

Therefore, under θ, the third term of the above Taylor series expansion is op(1)

and the second term follows a normal distribution with mean 0 and variance

∇θr(θ)
′I(θ)∇θr(θ). If we call this variance σ2

θ then asymptotically,

√
n

[
T1

2cn
− r(θ)

]
∼ N(0, σ2

θ).

The approximated power is

1− Φ

√n(
χ2
1,α

2cn
− r(θ))

σθ

 .

4 The Second Statistic

In this section, the basic set-up of the problem remains the same as the previous

one. We define θ̂0 = (µ̂0, µ̂0, σ̂
2
0)′ where

(µ̂0, σ̂
2
0) = arg inf

µ,σ2

n1

n1 + n2

ρC(g∗n1
, f(µ,σ2)) +

n2

n1 + n2

ρC(g∗n2
, f(µ,σ2))

where g∗ni is the kernel-smoothed density for the ith population and f(µ,σ2) is

the normal probability density function (pdf) with mean µ and variance σ2.

Here our test statistic is

T2 = 2n(ρO(θ̂0)− ρO(θ̂)).
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The intuition behind this test statistic is that if the null is true then θ̂ and

θ̂0 should be close. Hence the test statistic described above should not be too

large. In the following subsections, we will show that, under H0,

T2
L→ χ2

1.

The degree of freedom of the asymptotic chi-square distribution is also

natural as there is just one restriction imposed by H0.

4.1 Some Important Results

In order to prove the null distribution of T2 we will need the following results

listed below. Suppose that θ̂ and θ̂0 denote the estimators for a fixed ρ and

θ̂MLE and θ̂0MLE denote the corresponding maximum likelihood estimators.

Then,

(B1)
√
n(θ̂ − θ0) = I−1

θ0
(Kθ0) + op(1) where K(θ0) does not depend on the

disparity used.

(B2)
√
n(θ̂ − θ̂0) =

√
n(θ̂MLE − θ̂0MLE) + op(1).

(B3)
√
n(θ̂ − θ̂0) = Op(1).

Proof. (B1) By a Taylor’s series expansion,

√
n(θ̂ − θ0) = (∇2ρO(θ∗))−1(−

√
n∇ρO(θ0))

= I−1
θ0

(−
√
n∇ρO(θ0)) + op(1)

where the last equality follows from Equation (A1) in Lemma 3.2. Here, by

the consistency of θ̂, we get θ∗ = θ0 + op(1). Now,

−
√
n∇ρO(θ0) =

√
n1

n
(−
√
n1∇(ρC(θ0)1))1 +

√
n2

n
(−
√
n2∇(ρC(θ0)2))2

=

√
n1

n

(
−
√
n1

∫
A(δn1)∇f

)1

+

√
n2

n

(
−
√
n2

∫
A(δn2)∇f

)2

=

√
n1

n

(
−
√
n1

∫
δn1∇f

)1

+

√
n2

n

(
−
√
n2

∫
δn2∇f

)2

+ op(1)

=

√
n1

n

(
−
√
n1

∫
u(θ0)1g

∗
n1

)1

+

√
n2

n

(
−
√
n2

∫
u(θ0)2g

∗
n2

)2

+ op(1)

where δni = g∗ni/f(θ0)i − 1 for i = 1, 2. The penultimate equality follows from

Equation (7) of Park and Basu (2004, Theorem 3.4)). The final expression

obviously does not depend on the disparity used. We call this expression by

Kθ0 .
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Proof. (B2)

From Result (B1) and Equation (4) it follows that,

√
n(θ̂ − θ̂MLE) = op(1) (5)

Under the null, we have a restriction that the first two co-ordinates of θ is same.

So θ0 = (µ0, µ0, σ
2
0)′. We call the subset of parameter vectors in Θ which has its

first two co-ordinates same by Θ0. If we construct the vector of free parameters

under the restrictions of the null, ν = (µ, σ2) then, g(ν) = (µ, µ, σ2) ∈ Θ0.

Now, we can prove consistency and asymptotic normality of n̂u in a similar

fashion and thus
√
n(ν̂ − ν̂MLE) = op(1).

This allows us to prove,

√
n(g(ν̂)− g(ν̂MLE)) = op(1).

In other words,

√
n(θ̂0 − θ̂0MLE) = op(1). (6)

Equations (4) and (5) give us the Result (B2). The proofs of relevant results for

ν̂ involve no essential additional difficulty and hence is omitted for brevity.

Proof. (B3) We have already proved that

√
n(θ̂ − θ0)

D→ N(0, I−1
θ0

).

And hence,
√
n(θ̂ − θ0) = Op(1).

Under this v-formulation, it can be shown that,

√
n(θ̂0 − θ0) = Op(1)

If the above two are Op(1) then so are their difference. Hence, Result (B3) is

established.

4.2 Final Proof For The Null Distribution

An application of the Taylor series in θ̂0 around θ̂ gives
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T2 = 2n(ρO(θ̂0)− ρO(θ̂))

= 2n(θ̂0 − θ̂)′∇ρO(θ̂) + n(θ̂ − θ̂0)′∇2ρO(θ∗)(θ̂ − θ̂0)

= n(θ̂ − θ̂0)′∇2ρO(θ∗)(θ̂ − θ̂0)

where the last equality follows from the fact that ∇O(θ̂) = 0. Now, Result

(B3), Result (A2) from Lemma (3.2) imply

T2 =
(√

n(θ̂ − θ̂0)
)′

(Iθ0)
(√

n(θ̂ − θ̂0)
)

+ op(1)

Another application of Result (B2) establishes that

T2 =
(√

n(θ̂MLE − θ̂0MLE)
)′

(Iθ0)
(√

n(θ̂MLE − θ̂0MLE)
)

+ op(1).

From Serfling (1980) we have(√
n(θ̂MLE − θ̂0MLE)

)′
(Iθ0)

(√
n(θ̂MLE − θ̂0MLE)

)
D→ χ2

r

under the null , where r is the number of restriction(r = 1 in our case).

5 Level and Power of the New Tests

In this section we will demonstrate how our test statistics perform under pure

and contaminated data. First, we will be describing a few simulations. We will

contrast the performance of our test statistics with the pooled t-test and Yuen’s

test (1974). We will show how small contamination of only 10 % can have a

severe effect on the performance of the pooled t-test. In the literature, there

already exists some robust tests for testing the hypothesis of equality of mean.

We will compare our tests with Yuen’s(1974) trimmed t-test. The latter test is

a t-test on a symmetrically winsorized sample. We will consider two different

winsorization proportions (10% and 5%) and look at their performances. We

call these two statistics by W1 and W2 in our tables. The pair of sample sizes

chosen are (30,50), (50,50) and (70,50). We are providing the results for the

Hellinger distances here.

For each calculation, we have chosen the bi weight kernel with the band-

width chosen according to the rules specified by Simpson(1989).
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5.1 Level comparison

For performance in terms of the empirical level, we have generated two datasets

from N(0, 1) and N(0, 1) with sample sizes specified above. Then we have

discussed 11 cases. One of them is without any contamination. For the others,

we have contaminated the second data in 10% proportion with the degenerate

random variable y where y takes value from 0 to -9. The proportion of rejection

in 500 replications is reported in the following table.

Table 3: Level comparison
Level 0 -1 -2 -3 -4 -5 -6 -7 -8 -9
30-50 T1 0.07 0.068 0.088 0.124 0.16 0.124 0.1 0.098 0.102 0.092 0.086

T2 0.087 0.086 0.086 0.161 0.334 0.311 0.201 0.246 0.234 0.223 0.193
W1 0.154 0.144 0.204 0.262 0.296 0.308 0.312 0.314 0.306 0.304 0.3
W2 0.048 0.056 0.084 0.138 0.194 0.226 0.246 0.27 0.276 0.292 0.306

t 0.05 0.052 0.062 0.108 0.154 0.202 0.23 0.248 0.254 0.28 0.28

50-50 T1 0.062 0.048 0.076 0.144 0.16 0.13 0.08 0.092 0.1 0.09 0.086
T2 0.105 0.073 0.107 0.177 0.373 0.261 0.199 0.242 0.242 0.248 0.191
W1 0.162 0.144 0.184 0.248 0.272 0.288 0.292 0.288 0.284 0.282 0.276
W2 0.042 0.044 0.07 0.134 0.216 0.294 0.368 0.43 0.462 0.496 0.532

t 0.06 0.046 0.066 0.15 0.216 0.312 0.366 0.422 0.444 0.482 0.504

70-50 T1 0.074 0.068 0.1 0.152 0.186 0.102 0.072 0.092 0.094 0.09 0.096
T2 0.087 0.061 0.121 0.164 0.349 0.213 0.202 0.204 0.219 0.245 0.189
W1 0.16 0.168 0.232 0.32 0.34 0.34 0.34 0.34 0.336 0.33 0.318
W2 0.056 0.05 0.072 0.152 0.274 0.376 0.464 0.548 0.592 0.628 0.652

t 0.04 0.038 0.064 0.16 0.316 0.404 0.5 0.586 0.628 0.658 0.674

From the above table, we can make the following remarks:

• For the new tests T1 and T2 we see that the observed level is increasing

up to the contamination of -3 and then it slowly goes down. But for the

trimmed t tests or usual pooled t test they are steadily increasing.

• Out of T1 and T2 we see that T1 remains much closer to the asymptotic

level 0.05. The statistic T2 brings the observed level down to 0.19 whereas

T1 can bring it down to 0.08. We can also explain why does these level

first increase and then decrease. Initially the contaminating point is not

too far from the mean of the original population. So the 10 % contam-

ination, sometimes, were not identified as outliers. But after a certain

stage, as the contaminating discrete mass goes further, it becomes iden-

tified as outlier and hence the robust estimators down-weight the impact

of those points and hence the level comes closer to the asymptotically

true level.
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• We also see that the existing robust tests behave quite similar to the t-

test. naturally when the trimming proportion is only 5% it is much closer

to the t test than the one with 10 % trimming. When the data is trimmed

10% from each side, most of the time the contaminating points go away

and hence our results become more robust. But still the observed level

cannot go down below .3 even when the outlier is very extreme. This is

a serious drawback of an existing measure which is supposed to perform

good in the presence of outliers.

• We also note that our new test statistics perform well in all of the above

combination of sample sizes. But the trimmed t test and the poled t test

have huge variation for the three combinations.

5.2 Power comparison

We generate the second data from N(1, 1). We keep the contaminating set-

up the same.The choice of −9 was made so that the mean of the true data

generating distribution becomes zero. Here, proportion of rejection will give

us an idea about the asymptotic power. The following two tables report the

performance of the tests based on the Hellinger distance.

Table 4: Power Comparison
Power .. 0 -1 -2 -3 -4 -5 -6 -7 -8 -9
30-50 T1 0.988 0.954 0.912 0.828 0.888 0.958 0.966 0.972 0.97 0.978 0.978

T2 0.864 0.779 0.836 0.773 0.883 0.908 0.912 0.914 0.918 0.918 0.917
W1 0.994 0.982 0.938 0.906 0.87 0.816 0.792 0.75 0.734 0.71 0.692
W2 1 0.986 0.898 0.792 0.65 0.498 0.414 0.338 0.278 0.236 0.208

t 0.994 0.974 0.918 0.72 0.504 0.312 0.192 0.122 0.088 0.06 0.04

50-50 T1 0.994 0.978 0.956 0.92 0.946 0.986 0.984 0.984 0.986 0.99 0.99
T2 0.906 0.852 0.859 0.851 0.91 0.952 0.938 0.944 0.942 0.94 0.94
W1 1 0.996 0.988 0.928 0.878 0.83 0.784 0.75 0.732 0.7 0.68
W2 0.998 0.998 0.966 0.864 0.732 0.6 0.5 0.41 0.348 0.296 0.248

t 1 0.994 0.962 0.858 0.634 0.434 0.282 0.2 0.138 0.108 0.066

70-50 T1 1 0.988 0.958 0.94 0.964 0.99 0.992 0.996 0.996 0.994 0.992
T2 0.933 0.881 0.871 0.873 0.904 0.951 0.955 0.956 0.962 0.969 0.957
W1 1 0.998 0.98 0.944 0.908 0.844 0.788 0.758 0.724 0.712 0.686
W2 1 1 0.978 0.92 0.778 0.64 0.506 0.422 0.334 0.276 0.248

t 1 1 0.972 0.88 0.706 0.504 0.364 0.23 0.16 0.124 0.11

We can make the following remarks about the above table

• We see that initially the power of T1 and T2 were below the pooled t

and the trimmed t test but by the time the contaminating value is −3 or
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Figure 1: Power: n1=70, n2=50

smaller, the powers of pooled t and trimmed t go down steadily whereas

the power for our tests increase steadily.

• Out of T1 and T2 we see that the power of T1 is almost always better

than that of T2. But compared to other tests, both these tests are far

more efficient.

• The 10 % trimmed test performs a little better than others but in the

extreme case it cannot give a power more than 0.7 whereas T1 and T2 is

giving a power of around 0.95 to 0.99.

• The 5% trimmed t test does not do as good as the 10% trimmed one

but it is better than the pooled t-test. Pattern wise, both these trimmed

tests are similar to the pooled t test.

• t-test performance is very poor in terms of robustness. Even in the

contamination of only 10% the power can go as low as 0.04. The drop is

very sharp too. This is a very serious concern about the pooled t-test. It

is an exact test and it might be a little shocking that it is performing this

poorly. This motivates us to look for an explanation. The problem is

that in this setup the mean of the contaminated population and the true

population were kept same and so there is not a huge effect of outlier

on the numerator of the t statistic. But in the denominator, we have a

S term which is the pooled estimate of the common standard deviation.

When we have a big outlier it increases the standard deviation and hence

the t statistic becomes smaller and hence it becomes harder to reject than

usual. So, we are getting many false negatives in the case where outliers

are present.

In the above discussions we see that in terms of both level and power, our

new test statistics are better than the pooled t-test. Not only that, it is also
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significantly better than an existing robust test. In both the cases of level and

power we see that by the time the contaminating value becomes sufficiently

small (−2 for level and −3 for power) the pattern for the new test statistic

change where as the trimmed tests and the pooled t test show a very steady

pattern. These simulation results consolidate our claim that these new test

statistics provide significantly more robust test statistics in the case where the

data points are vulnerable of being contaminated.

6 The Multiple Sample Problem: ANOVA

6.1 Natural extension of T2 to multi-sample

We have already seen that T1 is better than T2 in terms of both level and

power, although the difference is marginal. But T2 enjoys the advantage of

being extendable to a multi-sample mean comparison scenario but T1 does

not.

Given samples of sizes n1, n2, ..., nk from k different normal populations,

we consider, under the common variance assumption, the statistic

T2 = 2n[ρO(g∗n1
, g∗n2

, ...g∗nk , θ̂0)− ρO(g∗n1
, g∗n2

, ...g∗nk , θ̂0)]

where each entry has its own obvious meaning to test the null hypothesis

H0 : µ1 = µ2 = ... = µk. Here

ρO(g∗n1
, g∗n1

, ..., g∗n1
, θ) =

n1

n
ρC(g∗n1

f(θ0)1) +
n2

n
ρC(g∗n2

f(θ0)2) + ...
nk
n
ρC(g∗nkf(θ0)k).

The test is expected to perform better than the classical test of Analysis

of variance.

6.2 Proofs are similar

The proof of the null distribution of the ANOVA statistic T2 has no new ideas

or tricks involved beyond the two sample case. The number of groups are

simply extended to k(k > 2) from 2. The number of restrictions in the null

hypothesis H0 : µ1 = µ2 = ... = µk is k − 1. Accordingly, the statistic has a

χ2
k−1 distribution under this scenario. We do not provide a separate proof in

this case.

7 Real data examples

In this section we will be discussing a few real data examples. These data are

carefully chosen to illustrate the impact of outliers in statistical inference. For
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each of the following data, we will be discussing it’s source and nature. We

will first describe the data and will show the outliers in bold letters. These

outliers are chosen subjectively. We will delete the outliers from one or both

the datasets. That will give us four different comparable datasets. In these, we

will look at the p-values of the two new test statistic and contrast it with that

of the pooled two-sample t test. We will also present the θ̂, θ̂0, θ̂MLE, θ̂0MLE,

in a separate table for each of these datasets. In all these computations, we

use Hellinger distance as our C function.

7.1 Two Sample comparison datasets

Example 1 (Lake Data): These data are obtained from Balakrishnan (1985[1]).

The data consist of the pollution levels of two lakes. The data, presented in

Table 5 represented the values of 10(x − 20) where x is the actual pollution

level.

Lake 1 −1.48 1.25 −0.51 0.46 0.6 −4.27 0.63 −0.14
−0.38 1.28 0.93 0.51 1.11 −0.17 −0.79 −1.02
−0.91 0.1 0.41 1.11

Lake 2 1.32 1.81 −0.54 2.68 2.27 2.7 0.78 −4.62
1.88 0.86 2.86 0.47 −0.42 0.16 0.69 0.78
1.72 1.57 2.14 1.62

Table 5: Lake Data

From Table 6, we see that the p-values for both the new statistics are quite

small in all the four cases including the different combinations of presence and

absence of outliers. This will lead to solid rejections of the null hypothesis even

at 1% level of significance for each of the four cases and each of the two new

statistics. However, for the t-test we see that both in the first and the third

cases the p-values are more than 1% and in the third case it even exceeds 5%.

This shows that the presence (or absence) of the outliers have a significant

effect on the decision of the t-test.

Table 7 shows that the removal of the first outlier brings the means closer

and leads to a larger p-value for the pooled t-test. however, outlier deletion or

retention has negligible effects on either T1 or T2.

Outliers T1 T2 pooled t-test
Both Present 0.000308 0.0003 0.027525

Both Removed 0.00045 0.000399 0.000523
1st Removed 0.001774 1E-05 0.050257

2nd Removed 0.000396 0.000334 0.00075

Table 6: p-values for the Lake Data Example for the different tests
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Outliers µ̂1 µ̂2 σ̂2

Both present

θ̂ 0.104247 1.328859 1.055237

θ̂0 0.65597 0.65597 1.211732

θ̂MLE −0.064 1.0365 2.18983

θ̂0MLE 0.48625 0.48625 2.444219
Both removed

θ̂ 0.133052 1.336587 1.024374

θ̂0 0.663216 0.663216 1.168162

θ̂MLE 0.157368 1.334211 0.858668

θ̂0MLE 0.745789 0.745789 1.191057
1st removed

θ̂ 0.164888 1.336876 1.282064

θ̂0 0.673556 0.673556 1.165059

θ̂MLE 0.157368 1.0365 1.744319

θ̂0MLE 0.608205 0.608205 1.897962
2nd removed

θ̂ 0.100967 1.332965 1.08062

θ̂0 0.646353 0.646353 1.212074

θ̂MLE −0.064 1.334211 1.33831

θ̂0MLE 0.617179 0.617179 1.804794

Table 7: Parameter Estimates for the Lake Data Example

Example 2 (Ozone data): Doksum and Sievers (1976) describes a data from

a study designed to assess the effects of ozone on weight gains in rats. The

experimental group consisted of 22 seventy-day-old rats kept in an ozone en-

vironment for 7 days. A control group of 23 rats , of the same age, was kept

in an ozone-free environment. The weight gains are reported.

The data: The two data are given below:

Case 41 38.4 24.4 25.9 21.9 18.3 13.1 27.3
28.5 -16.9 26.0 17.4 21.8 15.4 27.4 19.2
22.4 17.7 26 29.4 21.4 26.6 22.7

Control 10.1 6.1 20.4 7.3 14.3 15.5 -9.9 6.8
28.2 17.9 -9.0 -12.9 14.0 6.6 12.1 15.7
39.9 -15.9 54.6 -14.7 44.1 -9.0

Table 8: Ozone data

Analyses: These data are also showing very similar feature to what we

have seen in the Lake data.

Example 3 (Mill Data): We already provided the data in the ‘motivational

example’ of section 1. We now present the analyses of that data set in the

following two tables:
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Outliers T1 T2 pooled t-test
Both present 0 1.19E-07 0.019307

Both removed 1.11E-16 2.05E-09 5.44E-06
1st removed 2.45E-14 3.04E-10 0.012983

2nd removed 2.42E-07 5.36E-07 6.58E-05

Table 9: p-values for the Ozone Data Example for the different tests

Outliers µ̂1 µ̂2 σ̂2

Both present

θ̂ 367.1096 14.68201 81.55534

θ̂0 18.72241 18.72241 196.3416

θ̂MLE 22.40435 11.00909 236.1146

θ̂0MLE 16.83333 16.83333 263.8086
Both removed

θ̂ 22.54936 7.307674 13.34944

θ̂0 14.46383 14.46383 108.0243

θ̂MLE 22.64 5.452632 96.9561

θ̂0MLE 14.26667 14.26667 170.0449
1st removed

θ̂ 30.74687 11.49846 39.15131

θ̂0 17.11528 17.11528 129.9109

θ̂MLE 22.64 11.00909 199.5915

θ̂0MLE 16.54762 16.54762 229.6845
2nd removed

θ̂ 24.47243 6.818259 100.875

θ̂0 18.07431 18.07431 137.4113

θ̂MLE 22.40435 5.452632 143.419

θ̂0MLE 14.73571 14.73571 212.7053
p-value 2.42E-07 5.36E-07 6.58E-05

Table 10: Parameter Estimates for the Ozone Data Example

Outliers T1 T2 pooled t-test
Both present 0.000877 0.007016 0.353921

Both removed 0.001689 0.008475 0.034902
1st removed 0.001795 0.009225 0.061691
1st present 0.000796 0.007068 0.748713

Table 11: p-values for the Mill Data Example
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Analyses: From Table 14, we see that the p-values for T1 and T2 changes

very negligibly whereas the p-value for the pooled t test varies a lot. It also

can directly affect the statistical conclusion if we remain ignorant about the

outliers.

Table 15 shows that the removal of the second outlier brings the means

closer and leads to a larger p-value for the pooled t-test.

Data 4: Outliers µ̂1 µ̂2 σ̂2

Both present

θ̂ 0.158693 0.608719 0.188302

θ̂0 0.372624 0.372624 0.291829

θ̂MLE 0.497727 0.883182 1.775425

θ̂0MLE 0.690455 0.690455 1.772144
Both removed

θ̂ 0.163374 0.608531 0.193234

θ̂0 0.373513 0.373513 0.288536

θ̂MLE 0.187 0.590952 0.332813

θ̂0MLE 0.393902 0.393902 0.366494
1st removed

θ̂ 0.166465 0.610305 0.199147

θ̂0 0.381235 0.381235 0.29692

θ̂MLE 0.187 0.883182 1.30843

θ̂0MLE 0.551667 0.551667 1.402917
2nd removed

θ̂ 0.155031 0.606647 0.181721

θ̂0 0.353248 0.353248 0.273156

θ̂MLE 0.497727 0.590952 0.856046

θ̂0MLE 0.543256 0.543256 0.83827

Table 12: Parameter Estimates for the Mill Data Example

7.2 ANOVA datasets

Example 1 (Newcomb Data): In 1882, the astronomer and mathematician

Simon Newcomb, measured the time required for a light signal to pass from his

laboratory on the Potomac River to a mirror at the base of the Washington

Monument and back, a distance of 744373 meters. Table 13 contains these

measurements from three samples, as deviations from 24800 nanoseconds. For

example, for the first observation, 28 represents that the 24828 nanoseconds

that were spent for the light to travel the required 744373 meters. The data

comprises three samples, of sizes 20, 20 and 26, respectively, corresponding to

three different days. These data have been analyzed previously by a number

of authors including Stigler (1973[12])
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Day 1 28 26 33 24 34 −44 27
16 40 −2 29 22 24 21
25 30 23 29 31 19

Day 2 24 20 36 32 36 28 25
21 28 29 47 25 28 26
30 32 36 26 30 22

Day 3 36 23 27 27 28 27 31
27 26 33 26 32 32 24
39 28 24 25 32 25 29
27 28 29 16 23

Table 13: Newcomb Data

Outliers T2 ANOVA F test
Both present 0.413907 0.080485

Both removed 0.932318 0.462579
1st removed 0.982654 0.545247

2nd removed 0.48357 0.067259

Table 14: p-values for Newcomb Data

New Comb µ̂1 µ̂2 µ̂3 σ̂2

Both present

θ̂ 26.62393 38.79901 33.18425 40.76972

θ̂0 26.85875 26.85875 26.85875 30.98443

θ̂MLE 21.75 28.55 27.84615 110.3952

θ̂0MLE 26.21212 26.21212 26.21212 115.462
Both removed

θ̂ 26.13828 27.1628 24.876 20.14234

θ̂0 23.5525 23.5525 23.5525 21.1874

θ̂MLE 26.72222 28.55 28.32 24.21739

θ̂0MLE 27.93651 27.93651 27.93651 23.9959
1st removed

θ̂ 25.3099 30.32547 22.12487 35.862

θ̂0 21.19399 21.19399 21.19399 27.89625

θ̂MLE 26.72222 28.55 27.84615 26.20072

θ̂0MLE 27.75 27.75 27.75 25.84127
3rd removed

θ̂ 35.5367 27.69195 36.27236 47.26743

θ̂0 26.85872 26.85872 26.85872 30.98437

θ̂MLE 21.75 28.55 28.32 109.7682

θ̂0MLE 26.36923 26.36923 26.36923 115.6115

Table 15: parameter estimates for the Newcomb Data
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Analyses The removal of 1st outlier is having an impact on the p value of

the two statistics. This is quite natural as 16 is not that far as -44 and -2 are

from the data cloud.

With both the outliers and with the first outlier, the value of the usual F-

test statistic is on the border line of rejection if we take our level of significance

to be 0.05. However, the test T2 in all the four cases cannot reject the test

with higher p-values.

Example 2 (Football Data): The following data from The Sports Encyclope-

dia Pro Football represent weights (pounds) of a random sample of professional

football players on the five teams of Dallas.

Team 1 2569 2928 2865 3844 3027 2336 3211 3037
Team 2 2074 2885 3378 3906 2782 3018 3383 3447
Team 3 2505 2315 2667 2390 3021 3085 3308 3231
Team 4 2838 2351 3001 2439 2199 3318 3601 3291
Team 5 1532 2552 3083 2330 2079 3366 2416 3100

Table 16: ANOVA 2nd Data: Footballers’ weight

Outlier T2 ANOVA F test
Present 0.9653 0.283826
Deleted 0.9733 0.539731

Table 17: p-value table for the Football Data

Football Data µ̂1 µ̂2 µ̂3 µ̂4 µ̂5 σ̂2

Both Present

θ̂ 28.05358 31.9085 31.13095 36.93937 23.79538 40.8915

θ̂0 28.96059 28.96059 28.96059 28.96059 28.96059 20.2013

θ̂MLE 29.77125 31.09125 28.1525 28.7975 25.5725 25.80014

θ̂0MLE 28.677 28.677 28.677 28.677 28.677 26.63162
p-value 0.9653 0.283826

5th removed

θ̂ 28.89423 35.87701 33.36418 22.53566 35.69094 43.26009

θ̂0 28.83519 28.83519 28.83519 28.83519 28.83519 11.87717

θ̂MLE 29.77125 31.09125 28.1525 28.7975 27.03714 23.02535

θ̂0MLE 29.01949 29.01949 29.01949 29.01949 29.01949 22.51708
p-value 0.9733 0.539731

Table 18: Parameter estimates for the Football Data

Analyses: We divide the original data by 100 and perform our analyses.

We consider the last data point of the first column as the only outlier. We

see that the usual F-test is having a drastic change in the p-value depending

on whether the outlier is there or not. But T2 is much more ‘robust’ in that

decision. Additionally, it can be said that T2 infers that the equality of two

mean with more confidence than what is done by the usual F-test.

28



References

[1] Balakrishnan, N. and Tiku, M. L. (1985). Robust Univariate Two- Way

Classification Biometrica Journal, 27 123-138.

[2] Basu, A., Shioya, H., Park, C. (2011). Statistical Inference: The Minimum

Distance Approach, Chapman & Hall/CRC, Boca Raton, Florida.

[3] Doksum, K. A., Sievers, G. L. (1976) Plotting With Confidence: Graphical

Comparisons Of Two Populations, Biometrika, 63, 421-434.

[4] Hampel, F. R., Ronchetti, E. , Rousseeuw, P. J. and Stahel, W. (1986).

Robust Statistics: The Approach Based on Influence Functions. New York,

USA: John Wiley & Sons.

[5] Harris, I. R. and Basu, A. (1994). Hellinger distance as a penalized log

likelihood. Communications in Statistics: Simulation and Computation,

23, 1097-1113.

[6] Huber, P. J. (1981). Robust Statistics. John Wiley & Sons.

[7] Koopmans, L. H. (1987). Introduction to Contemporary Statistical Methods,

2nd Ed. , Boston, Duxbury.

[8] Lindsay, B. G. (1994). Efficiency versus robustness: The case for minimum

Hellinger distance and related methods. Annals of Statistics 22, 1081-1114.

[9] Sarkar, S. and Basu, A. (1995). On Disparity Based Robust Tests For Two

Discrete Populations.Sankhya: The Indian Journal of Statistics, 57B, Pt.

3 353-364.

[10] Simpson D. G. (1989). Hellinger Deviance Tests: Efficiency, Breakdown

Points, and Examples. Journal of the American Statistical Association, 84,

107-113.

[11] Staudte, Robert G., Sheather, Simon J. (1990). Robust Estimation and

Testing John Wiley & Sons, Inc., USA.

[12] Stigler, S. M. (1973). “Simon Newcomb, Percy Daniel and the history of

robust estimation 1885-1920”. Journal of the American Statistical Associ-

ation, 68, 872879.

[13] Tamura, R. N. and D. D. Boos (1986). Minimum Hellinger distance esti-

mation for multivariate location and covariance. Journal of the American

Statistical Association, 81, 223-229.

29



[14] Tiku, M. L., Tan, W. Y., Balakrishnan, N., (1986). Robust Inference

Dekker M. .

[15] Wilcox, Rand R. (2005). Introduction to Robust Estimation and Hypoth-

esis Testing, Academic Press.

30


	Introduction 
	A Motivational Example

	Density-based Minimum Distance Estimation
	The Mathematical Set-up
	The Disparity Measure
	The Properties of the C Function
	Examples of Disparities
	Notation

	The First Proposal
	Null Distribution of the Statistic T1
	Modifications for the inclusion of Hellinger Distance
	Power Approximation of T1

	 The Second Statistic
	Some Important Results
	Final Proof For The Null Distribution

	Level and Power of the New Tests
	Level comparison
	Power comparison

	The Multiple Sample Problem: ANOVA
	Natural extension of T2 to multi-sample
	Proofs are similar

	Real data examples
	Two Sample comparison datasets
	ANOVA datasets


